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Smart Grid Insulator Detection Network Improved
based on YOLOv8

Tao Wang , Nan Zhang , Wenqing Yang , Wei Zhang , and Wancai Zhang

Abstract—Insulators are critical components of power
transmission lines. Due to environmental changes, insulators
may fail, making timely and effective detection of these failures
a pressing issue. However, the detection of inclined insulators
faces challenges, such as inadequate fitting of detection frames
and excessive background noise within the target frames. To
address this, this paper proposes an improved inclined insulator
detection network (RCAS-YOLOv8). To resolve issues related
to feature sparsity and effectiveness, a non-local module with
row and column-level sharing is introduced by considering
the correlations between feature points. Finally, the task
of locating the four vertices of the insulator is completed by
summing the predicted offsets of the target frame’s four vertices.
Experimental results show that the proposed RCAS-YOLOv8
algorithm has achieved significant improvement in the detection
of tilted targets in the Power Line Insulator Dataset (CPLID),
with high detection accuracy, in which the APR index of our
method reached 0.891.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9299

Index Terms—Insulator, Object Detection, Prediction offset.

I. INTRODUCTION

INSULATORS are specialized devices capable of with-
standing voltage and mechanical stress, widely used in

overhead transmission lines. These insulators are typically
exposed to external air, making them vulnerable to failures due
to environmental factors, which pose significant safety risks to
power line operations. Historically, insulator inspections were
conducted manually through observation and testing. However,
as the demand for electricity has grown and the coverage
of high-voltage transmission lines has expanded, this method
has proven to be time-consuming, labor-intensive, and heavily
reliant on the inspector’s expertise. Due to its inefficiency, this
manual inspection method has largely been abandoned in the
power sector.

With the advancement and integration of UAV (Unmanned
Aerial Vehicle) technology and computer vision algorithms,
this approach has seen widespread application in the inspec-
tion of transmission lines. This method not only enhances
inspection efficiency but also reduces costs and risks asso-
ciated with line inspections. Consequently, combining UAV
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technology with computer vision for effective detection and
defect analysis of insulators has become increasingly crucial
for ensuring the reliable operation of power systems.

Upon reviewing previous research, we can categorize the
tools used into two main types: traditional insulator detec-
tion image techniques and neural network-based detection
techniques. Traditional methods primarily rely on manual ex-
traction of insulator attributes, distinguishing the background
from the target using common features such as color, shape,
position, and texture. Ding et al. [1]proposed an image en-
hancement method for tempered glass insulators under the
HIS mode, based on techniques like image morphology and
threshold segmentation. In [2], a semi-local operator was used
to extract insulator texture features, overcoming the issue of
uneven texture in images. This work introduced a non-convex
model within a globally minimized active framework, enabling
the extraction of insulator contours from aerial images. Tan et
al. [3] proposed a fusion algorithm combining image contour
features and grayscale similarity matching to classify and iden-
tify defective and normal insulators effectively. Tomaszewski
[4] et al. proposed a new method for detecting power line
insulator faults by analyzing the transformed color intensity
distribution in images captured by inspection cameras. This
method enhances the detection of subtle defects such as cracks
and corrosion by converting the raw color data into a more
informative distribution and then analyzing it using a machine
learning algorithm.While these traditional algorithms perform
well in specific scenarios, altering the application context
or image style can significantly impact their performance,
indicating poor generalization ability.

Over the past decade, with the maturation of convolutional
neural networks, researchers have increasingly applied deep
learning algorithms in the field of computer science, achieving
notable success. Some researchers have classified insulator
detection under the domain of object detection, modifying
general object detection algorithms to suit insulator detection
in transmission lines. Current work on insulator detection
using convolutional neural networks can be divided into two
categories. The first category includes two-stage insulator
detection algorithms based on the RCNN series, such as the
work by R. Girshick et al. [5] and R. Girshick et al. [6], which
separate insulator localization and defect recognition into two
distinct steps. The second category consists of single-stage
algorithms, such as the SSD algorithm proposed by Liu et al.
[7] and the YOLO series, including J. Redmon et al. [8] and
Li et al. [9], which directly regress the insulator’s position and
class in a single step. Zhao et al. [10] proposed an insulator
detection method based on binary unsupervised critical points
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and local aggregation descriptions for insulator localization
using a multi-scale sliding window. In [11], multi-scale and
multi-feature descriptors were introduced to represent local
features, training the network to obtain multiple spatial feature
sequences, thereby achieving background noise elimination
and insulator detection. In [12], a two-stage Fast-RCNN al-
gorithm was employed for insulator localization. In [13], the
Faster-RCNN algorithm was used for insulator localization,
combined with a semantic segmentation algorithm for defect
recognition. Detection and segmentation networks were fused
in [14]. The ResNeXt [15] network, combined with Online
Hard Example Mining (OHEM) [16] technology, was applied
from both global and local perspectives to achieve accurate
insulator localization. In [17], an improved RestNeSt insu-
lator detection algorithm was proposed, combining a region
proposal network to address low detection accuracy and long
detection times. A railway insulator fault detection network
was proposed in [18], cascading detection and classification
tasks to achieve insulator localization and fault classification.
In [19], a multi-scale residual neural network was proposed,
using convolutional kernels of different sizes for feature ex-
traction and fusion to enhance insulator detection accuracy.
Sadykova et al. [20] utilized data augmentation to generate
insulator images in various natural scenes, using YOLOv2
as the base algorithm for insulator detection. In [21], a
convolutional attention module with batch normalization and
feature fusion modules was proposed, achieving insulator
detection on the ResNet backbone network. In [22], based on
the Faster-RCNN network, the feature pyramid module was
used to improve the network, achieving insulator localization
and defect detection through linear detection and vertical
projection. Zhang et al. [23] proposed an insulator defect
detection algorithm by mining potential representations of
normal samples to generate defect samples, achieving high
reliability in insulator defect detection. Zhang et al. [24]
proposed a tightly connected feature pyramid structure based
on the YOLOv3 network, which reduces network parameters
while maintaining better detection performance. Zheng et al.
[25] proposed an insulator image detection model based on an
improved feature fusion single-shot multibox detector, which
is based on the SSD algorithm. Glenn Jocher et al. [26]
proposed YOLOv5, which has certain limitations in detecting
small objects, handling background interference, and min-
imizing computational consumption—especially in complex
backgrounds and on resource-constrained devices. Wang et al.
[27] proposed YOLOv8, which has shown improvements in
accuracy and adaptability. However, its adaptability to small
objects remains limited. Additionally, the increased computa-
tional requirements and longer training times may hinder its
application on edge devices.

In the past five years, researchers have introduced detec-
tion models based on the Anchor-Free concept, with notable
examples including CornerNet [28], ExtremeNet [29], and
CenterNet [30]. While these models are Anchor-Free, they still
share the core idea of using the center point and width-height
information to detect the target object’s rectangular bounding
box. However, rectangles, typically oriented horizontally or
vertically, often include irrelevant background information,

which can limit the detection of inclined objects. Although
some studies have explored inclined object detection, research
specifically targeting insulator detection remains limited. Fur-
thermore, on the hardware side, the power industry faces
challenges due to the lack of standardized equipment models
for circuit inspection. Consequently, various UAV models are
used globally for transmission line inspections, leading to in-
consistent and region-specific studies. Most existing insulator
detection algorithms tend to be rigid, focusing on singular per-
formance metrics such as model size, memory requirements,
detection accuracy, and speed. To overcome these limitations
and avoid redundant research on region-specific inspection
devices, a more versatile solution is needed.

In response to these challenges, this paper introduces a novel
inclined insulator detection algorithm, RCAS-YOLOv8. The
RCAS-YOLOv8 model is designed to handle the unique char-
acteristics of inclined insulators by enhancing the YOLOv8
framework. This method improves the network structure, opti-
mizes the loss function, and addresses various relevant factors
to better detect inclined insulators. The development of this
innovative RCAS-YOLOv8 network marks a significant step
forward in the field.

The main contributions of this paper are as follows:
1) This work developed an end-to-end fault detection model

for transmission line insulators, RCAS-YOLOv8.
2) This work proposes non-local module based on row and

column-level shared correlations, which further enriches the
semantic representation of the feature layers and enhances the
correlations between feature points.

3) This work designed a vertex offset prediction loss func-
tion, constructing a quadrilateral detection frame for the target
area based on the predicted coordinates of the four vertices
of the insulator, enabling the detection of inclined insulators.
The rest of this paper is organized as follows. Section 2 intro-
duces related research works. Section 3 explains the research
methodology. In Section 4, we explain the experimental results
and discussions in detail. Finally, conclusions are given in
Section 5.

II. RELATED WORK

A. Yolo Framework
The YOLO series is a deep learning-based general object

detection algorithm designed to predict object locations and
categories through a regression-based approach. This method
transforms the detection problem into a regression problem,
enabling simultaneous object localization and classification,
thereby improving detection speed. The advent of the YOLO
series marked a significant breakthrough in the field of object
detection, particularly excelling in applications requiring high
real-time performance. The series is adept at detecting objects
of varying sizes, enhancing the detection capabilities for both
small and large objects. During the detection process, post-
processing techniques such as non-maximum suppression are
employed to refine the predictions and ultimately output the
positions of the target bounding boxes.

In summary, YOLO has achieved significant improvements
in both speed and accuracy compared to earlier versions, mak-
ing it particularly suitable for real-time detection scenarios. Its
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feature extraction and fusion strategies have greatly enhanced
the ability to detect objects of different sizes, establishing it
as one of the most widely used object detection algorithms
today. With these advancements, YOLO has not only increased
detection efficiency but also ensured accuracy, providing ro-
bust support for various computer vision tasks. Notably, the
YOLOv8 algorithm, introduced in 2023, has achieved excep-
tional precision, surpassing previous iterations. While YOLO
is primarily used for recognizing and classifying objects that
occupy the entire image, its performance in detecting small-
scale objects may be somewhat lower than that of certain
contemporary algorithms when operating in environments with
specific size configurations.

B. Non-local Network

The non-local network, as an attention mechanism, has
been widely applied in video classification and detection tasks,
primarily aimed at enhancing model performance by capturing
global contextual information. This network enhances the ex-
pression of local features by compressing channel features and
aggregating global spatial features, enabling the model to more
effectively understand and distinguish different scenes and
objects in videos. During computation, the network generates
weighted values by comparing the similarity between the
current pixel and all other pixels within the feature layer, using
these weights to amplify the feature information of specific
pixels. This process allows the model to capture more intricate
details and complex patterns.

This approach effectively establishes long-range dependen-
cies within video frames, allowing the network to capture
distant relational information between frames, thereby signif-
icantly improving the network’s performance in video clas-
sification and detection tasks. By introducing global features
to augment local feature representation, the non-local network
has successfully enhanced overall performance in these tasks.
Particularly, the establishment of long-range dependencies
enables the network to better capture complex associations
between video frames, substantially boosting detection ac-
curacy. This method demonstrates the critical importance of
integrating global information to improve the performance of
deep learning models in video processing tasks.

III. RESEARCH METHODOLOGY

Although the YOLOv8 algorithm is highly efficient, its de-
tection of inclined insulators suffers from suboptimal bounding
box alignment, with the detection frames often containing
excessive background noise. In this work, we propose an
improvement to the original YOLOv8 network. This sec-
tion focuses on our proposed network, RCAS-YOLOv8. The
structural system diagram is shown in (Fig.1). After feature
extraction, the network incorporates a cross-type row and
column-level shared module, which enriches the semantic
information of the feature map by adding long-range depen-
dencies. This approach encourages the model to learn stable
feature information with minimal computational cost, resulting
in enhanced performance.

A. Backbone Network

This study focuses on the development of a method named
RCAS-YOLOv8, designed to enhance the detection accuracy
of inclined insulator targets and adapt to the needs of various
edge-side detection devices. In power systems, monitoring the
condition of insulators is crucial for ensuring the safety of
power supply. Traditional detection methods often struggle
with accuracy when dealing with complex backgrounds and
insulators at different angles. To address these challenges, this
paper proposes an optimized object detection algorithm.The
RCAS-YOLOv8 method employs a lightweight model design
based on the Darknet-53 architecture, a deep neural network
structure widely used in object detection tasks. By streamlining
the model structure, RCAS-YOLOv8 reduces computational
resource consumption while maintaining model performance,
making it efficient for deployment on edge devices. To im-
prove the model’s downsampling capability, this study replaces
traditional pooling layers with convolutional layers that have
a stride of 2. This modification not only retains more feature
information but also enhances the model’s ability to capture
image details, thereby improving detection accuracy.RCAS-
YOLOv8 retains the C2f structure within the network, which
enhances gradient flow and effectively addresses the problem
of vanishing gradients. The C2f structure allows the model to
better propagate gradient information during training, further
boosting its performance. In the Neck section, the PAN (Path
Aggregation Network) structure is adopted. The PAN structure
effectively enhances the expression of multi-scale features,
enabling the model to excel in detecting objects of varying
scales, which is particularly important in complex scenes.In
the Head section, a decoupled head structure is designed,
separating the classification head from the detection head. By
handling these two tasks independently, the model can focus
more on each task, improving both classification and detection
accuracy and efficiency.

B. Row-Column Associative Sharing (RCAS)

Inspired by the non-local networks used in fields such
as video classification and machine translation, which are
primarily designed to handle long-range dependencies, we
recognize that although there is no temporal dependency in
images, the pixels within an image are not isolated. Pixels are
inherently related, and when considered collectively, they form
a specific object. Based on this understanding, we designed a
correlation-sharing module at the row and column levels.

The non-local network module enhances local semantics by
establishing semantic correlations between the current position
and all other positions. However, its computation is performed
at the pixel level. Specifically, if the size of the current
feature map is w×h×c, there are w×h feature points. Each
feature point must calculate its similarity with all other points
except itself, requiring w×h-1 computations, approximately
resulting in (w×h)² operations. This scales the computation
to the square of the current feature map’s size, which incurs
high computational costs when the image resolution is large,
making it unsuitable as a lightweight module.
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Fig. 1. The pipeline of the proposed algorithm uses YOLOv8 as a baseline.

Inspired by the concept of asymmetric convolution , where
1×N and N×1 convolutions can achieve the effect of N×N
feature extraction with much lower computation, we applied
this idea in our work. We optimized the correlation computa-
tion between the feature points at the current position and
the remaining feature points, calculating the correlation in
both the horizontal and vertical directions. Specifically, we
generate H×1 and 1×W feature matrices for all feature points
at each horizontal and vertical position, respectively. This
computation, similar in principle to asymmetric convolution,
performs similarity calculations separately for vertical and
horizontal directions.

Finally, we fuse the results from these two computations to
aggregate semantic information, thereby achieving the same
effect with a significantly reduced computational cost while
better capturing long-range dependencies. (Fig. 2) provides
a comparative chart of the computational methods of our
proposed module and the non-local network module. Our
computational cost is reduced to (h×h) + (w×w), a significant
decrease in the number of parameters compared to the original
(w×h)².

The specific network structure is illustrated in (Fig. 3). Let’s
take the upper half of the figure as an example to calculate
feature similarity in the “vertical” direction. The feature map
with dimensions C×H×W serves as the input to the network.
We transpose the input features X into three feature maps

R(ϕ : CW ×H), θ : H ×C ×W , and g : CW ×H through
three 1× 1 convolutions.

Next, the feature matrix ϕ is transposed and multiplied by
the feature matrix θ to obtain a feature matrix T of size H×H .
The T feature matrix is then normalized using the Softmax
operation to derive the column-level feature similarity matrix.
The entire process can be represented by Equation (1).

zi = Wzyi + xi, (1)

In Equation (1), yi is defined by Equation (1), which is
used for the computation process; Wz represents the similarity
weight matrix; and xi corresponds to the residual connection
between the upper and lower parts of the image.

C. Loss Function

1) Vertex offset prediction loss: Traditional object detec-
tion models typically provide bounding boxes in horizontal
or vertical orientations, which can lead to more complex
background areas in the final detection frame, potentially
introducing additional noise. In this study, we enhance the
original rectangular frame detection by adding predictions for
the four vertex offsets of the actual insulator.

(Fig.4) illustrates the positional relationship between the in-
sulator’s vertex locations and the rectangular detection frames.
The black and red rectangles in the figure represent anchor
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Fig. 2. Comparison of the computational volume of network modules. (a) is the computational process of a non-local network, with a
computational volume (HW) of 2; (b) is the computational process of shared row-level and column-level modules..

Fig. 3. Row-level and column-level shared modules. The upper part performs column-level similarity calculation, and the lower part performs
row-level similarity calculation.

Fig. 4. A graph showing the relationship between detection frames
and target locations.

boxes and rectangular boxes used for initial network predic-
tions (coarse detection), respectively. The cyan quadrilateral
denotes the actual insulator area. The yellow arrows at the
four vertices of the coarse detection rectangle indicate the
offsets of the actual insulator’s vertices in the corresponding
directions. xn and yn represent the horizontal and vertical
offsets, respectively. The calculation process can be expressed

as follows.

xn = pw × etxi , i = 1, 2, 3, 4yn = ph × etyj , j = 1, 2, 3, 4,
(2)

In formula (2), pw and ph denote the width and height of
the anchor box that best matches the target box. xn and yn
are the horizontal and vertical offset components of the four
vertices, calculated clockwise from the top left corner of the
coarse detection rectangle (red rectangular box). Similarly, txn
and tyn represent the values corresponding to these four vertex
offset components.

Loffset =λcoord

S×S∑
i=0

B∑
j=0

4∑
k=1

Iobjij ·

{(2− x̂k × ŷk)×[(
t̂x′

k
− tx′

k

)2

+
(
t̂y′

k
− ty′

k

)2
]} (3)

In formula (3), S denotes the number of grids in the output
layer of the network, resulting in an S×S grid. B represents
the number of candidate boxes generated by each grid, leading
to S × S ×B anchor boxes in total. δij indicates whether the
j-th anchor box of the i-th grid in the current output layer
is responsible for the current target. This is determined by
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checking whether the intersection ratio of the anchor box with
the target box is the maximum among all intersection ratios
of anchor boxes with the current target box. If it is, then δij is
set to 1, indicating that the current anchor box is responsible
for this target; otherwise, δij is set to 0.

The loss function of our algorithm comprises the origi-
nal YOLOv8 loss function and the additional vertex offset
prediction loss function. The original loss function includes
Localization Loss, Confidence Loss, and Classification Loss.
The loss function is expressed as follows: The positioning loss
uses CIoU (Complete Intersection over Union) to measure the
difference between the predicted bounding box and the true
bounding box. CIoU loss formula:

CIoU = 1− IoU +
ρ2(b,bgt)

c2
+ α · ν, (4)

where IoU is the intersection over union of the predicted box
and the true box, ρ(b,bgt) represents the Euclidean distance
between the center points of the predicted box and the true
box, c is the diagonal length of the smallest enclosing box
containing the predicted box and the true box, α and ν are used
to measure the consistency of the aspect ratio. The positioning
loss formula is as follows:

Lloc =

N∑
i=1

(1− CIoUi) , (5)

where N represents the number of targets.
Confidence loss is used to measure the difference between

the confidence of the predicted target existence and the actual
situation, usually using (Binary Cross-Entropy Loss, BCE):

Lconf = −
N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] , (6)

where: yi is the actual confidence label (1 if the target is
present, 0 if it is not present), pi is the confidence predicted
by the model.

The classification loss is used to measure the difference
between the category probability distribution predicted by the
model and the actual category, and binary cross entropy loss
is usually used:

Lcls = −
N∑
i=1

C∑
c=1

[yi,c log(pi,c) + (1− yi,c) log(1− pi,c)] ,

(7)
where: C is the total number of categories, yi,c is the true

label of the ith target belonging to the cth class, and pi,c is
the predicted probability that the ith target belongs to the cth
class.

The total loss function is a weighted sum of localization
loss, confidence loss, classification loss, and vertex offset
prediction loss:

Ltotal = λloc ·Lloc+λconf ·Lconf+λcls ·Lcls+λoffset ·Loffset, (8)

Among them, λloc, λconf , λcls and λoffset are the weight
coefficients of the corresponding loss parts, which are used to
balance the impact of each loss item on the total loss.

The Loss curve is illustrated in Figure 5. The loss curve
of the RCAS-YOLOv8 method shows that the loss value

is high in the early stage, but gradually decreases as the
training progresses. This shows that the model gradually learns
effective feature representations and can reduce training errors.
If it continues to decrease in the later stage, it means that the
network converges well and the model training is stable. The
loss function tends to be stable in the later stage of training,
and further optimization is difficult, which means that our
model has fully learned the key information in the data.

Fig. 5. Loss curve of the RCAS-YOLOv8 method.

IV. EXPERIMENT RESULTS AND DISCUSSION

This section begins by explaining the dataset used, fol-
lowed by an introduction to the parameters involved in the
network training and testing process. The proposed algorithm
is then compared with several state-of-the-art algorithms to
validate its generalization and effectiveness. Finally, ablation
experiments are conducted to discuss and analyze the various
modules introduced in the algorithm.

A. Dataset and Implementation Details

The dataset used in this study is the Power Line Insulator
Dataset (CPLID) [31]contains two classes: normal and defect.
which includes 868 images of insulators captured by drones.
Among these, 600 images depict normal insulators, while 268
images show defective insulators, with each image having a
resolution of 1152×864. To address the issue of data imbalance
and account for environmental factors encountered in real-
world UAV-based insulator detection, various techniques such
as brightness and contrast adjustment, as well as the addition
of multiple noise interferences, were applied to augment
the dataset. After augmentation, the dataset includes 1,200
images of normal insulators and 1,072 images of defective
insulators, totaling 2,271 images. We trained our model using
the PyTorch deep learning framework, combined with CUDA
9.0 and cuDNN 7, on an Nvidia RTX 2080Ti GPU. The
relevant training parameters used for the network can be
referenced in [9]. To ensure that the actual insulator targets
were located within the coarse detection boxes, we expanded
the bounding box annotations of the insulators by 10 pixels
in all directions. Since our algorithm includes the prediction
of four vertex offsets, we modified the data format to include
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Fig. 6. Experimental comparison chart. The last column is our algorithm, which uses yolov8 as the baseline and adds the vertex prediction
this work proposed. The yellow line segment in the figure is the offset of the corresponding vertex, and the cyan line is the insulator position
predicted by the algorithm.

Fig. 7. Detailed Display of Experimental Results

the real coordinates of the four vertices after the original VOC
data format. The specific data format is represented as:

(X11, Y11, X22, Y22, x1, y1, x2, y2, x3, y3, x4, y4, c),
(9)

(X11, Y11, X22, Y22): The coordinates of the top-left and
bottom-right corners of the annotated insulator bounding box.
(x1, y1, x2, y2, x3, y3, x4, y4): The coordinates of the four

vertices of the actual insulator, starting from the top-left corner
in a clockwise direction. c: The class label of the detected
target, which can be either "normal" or "defective."

To evaluate the effectiveness of our algorithm in detect-
ing inclined insulators, we used Precision, Recall, and AP
(Average Precision) as the performance metrics. These three
indicators are widely used in the field of object detection.
Considering the different focus areas of power companies
regarding the above performance metrics, this work proposed
an APR metric in this paper, expressed as:

APR = α× Precision + β × Recall + γ × AP, (10)

Power companies tend to prioritize the recall rate of images
more than detection accuracy. When false positives occur,
they can be quickly and easily resolved through manual
intervention. However, when insulator detection fails, there is
no simple solution, and the costs can be significantly higher.
Therefore, our APR metric provides a balanced evaluation that
reflects the importance of recall in practical applications.
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TABLE I
QUANTITATIVE EXPERIMENTAL RESULTS

Methods Backbone R P mAP ARP F1
Faster R-CNN ResNet50 0.841 0.854 0.837 0.842 0.847

ResNet101 0.883 0.871 0.866 0.872 0.887
SSD ResNet101 0.827 0.842 0.832 0.833 0.834

VGGNet 0.799 0.811 0.810 0.807 0.805
MobileNet 0.715 0.729 0.706 0.713 0.722

RetinaNet ResNet50 0.871 0.874 0.854 0.863 0.872
ResNet101 0.902 0.898 0.871 0.886 0.900

YOLOv3 Darknet53 0.794 0.833 0.824 0.817 0.813
MobileNet 0.778 0.815 0.802 0.797 0.796

YOLOv3 tiny Darknet53 tiny 0.716 0.732 0.713 0.718 0.724
YOLOv4 CSPDarknet 0.844 0.861 0.859 0.855 0.852
YOLOv4 tiny CSPDarknet-tiny 0.773 0.798 0.763 0.773 0.785
YOLOv5 CSPDarknet 0.796 0.872 0.863 0.874 0.832
CenterNet ResNet50 0.884 0.892 0.872 0.880 0.888
YOLOv8 CSPNet 0.896 0.895 0.883 0.879 0.895
RCAS-YOLOv8 CSPNet 0.905 0.901 0.889 0.891 0.903

TABLE II
COMPARISON OF PERFORMANCE WITH NON-LOCAL AND IMPROVED NON-LOCAL NETWORKS

Methods mAP (%) Up of mAP (%) Times (ms) Up of Times (%)
YOLOv8 (CSPNet) 0.824 / 28.65 /
+ Non-local net 0.856 3.88 30.12 -5.13
+ Improved Non-local net 0.853 3.52 29.79 -3.98
Faster R-CNN (ResNet50) 0.837 / 138.46 /
+ Non-local net 0.861 2.87 146.73 -5.97
+ Improved Non-local net 0.866 3.46 141.54 -2.22
CenterNet (ResNet50) 0.872 / 22.17 /
+ Non-local net 0.898 2.98 23.89 -7.76
+ Improved Non-local net 0.902 3.44 22.94 -3.47

B. Experimental Results

In the experiment, we utilized advanced algorithms in-
cluding Faster R-CNN (ResNet101), YOLOv4 (CSPDarknet),
RetinaNet (ResNet101), YOLOv5, YOLOv8, and the Anchor-
Free CenterNet (ResNet50) for comparison with our proposed
method. The experimental results are illustrated in Figure 6.
To enhance the experiment, additional cruise images outside
the dataset were introduced for detection, with the results
displayed in columns (d) and (e) of Figure 6.

Due to image resolution constraints, Figure 7 selectively
magnifies key areas detected by some of the algorithms. Since
the detection results of the comparative algorithms are all
standard rectangular boxes, we chose to focus on the baseline
algorithm YOLOv8 for comparison. This approach enables a
clearer understanding of the differences between our proposed
method and conventional object detection algorithms. All these
algorithms can detect insulators to varying degrees. However,
our proposed method demonstrates a superior ability to ap-
proximate actual insulator targets, a feat that is challenging
for other algorithms. The resulting bounding boxes from our
method contain less background information, facilitating finer
defect classification. This represents our qualitative compari-
son approach.

Table 1 gives the quantitative experimental results, com-
paring different backbone feature extraction networks using
SSD, Faster R-CNN, RetinaNet and CenterNet algorithms.

As shown in Table 2, our RCAS-YOLOv8 achieves the best
performance, with P and mAP scores of 0.901 and 0.889
respectively, ARP score of 0.891, and F1 score of 0.903
indicating the highest overall performance. The experimental
data show that as our algorithm adopts a more complex
feature extraction network, its overall performance improves,
and this trend is clearly observed in the last few rows, which
is consistent with existing knowledge.

Table 3 presents a comparison of different detection models
based on key performance metrics: Average Precision (AP), F1
Score, and Frames Per Second (FPS). The Improved YOLOv4
model outperforms others in terms of AP and F1 Score,
particularly for defect detection, with an AP of 94.53% and
an F1 score of 0.94 for both insulators and defects. This
indicates that the Improved YOLOv4 offers a balanced and
high-performance detection capability, making it the most
accurate model overall. YOLOv3, while achieving a higher
FPS (60) compared to other models, shows the lowest AP
for insulator detection (79.91%) and a slightly lower F1 score
for insulator detection (0.88). This suggests that YOLOv3 is
faster but sacrifices some accuracy, particularly in detecting
insulators. SSD achieves a solid performance with an AP
of 88.16% for insulators and 96.43% for defects, alongside
an F1 score of 0.94 for defects and 0.90 for insulators.
SSD strikes a good balance between detection accuracy and
speed, with 53 FPS, making it suitable for scenarios requiring
both high performance and reasonable inference time. Faster
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R-CNN, though offering strong detection accuracy with an
AP of 87.27% for insulators, lags behind in terms of FPS,
achieving only 15 FPS, which makes it less ideal for real-
time applications. Overall, Improved YOLOv4 stands out for
accuracy, particularly in detecting both insulators and defects,
although at the expense of speed, while YOLOv3 is the fastest
but less precise. SSD offers a good compromise, and Faster
R-CNN, despite its strong accuracy, is slower and less suitable
for real-time detection.

C. Ablation Study

To further analyze the impact of our proposed cross non-
local structure on algorithm performance, we selected three
baseline algorithms: YOLOv8, Faster R-CNN (ResNet50), and
CenterNet (ResNet50). These were chosen to compare the
performance differences between our cross non-local structure
and the non-local network proposed in reference [36]. The
three baseline algorithms represent an anchor-based one-stage
algorithm, a two-stage algorithm, and the anchor-free Cen-
terNet algorithm, respectively, to validate the generalization
capability of our proposed structure.

As shown in Table 2, our proposed cross structure maintains
a high degree of consistency in accuracy compared to the orig-
inal non-local network, even outperforming it in the latter two
baseline algorithms. However, in terms of detection speed, our
structure sacrifices significantly less speed, achieving nearly
double the speed of the original structure. This is because our
algorithm employs a shared-weight approach for computing
correlations between feature points, rather than the exhaus-
tive computation used in the original method. This approach
greatly reduces the computational load, demonstrating that our
proposed cross non-local network achieves a better balance of
speed and accuracy. Here is the LaTeX code for the table you
provided:

V. CONCLUSIONS

This paper proposes a multi-level adaptive oblique insulator
detection algorithm, RCAS-YOLOv8, which is an enhanced
deep learning algorithm specifically designed for detecting
oblique insulators on various mobile detection devices. By
introducing row- and column-shared non-local modules to cap-
ture the global correlation of feature points, and adding vertex
offset prediction loss to generate more accurate quadrilateral
detection boxes, the algorithm significantly improves detection
accuracy. Coupled with the lightweight Darknet-53 model,
RCAS-YOLOv8 maintains high performance while reducing
computational resource consumption, making it particularly
suitable for real-time detection tasks in complex environments.
The algorithm demonstrates significant advantages in insulator
detection within power systems and offers valuable insights for
future detection technologies.

Our model currently has some accuracy issues when de-
tecting small objects, especially in low-resolution images or
scenes with dense objects. This is because the features of small
objects are difficult to extract, which limits the performance
of the model. To address this issue, in the future we plan
to introduce an adaptive feature extraction module to further

improve the accuracy of the model when detecting small
objects.In addition, the existing dataset only contains two types
of labels: normal and defective. However, in view of the needs
of night inspections and infrared image detection in actual
applications of power companies, we realize that the types
of datasets need to be expanded. Therefore, in the future, we
plan to collect a large number of insulator images in different
scenarios, including infrared images, night images, and natural
disaster scenes, so as to effectively detect insulator defects
under a wider range of actual conditions.
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