Comparison of Industrial Substation Arrangements

Authors

Keywords:

industrial power systems, load flow, power system planning, Power system reliability, substations

Abstract

This paper presents a comparative analysis for two alternatives of industrial substation arrangement with selective secondary radial type: first with one main transformer and one reserve and the second one with two main transformers and one reserve. The analysis are based on the power flow calculation, short circuit and reliability indices using the Electrical Power System Analysis Software (ETAP) and on the acquisition costs of equipment and materials. The analysis' methodology application in both alternatives is presented and the results are analyzed and compared as well.

Downloads

Download data is not yet available.

Author Biographies

Paulo Roberto Duailibe Monteiro, Universidade Federal Fluminense

Paulo Roberto Duailibe Monteiro nasceu no Brasil. Recebeu o grau de Engenheiro Elétrico em 1977 da Universidade Católica de Petrópolis, Petrópolis, Brasil. Obteve o título de mestre em Engenharia de Produção em 1996 e o título de Doutor em Engenharia Civil em 2016, ambos pela Universidade Federal Fluminense (UFF), Niterói, Brasil. Desde 1985 é professor de engenharia elétrica da Universidade Federal Fluminense, Niterói, Brasil. Suas realizações incluem o Prêmio Nacional de Conservação e Uso Racional de Energia na Categoria de Órgãos e Empresas de Administração Pública, do Programa Nacional de Conservação de Energia Elétrica (PROCEL) do Ministério de Minas e Energia do Brasil, em 2003 e 2004 pela UFF. Atualmente é professor permanente do Programa de Pós-Graduação em Montagem Industrial. Os seus interesses de pesquisa incluem sistemas de transmissão, com ênfase em Subestações, planejamento de redes de distribuição de energia e energia renovável.

Tiago Ribeiro, Universidade Federal Fluminense

Tiago Pinheiro Ribeiro é Português, residente no Rio de Janeiro, Brasil. Recebeu o grau de Engenheiro Elétrico em 2009 da Universidade Gama Filho. Possui Especialização em Automação Industrial pela Faculdade SENAI-RJ (2015) e atualmente é aluno do curso de Mestrado Profissional em Montagem Industrial da Universidade Federal Fluminense. Possui experiência nacional e internacional em projetos de instrumentação, automação e elétrica, projetos de melhorias no setor industrial, supervisão de atividades de manutenção preventiva, corretiva e preditiva, fiscalização de projetos executivos, comissionamento e construção e montagem de obras de grande porte na área de Óleo e Gás.

Munique Araújo, Universidade Federal Fluminense

Munique Freire de Araújo nasceu no Brasil. Recebeu o grau de Engenheira Elétrica em 2005 da Universidade Gama Filho. Possui Especialização em Gerenciamento de Projetos pela Fundação Getúlio Vargas (2008), Especialização em Engenharia de Dutos pela Pontifícia Universidade Católica do Rio de Janeiro (2011), Especialização em Engenharia de Custos pelo Instituto Brasileiro de Engenharia de Custos – IBEC (2015) e atualmente é aluna do curso de Mestrado Profissional em Montagem Industrial da Universidade Federal Fluminense. É engenheira orçamentista com experiência na gestão de projetos e administração contratual em obras de grande porte na área onshore e offshore.

Aleksandro Pereira, Universidade Federal Fluminense

Aleksandro Maick Pereira nasceu no Brasil. Recebeu o grau de Engenheiro Mecânico em 2006 pela Universidade Federal do Rio de Janeiro. Possui Especialização em Finanças pelo Instituto Coppead/UFRJ (2013), Especialização em Engenharia Naval pela Universidade Federal do Rio de Janeiro (2014) e atualmente é aluno do curso de Mestrado Profissional em Montagem Industrial da Universidade Federal Fluminense. Possui experiência em gestão de operações, comissionamento de unidades industriais, manutenção preventiva e preditiva e análise de falhas.

References

W. Mauricio, L. S. Mazrahi, J. A. Filho and M. O. M. Menezes, “Qual o arranjo e a expansão ideias,” Eletricidade Moderna, São Paulo, Brazil, pp. 31-52, Jan. 1987.

A. Bianco, C. R. R. Dornellas and M. T. Schilling, “Power System Nodal Risk Assessment: Concepts and Applications,” Eletroevolução, no. 20, pp. 11-16, Jun. 2000.

J. B. Penteado, "Análise do Desempenho de Subestações de Energia Elétrica a Partir de Critérios de Confiabilidade," B.S. thesis, Esc. Eng. São Carlos, Univ. São Paulo, São Paulo, SP, Brazil, 2011.

H. P. A. Junior, L. A. M. C. Domingues and E. F. A. Lisboa, "Avaliação da Confiabilidade de Subestações," in XVI Seminário Nacional de Distribuição de Energia Elétrica, Brasília, DF, Brazil, 2004, pp. 1-10.

A. F. Brandao, "Reliability Reduction in Electrical Installations Due to Equipment Overload," IEEE Latin America Transactions, vol. 6, no. 1, pp. 74-80, Mar. 2008, 10.1109/TLA.2008.4461635.

A. Violin, "Avaliação da Confiabilidade de Subestações Baseada nos Desempenhos Estático e Dinâmico de Sistemas Elétricos de Potência,"D.S. thesis, Prog. P.G. Eng. Ele., Univ. Fed. Itajubá, Itajubá, MG, Brazil, 2014.

R. O. Ruback and V. M. da Costa, "A New Method for Analyzing Three-phase Faults under Data Uncertainties," IEEE Latin America Transactions, vol. 16, no. 5, pp. 1395-1401, May. 2018, 10.1109/TLA.2018.8408433.

F. Freitas, C. Donadel, M. Có and E. Silva, "Optimal Coordination of Overcurrent Relays in Radial Electrical Distribution Networks," IEEE Latin America Transactions, vol. 17, no. 3, pp. 520-527, Mar. 2019, 10.1109/TLA.2019.8863323.

Jizhong Zhu, “Power Flow Analysis,” in Optimization of Power System Operation, 2nd ed., Wiley-IEEE Press, 2015, pp. 13-50.

H. Q. Pereira and V. M. Costa, “Uma avaliação crítica das formulações de fluxo de potência para sistemas trifásicos via método de newton-raphson,” SBA: Controle & Automação Sociedade Brasileira de Automatica, vol. 18, n. 1, pp. 127-140, Feb. 2007, 10.1590/S0103-17592007000100010.

Short-Circuit Currents in Three-Phase A.C Systems - Part 0: Calculation of Currents, IEC Standard 60909-0, 2016.

Short-Circuit Currents in Three-Phase AC Systems - Part 1: Factors for the Calculation of Short Circuit Currents According to IEC 60909-0, IEC TR 60909-1, 2002.

Short-Circuit Currents in Three-Phase AC Systems - Part 2: Data of Electrical Equipment for Short-circuit Current Calculations, IEC TR 60909-2, 2008.

Short-Circuit Currents in Three-Phase AC Systems - Part 4: Examples for the Calculation of Short-circuit Currents, IEC TR 60909-4, 2000.

Electrical Installations of Ships and Mobile and Fixed Offshore Units - Part 1: Procedures for Calculating Short Circuit Currents in Three-Phase AC, IEC Standard 61363-1, 1998.

ETAP - Power System Modeling, Analysis and Optimization Software, Available: https://etap.com/student-edition, Accessed on: Nov. 10, 2019.

WEG Seleção de Motores Elétricos, Available: http://ecatalog.weg.net/TEC_CAT/tech_motor_sel_web.asp?cd_produto=32&CD_CATEGORIA_PRODUTO=5&cd_mercado=000B&cd_idioma_cat=PT&cd_empresa=110, Accessed on: Nov. 12, 2019.

B. Boussahoua and A. Elmaouhab, "Reliability Analysis of Electrical Power System Using Graph Theory and Reliability Block Diagram," in 2019 Algerian Large Electrical Network Conference (CAGRE), Algiers, Algeria, 2019, pp. 1-6.

M. Z. Kamaruzaman, N. I. A. Wahab and M. N. M. Nasir, "Reliability Assessment of Power System with Renewable Source using ETAP," 2018 International Conference on System Modeling & Advancement in Research Trends (SMART), pp. 236-242, Nov. 2018, 10.1109/SYSMART.2018.8746980.

A Guide to the Project Management Body of Knowledge. PMBOK® Guide, 6th ed., Project Management Institute, Newtown Square, PA, USA, 2017.

A.P. Camargo and P. C. Sentelhas, “Avaliação do desempenho de diferentes métodos de estimativas da evapotranspiração potencial no Estado de São Paulo, Brasil,” Revista Brasileira de Agrometeorologia, Santa Maria, vol. 5, no.1, pp. 89-97, Jan. 1997.

Código IPAMQ – IPA16EP-DI Máquinas, aparelhos e equipamentos – Bens de Investimento: código A1416650, Fundação Getúlio Vargas, Rio de Janeiro, Brazil, 2019.

P. S. T. Fernandes, Montagens Industriais – Planejamento, Execução e Controle, 2nd ed, São Paulo, Brasil: Artliber Editora, 2009, pp. 344.

Acórdão TCU 2.622/2013, Tribunal de Contas da União. Brazil, Set. 2013 [Online]. Available: https://pesquisa.apps.tcu.gov.br/#/documento/acordao-completo/AC-2622-37%252F13-P/%2520/DTRELEVANCIA%2520desc%252C%2520NUMACORDAOINT%2520desc/0/%2520?uuid=e8bed6d0-86f2-11ea-9efe-7302dd68cf06, Accessed on: Nov. 14, 2019.

Cost estimate classification system - as applied for the petroleum exploration and production industry: AACE international recommended practice no. 87R-14, Association for the Advancement of Cost Engineering International, Morgantown, WZ, USA, 2019.

Cost engineering terminology: AACE international recommended practice no. 10S-90, Association for the Advancement of Cost Engineering International, Morgantown, WZ, USA, 2019.

Cost Estimate Classification System: AACE international recommended practice no. 17R-97, Association for the Advancement of Cost Engineering International, Morgantown, WZ, USA, 2019.

Published

2021-03-09

How to Cite

Duailibe Monteiro, P. R., Ribeiro, T., Araújo, M., & Pereira, A. (2021). Comparison of Industrial Substation Arrangements. IEEE Latin America Transactions, 18(10), 1834–1841. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/3682