Detection of Stressed Electronic Components in PV Inverter using Thermal Imaging

Authors

  • João Marcus Callegari Centro Federal de Educação Tecnológica de Minas Gerais - CEFET/MG
  • Lucas Gusman Centro Federal de Educação Tecnológica de Minas Gerais - CEFET/MG
  • Dayane Mendonça Centro Federal de Educação Tecnológica de Minas Gerais - CEFET/MG https://orcid.org/0000-0003-2425-0509
  • William Amorim Universidade Federal de Viçosa - UFV https://orcid.org/0000-0002-2054-4393
  • Inglith Alves Universidade Federal de Viçosa - UFV
  • Heverton Augusto Pereira Universidade Federal de Viçosa https://orcid.org/0000-0003-0710-7815
  • Francisco Pinto Universidade Federal de Viçosa - UFV

Keywords:

inverter, temperature, thermal stress, image processing

Abstract

Static power inverters emerged with the growth of renewable energy generation. These types of inverters have revolutionized the electrical energy conversion process, with advantages in terms of efficiency, volume, costs, among others. Static inverters are devices composed of inductors, capacitors, power semiconductors and signal microprocessor circuits. Several studies conclude that thermal stress is the main trigger for the degradation of its components, rapidly leading to reduced efficiency in the energy conversion process, economic losses and, in the worst case, system failure. In this sense, this work proposes an algorithm, based on thermal imaging processing, capable of detecting the overheated components in photovoltaic inverter. The algorithm is capable of presenting the temperature distribution in the inverter, detecting and diagnosing if some component has a temperature above the proper one for its normal functioning, evaluating several scenarios of active power processed by the inverter. The implemented classifier achieved a global exaction of 97.9% and a Kappa value of 0.974 on the image classification of a 1.5 kW photovoltaic inverter from PHB electronics.

Downloads

Download data is not yet available.

Author Biographies

João Marcus Callegari, Centro Federal de Educação Tecnológica de Minas Gerais - CEFET/MG

João Marcus Soares Callegari é mestrando em Engenharia Elétrica pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), na área de Eletrônica de Potência e Energias Renováveis. Possui graduação em Engenharia Elétrica pela Universidade Federal de Viçosa (UFV). Atualmente é integrante da Gerência de Especialistas em Sistemas Elétricos de Potência – GESEP, onde desenvolve trabalhos na área de confiabilidade e vida útil de dispositivos de potência e controle de conversores fotovoltaicos.

Lucas Gusman, Centro Federal de Educação Tecnológica de Minas Gerais - CEFET/MG

Lucas Soares Gusman é mestrando em Engenharia Elétrica pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) na área de Eletrônica de Potência e Energias Renováveis. Possui graduação em Engenharia Elétrica pela Universidade Federal de Viçosa (UFV). Atualmente trabalha no estudo dos impactos de usinas fotovoltaicas no fator de potência, correção de fator de potência com inversores multifuncionais trifásicos, bancadas experimentais de algoritmos MPPT de conversores c.c. e coleta de dados meteorológicos para avaliação de vida útil de conversores.

Dayane Mendonça, Centro Federal de Educação Tecnológica de Minas Gerais - CEFET/MG

Dayane do Carmo Mendonça graduou-se em Engenharia Elétrica pela Universidade Federal de Viçosa (UFV) em 2018. Possui ensino médio técnico em Eletrotécnica pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), campus Leopoldina. Na UFV atuou como gerente de Qualidade na Empresa Júnior de Engenharia Elétrica (diElétrica). Atualmente, é mestranda do Programa de Pós-Graduação em Engenharia Elétrica do CEFET-MG e especialista do GESEP, onde desenvolve trabalhos e pesquisas na área de Sistemas Elétricos de Potência, com foco em Conversores Modulares Multíniveis e sistemas fotovoltaicos.

William Amorim, Universidade Federal de Viçosa - UFV

William Caires Silva Amorim possui graduação em Engenharia Elétrica pela Universidade Federal de Viçosa – UFV e mestrado em Engenharia Elétrica pela pelo Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG). Atualmente é professor substituto do Departamento de Engenharia Elétrica da UFV e integrante do GESEP - Gerência de Especialistas em Eletrônica de Potência, onde desenvolve pesquisas na área de Conversores Modulares Multiníveis (MMC) aplicados em sistemas ES-STATCOM.

Inglith Alves, Universidade Federal de Viçosa - UFV

Inglith de Souza Lage Alves é mestranda em Engenharia Agrícola pela Universidade Federal de Viçosa (UFV), na área de Mecanização Agrícola com ênfase em Agricultura de Precisão. Possui graduação em Engenharia de Agrimensura e Cartográfica pela Universidade Federal de Uberlândia (UFU). Atualmente trabalha no desenvolvimento de sistemas de posicionamento com correção em tempo real para VANTs.

Heverton Augusto Pereira, Universidade Federal de Viçosa

Heverton Augusto Pereira (M’12) received the B.S. degree in electrical engineering from the Federal University of Viçosa (UFV), Viçosa, Brazil, in 2007, the M.Sc. degree in electrical engineering from the University of Campinas, Campinas, Brazil, in 2009, and the Ph.D. degree from the Federal University of Minas Gerais, Belo Horizonte, Brazil, in 2015.,He was a Guest Ph.D. Scholar with Aalborg University, Aalborg, Denmark, in 2014. He has been an Adjunct Professor with the Electric Engineering Department, UFV, since 2009. His main research interests include grid-connected converters for photovoltaic and wind power systems, and high-voltage dc/flexible ac transmission system-based on MMC.

Francisco Pinto, Universidade Federal de Viçosa - UFV

Francisco de Assis de Carvalho Pinto possui graduação em Engenharia Agrícola pela Universidade Federal de Viçosa (1990), mestrado em Engenharia Agrícola pela Universidade Federal de Viçosa (1992) e doutorado em Engenharia Agrícola - University of Illinois (2000). Atualmente é professor Associado da Universidade Federal de Viçosa. Tem experiência na área de Engenharia Agrícola, com ênfase em Visão Artificial, atuando principalmente nos seguintes temas: agricultura de precisão, visão artificial, processamento de imagens, simulação e máquinas agrícolas.

References

Renewables 2018: Market analysis and forecast from 2018 to 2023, [Online]. Available: https://www.iea.org/renewables2018/power/. [Accessed May 2019].

F. C. Melo, R. R. Spaduto, L. C. G. Freitas, C. E. Tavares, J. R. M. Junior and P. H. O. Rezende, "Harmonic Distortion Analysis in a Low Voltage Grid-Connected Photovoltaic System," IEEE Latin America Transactions, vol. 13, pp. 136-142, 2015.

Y. Yang, A. Sangwongwanich and F. Blaabjerg, "Design for reliability of power electronics for grid-connected photovoltaic systems," Trans. Power Electron. Appl., vol. 1, no. 92-103, p. 1, 2016.

A. Golnas, "PV system reliability: An operator's," IEEE J. of Photovoltaics, pp. 416-421, 2013.

P. Reigosa, "Smart derating of switching devices for designing more reliable pv inverters," Master’s thesis, Aalborg University, 2014.

V. Sodan, S. Stoels, H. Oprins, S. Decoutere, F. Altmann, M. Baelmans and I. DeWolf, "Fast and distributed thermal model for thermal modeling of gan power devices," IEEE Trans. on Compon., Packag. and Manuf. Technol., vol. 8, no. 10, pp. 1747-1755, 2018.

X. Perpiñà, M. Vellvehi, R. J. Werkhoven, J. Jakovenko, J. M. G. Kunen, P. Bancken, P. J. Bolt and X. Jordà, "Thermal management strategies for low- and high-voltage retrofit led lamp drivers," IEEE Trans. on Power Electron., vol. 34, no. 4, pp. 3677-3688, 2019.

C. Batunlu and A. Albarbar, "Strategy for enhancing reliability and lifetime of dc-ac inverters used for wind turbines," Microelectronics Reliability, vol. 85, pp. 25-37, 2018.

F. Hahn, M. Andresen, G. Buticchi and M. Liserre, "Thermal analysis and balancing for modular multilevel converters in hvdc applications," IEEE Trans. on Power Electron., vol. 33, no. 3, pp. 1985-1996, 2018.

Y. Ko, M. Andresen, G. Buticchi and M. Liserre, "Discontinuous-modulation-based active thermal control of power electronic modules in wind farms," IEEE Trans. on Power Electron., vol. 1, no. 301-310, p. 34, 2019.

R. Silva, J. B. Filho, J. L. Jr. and J. Henríquez, "Thermal Modeling of a Capacitor Voltage Transformer Using CFD Techniques," IEEE LATIN AMERICA TRANSACTIONS, vol. 16, no. 8, pp. 2234-2239, 2018.

H. Wang, P. Davari, H. Wang, D. Kumar, F. Zare and F. Blaabjerg, "Lifetime estimation of dc-link capacitors in adjustable speed drives under grid voltage unbalances," IEEE Trans. on Power Electron., vol. 34, no. 5, p. 4064–4078, 2019.

D. Chen, Y. Liu, W. Zhang, M. Zheng and S. Zhang, "Detection of igbt degradation in npc inverter based on infrared thermography," Journal of Computacional Methods in Sciences and Engineering, vol. 8, no. 2, p. 459–468, 2018.

B. Kaur, A. Kaur and G. Kaur, "Application of image processing using computer in detection of defective printed circuit boards," International Journal of Advanced Research in Computer Sciense, vol. 8, no. 5, pp. 1043-1046, 2017.

N. Asadizanjani, M. Tehranipoor and D. Forte, "Counterfeit electronics detection using image processing and machine learning," IOPscience - Journal of Physics, 2017.

I. Houssamo, F. Locment and M. Sechilariu, "Maximum power tracking for pv system: Development and experimental comparison of two algorithms," Renew. Energ., pp. 2381-2387, 2010.

H. Akagi, Y. Kanazawa and A. Nabae, "Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components," IEEE Trans. on Ind. Appl., zols. IA-20, no. 3, pp. 625-630, 1984.

L. S. Xavier, A. F. Cupertino and H. A. Pereira, "Ancillary services provided by photovoltaic inverters: Single and three phase control strategies," Computers & Electrical Engineering, vol. 70, pp. 102-121, 2018.

J. W. Halliday and D. Resnick, Fundamentos de Física 4, LTC, 2016.

FLIR, "User’s manual FLIR Cx series," FLIR Systems, 2017.

Termography camera flir c2, [Online]. Available: https://prod.flir.com.br/products/c2/. [Accessed May 2019].

Opencv python tutorials, [Online]. Available: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html. [Accessed May 2019].

Numpy and scipy documentation, [Online]. Available: https://docs.scipy.org/doc/. [Accessed May 2019].

Openpyxl python tutorials, [Online]. Available: https://openpyxl.readthedocs.io/en/stable/. [Accessed June 2019].

S. C. d. Souza and C. Lopes, "Modelo de classificador por regra aplicado a detecção de pele baseado em discriminantes de cores," Revista Multidisciplinar Pey Keyo Cientifico, vol. 4, pp. 1-14, 2018.

H. Maia, "Uma proposta para detecção automática de câncer de pele baseando em características de forma, cor e textura," Master’s thesis, Universidade Federal Rural do Semi Árido, 2015.

B. S. Oliveira and G. A. V. Mataveli, "Avaliação do desempenho dos classificadores isoseg e bhattacharya para o mapeamento de áreas de cana-de-açúcar no município de Barretos - SP," Simpósio Brasileiro de Sensoriamento Remoto (SBSR), vol. 4, pp. 89-96, 2013.

U. C and F. Blaabjerg, "Asymmetric power device rating selection for even temperature distribution in NPC inverter," IEEE Energy Conversion Congress and Exposition, pp. 4196-4201, 2017.

M. Electric, "Power Module Reliability," [Online]. Available: www.mitsubishielectric.com/semiconductors/products/pdf/r. [Accessed 13 Fevereiro 2020].

Published

2021-03-09

How to Cite

Callegari, J. M., Gusman, L., Mendonça, D., Amorim, W., Alves, I., Pereira, H. A., & Pinto, F. (2021). Detection of Stressed Electronic Components in PV Inverter using Thermal Imaging. IEEE Latin America Transactions, 18(10), 1760–1767. Retrieved from https://latamt.ieeer9.org/index.php/transactions/article/view/3546