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Abstract—The widespread adoption of electric vehicles (EVs)
is crucial for reducing greenhouse gas emissions from traditional
vehicles. Central to this adoption is the strategic deployment
of electric vehicle charging stations (EVCS), whose improper
positioning can pose challenges to electrical networks and utility
operators. This paper introduces a novel hybrid approach for
optimizing the placement of EVCS and capacitors (CAP) in the
distribution network (DN) to mitigate active power loss (APL)
and enhance operational efficiency. The methodology includes
the optimal placement of CAP banks and EVCS across the
network, which is evaluated using the Net Present Value (NPV)
criterion. Additionally, the study comprehensively considers
the integration of vehicle-to-grid (V2G) capabilities, enhancing
network reliability. The proposed hybrid algorithm combines
the genetic algorithm (GA) and particle swarm optimization
(PSO), i.e., HGAPSO, which leverages their respective strengths
in exploration and exploitation. A comprehensive sensitivity
analysis is conducted for the IEEE 33, 69, 85, 118, and Brazil
136-bus systems, focusing on cost variables such as energy
prices, maintenance costs, and system parameters. This analysis
further validates the robustness of the proposed approach,
demonstrating significant reductions in APL and maximization
of net profit. Comparative results verify the superiority of the
hybrid approach over conventional GA and PSO in optimizing
the locations of charging stations and reactive power sources
within networks.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9278

Index Terms—Capacitors, Distribution Network, Electric Ve-
hicle Charging Stations, Net Present Value, Sensitivity Analysis,
Vehicle-to-Grid.

I. INTRODUCTION

ELECTRIC vehicles (EVs) represent a transformative shift
in the automotive industry, offering significant advan-

tages such as lower emissions, higher energy efficiency, and
reduced reliance on fossil fuels compared to traditional internal
combustion engine vehicles [1]. The global market for EVs is
experiencing robust growth, with projections indicating sales
could reach approximately 17 million units in 2024, repre-
senting more than one-fifth of total vehicle sales worldwide
[2]. This surge underscores the pressing need for expanded
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charging infrastructure to support the increasing number of
EVs on the roads. However, scaling up charging stations poses
challenges, including impacts on the electrical grid’s capacity
and stability. Addressing these challenges requires strategic
improvements in grid infrastructure and the deployment of
technologies like smart grids and CAP at charging stations
to optimize efficiency and maintain grid stability [3]-[5]. As
the EV market continues to evolve, navigating these issues will
be crucial to facilitating a smooth and sustainable transition
towards widespread EV adoption globally.

The optimal placement of CAP in DN is crucial for en-
hancing network efficiency and reliability. This process ad-
dresses challenges such as voltage fluctuations, power losses,
and compliance with power quality standards like IEEE-519.
Strategic determination of the locations, types, sizes, and
control strategies of CAPs is necessary to minimize losses,
improve voltage profiles, and manage reactive power. Recent
research has utilized various advanced computational methods
to achieve these goals.

Several studies have addressed the CAP placement prob-
lem using sophisticated algorithms such as GA, ant colony
optimization, simulated annealing, fuzzy logic, and hybrid
approaches combining these techniques. These methods aim
not only to optimize placement but also to consider multiple
objectives, including economic costs, power quality improve-
ments, and compliance with voltage and current harmonic
standards.

For instance, the hybridization of Tabu Search with GA and
simulated annealing has shown promising results in optimizing
both the quality and cost of solutions [6]. Additionally, ACO
has been effective in determining optimal CAP locations
for reactive power compensation in DN [7]. Microgenetic
algorithms combined with FL have addressed the economic
savings from reducing energy losses while considering voltage
constraints [8]. These methodologies underscore the signifi-
cance of integrating computational intelligence with engineer-
ing principles to tackle the complexity of DN optimization.
The [9], [10] introduces and tests a scenario-based stochastic
model designed for multistage joint expansion planning of
distribution systems and EV charging stations.

Furthermore, recent advancements include GA-based ap-
proaches that simultaneously improve power quality and opti-
mize CAP placement under IEEE standards [11], [12]. Such al-
gorithms incorporate fuzzy approximate reasoning to enhance
decision-making under uncertainty, aiming for global solutions
with reduced dependency on initial conditions.
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Moreover, the deployment of optimization algorithms like
PSO, teaching-learning-based optimization, and their hybrids
have demonstrated effectiveness in determining capacitor sizes
and locations across various DS configurations [13], [14].
These methods not only minimize losses but also enhance sys-
tem reliability by considering load variations and operational
constraints.

In the realm of electric vehicle integration, strategic place-
ment of EVCS within DN is essential to mitigate challenges
such as voltage stability and power loss [15]. Research has
shown that combining EVCS with CAP can significantly
improve system reliability and efficiency. For instance, GA has
optimized the placement of EVCS and CAP in a 34-bus net-
work, resulting in substantial reductions in APL and enhanced
voltage stability [16]. Efforts to optimize fast charging station
networks have integrated energy storage devices and optimized
power allocation, enhancing service quality while reducing
grid strain during peak demand [17]. Other studies have
utilized biogeography-based optimization to allocate EVCS
and CAP, improving network performance through congestion
management and reactive power compensation [18].

Hybrid optimization techniques, such as GWO combined
with PSO, have effectively minimized APL and enhanced
network reliability by optimizing EVCS and CAP locations
[19], [20], [21]. Additionally, integrating battery energy stor-
age systems with CAP has been proposed to stabilize voltage
and improve efficiency in DN [22]. Further enhancements have
been achieved through hybrid PSO and direct search methods,
which optimize EVCS and CAP placement by maximizing
coverage, minimizing losses, and reducing voltage deviations
in DN [23].

The integration of EVs into DN necessitates a comprehen-
sive examination of various charging strategies [24]. Addi-
tionally, optimizing charging schedules is crucial for reducing
operational costs and preventing transformer overload, partic-
ularly within the Brazilian context [25]. The determination
of optimal locations for EVCS and CAP plays a pivotal role
in enhancing overall system performance [26]. Furthermore,
evaluating the feasibility of renewable energy sources, such as
wind-powered EVCS paired with battery storage, contributes
to sustainable energy solutions [27]. Employing hybrid algo-
rithms is vital for minimizing power losses and improving
voltage regulation across DN [28], [29, [30]. In light of these
considerations, [31] proposes a three-step method for optimal
CAP placement in unbalanced DN by combining power flow
optimization, GA, and binary optimization to minimize energy
losses. The [32] investigates model-based estimation for a
wind-powered EVCS with a vanadium redox flow battery. In
[33] evaluates strategies for improving hosting capacity and
reducing power losses using a multi-objective GA in a Python-
based simulation environment.

In this paper, the primary contribution is the optimal place-
ment of EVCS and CAP banks in order to enhance the
efficiency and sustainability of radial DN. Accordingly, at first,
a cost-benefit analysis is employed using the NPV criterion
that integrates the energy-saving benefits and cost factors to
optimize the net profit. This includes a comprehensive analysis
of the cost factors, including the operating and installation

costs of EVCS and CAP. Then a novel method is proposed
to strategically locate CAP banks and EVCS to minimize
the power loss. A novel optimization approach utilizing GA
and PSO, namely HGAPSO, is used to validate the proposed
approach across various standard and practical DN. Finally, the
study demonstrates that integrating EVCS in radial networks
with the participation of EVCS in a V2G mode reduces APL
and increases the NPV.

The remainder of this paper is structured as follows: In
Section 2, we delve into the problem formulation by in-
troducing a formula to calculate power loss in radial DN
and discuss the NPV criterion used for project evaluation.
Section 3 presents the methodology employed to optimize
the placement of EVCS and CAP. Following this, Section 4
offers a detailed presentation of our simulation results. Lastly,
Section 5 concludes the paper by summarizing key findings
and outlining potential avenues for future research.

II. PROBLEM FORMULATION

A. Power Loss in a Radial Distribution Network

Feeders in radial DN have more resistance than transmission
systems, which means their feeders are primarily resistive
rather than reactive, or in other words, these feeders have a
higher R/X ratio. The traditional methods for analyzing power
flow, like Gauss-Seidel and Newton-Raphson, are better suited
for transmission systems, where the reactive component is
more significant [16]. The main aim of placing EVCS and
CAP within networks is to reduce APL. This power loss
significantly affects yearly sales. We use a method called
backward-forward sweep (BFS) analysis to figure out this loss
[34]- [35]. Indeed, in a DN, the total power loss is calculated
by summing the power loss across all system branches. For
feeders, the power loss can be assessed using the simple
formula:

Ploss = I2i ·Ri (1)

Where Ploss represents the power loss, Ii is the current flowing
through the ith branch, and Ri is the resistance of the ith
branch of the system.

B. EVCS Model

This study delves into the impact of EVCS on the distri-
bution network. These stations offer dual functionality: They
can act as Load Consumers (G2V mode) or Grid Supporters
(V2G mode). During charging, EVCSs draw power from the
grid, adding to the overall load. During Grid Supporters (V2G
mode), when not in use, EVs plugged into EVCSs can actually
return power to the grid. This helps reduce stress on the grid
during peak demand periods. The load model can be expressed
as [19]:

P new
load =

nb∑
i=1

P base
load + γ

nb∑
i=1

P evcs
load (2)

where γ represents the factor that could vary based on
whether it’s in G2V or V2G mode.

γ =

{
+ G2V mode
− V2G mode

(3)



241 IEEE LATIN AMERICA TRANSACTIONS, Vol. 23, No. 3, MARCH 2025

C. Capacitor Model

In this study, CAP are employed to compensate for re-
active power. This compensation reduces the reactive power
requirement at bus n, which is achieved by utilizing the
reactive power output of the CAP. Equation (4) provides the
mathematical representation of this relationship [20].

Qnew
load = Qbase

load −Qcap
load (4)

D. Objective Function and Constraints

1) Evaluation of Net Present Value: A commonly adopted
method to assess a project’s economic feasibility is by compar-
ing the investment cost and expected revenue over the project’s
lifetime. The NPV presents the user with the net value of the
project by subtracting the initial investment from the present
value of the net annual cash flow. In this paper, NPV is enlisted
to ascertain if a project is economical. The project can be
implemented if the NPV is positive, i.e., it adds value to the
utility. On the other hand, if the NPV is negative, the project
cannot be implemented.

An investment’s NPV is determined by summing up the
present values of annual profits over the investment period
and then subtracting the initial investment cost. The objective
is to maximize NPV, assuming fixed values of parameters,
including the discount rate, initial costs, and annual savings
derived from reduced energy losses. This method, however,
does not account for factors such as inflation or dynamic
changes in costs over time. The NPV is calculated by the
following formula [5]:

NPV =

T∑
t=1

Pann

(1 +D)t
− Cinv (5)

where D denotes the discount rate and T is the expected
lifetime of the project.

The net annual profit Pann is calculated by:

Pann = Sann −OMevc (6)

where Sann represents the annual savings due to the reduction
in the cost of energy loss after placing EVCS and CAP, and
OMevc is the total operation and maintenance cost for both
CAP banks and EVCS.

2) Cost of Energy Loss: The annual savings in the system
due to EVCS and CAP banks are given in the equation below.:

Sann = Cbase
ann − Cevc

ann (7)

where Cbase
ann represents the base cost of the system without

EVCS or CAP, and Cevc
ann represents the cost after adding

EVCS and CAP. The annual cost due to power loss is given
by:

Cann = Ploss · CE · 8760 (8)

where Ploss =

{
P base
Loss Base case Ploss

P evc
Loss Ploss with EVCS and CAP

(9)

While calculating the base cost, Cbase
ann is used. When consid-

ering the cost after the installation of EVCS or CAP, Cevc
ann is

applied in the above calculation, and CE represents the cost
of energy.

The financial aspects related to both the ongoing mainte-
nance and the initial costs associated with CAP banks and
EVCS are given below the equation

Total Operation and Maintenance Cost (OMevc) [20], [21]:

OMevc = N c · Cc
OM +Nev · Cev

OM (10)

where:
• N c and Nev represent the standard number of units for

CAP banks and EVCS,
• Cc

OM and Cev
OM represent the maintenance costs for each

CAP bank and each EVCS, respectively.
Initial Investment Cost (Cinv) [16]:

Cinv = Cevc
inst + Cevc

pur (11)

Cinv = [N c · Cc
inst +Nev · Cev

inst]+

[N c · Cc
pur +Nev · Cev

pur]
(12)

where:
• Cevc

inst is the installation cost of CAP and EVCS.
• Cevc

pur is the purchase cost of CAP and EVCS.
• Cc

inst is the installation costs for CAP banks.
• Cev

inst is the installation costs for EVCS.
• Cc

pur, is the purchase costs for CAP banks.
• Cev

pur is the purchase costs for EVCS.
3) Percentage Saving in Cost of Energy Loss: The percent-

age saving in cost of energy loss (Scost) after installing EVCS
and CAP is calculated from the difference of the costs of
energy loss for the base case and after EVCS/CAP allocations,
as follows:

Scost =

(
Cevc

ann − Cbase
ann

Cbase
ann

)
× 100 (13)

where Cbase
ann represents the cost of energy loss before

EVCS/CAP installation, and Cevc
ann represents the cost of

energy loss after EVCS/CAP installation.
4) Constraints: The objective function is formulated con-

sidering equality and inequality constraints that must be satis-
fied during CAP planning to mitigate the charging impact of
EVCS.

a) Equality Constraints: The overall electricity gener-
ated must balance with the total losses and the demand for
load. The cumulative active and reactive power supplied by the
substation must correspond with the total demand for active
and reactive power, inclusive of the load requirements for
charging stations and the total losses in the system [21].

Pss =

Nb∑
i=1

PDi
+

Nb∑
i=1

Pevi
+

Nr∑
r=1

PLr
(14)

Qss +

Nb∑
i=1

QCi =

Nb∑
i=1

QDi +

Nr∑
r=1

QLr (15)

• Pss, Qss : Active and Reactive power supplied by the
substation,

• Nb: Total number of buses,
• Nr: Total number of branches,
• QCi : Reactive power provided by CAP at bus i,
• PDi , QDi : Active and reactive power demand at bus i,
• Pevi

: Active power from EVCS at bus i,
• PLr

, QLr
: Active and reactive power loss in branch r.
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b) Inequality Constraints:
• The voltage at each bus must stay within the range of

0.95 to 1.05 p.u.:

Vmin ≤ Vi ≤ Vmax, i = 1, 2, . . . , Nb (16)

• The current in any line should not surpass its maximum
limit:

Ii ≤ Imax, i = 1, 2, . . . , Nr (17)

• The reactive power injected at each bus must be within
specified bounds:

QCmin
≤ QCi

≤ QCmax
, i = 1, 2, . . . , Nb (18)

III. METHODOLOGY

The paper proposes a method for the optimal placement of
EVCS and CAP in DN to reduce power loss. The objective
function focuses on three main aspects: Reducing the cost of
energy loss, Evaluating investment costs (IC), and determining
the NPV. APL, calculated using Equation (1), is crucial
for estimating annual savings. The function also considers
operational and installation costs to assess IC. The decision
variables involve determining the optimal locations and sizes
for EVCS and CAP, posing a complex nonlinear problem.
Traditional methods for solving such problems are computa-
tionally demanding, leading researchers to adopt metaheuristic
algorithms (MAs).

MAs, such as GA [36] and PSO [37], are widely used for
optimization tasks, including the placement of components in
DN. In this study, the Hybrid GA-PSO (HGAPSO) method
[21] & [38] is applied to optimize the placement and sizing
of CAP and EVCS in DN. By combining the global search
strength of GA with the local search capabilities of PSO,
HGAPSO effectively finds near-optimal solutions to complex
problems with multiple constraints and objectives. The perfor-
mance of the HGAPSO method heavily depends on parameter
tuning, which is detailed in Table 1. The key parameters
include the crossover rate, mutation rate, and inertia weight.
The crossover and mutation rates in GA help maintain di-
versity during the exploration phase of the algorithm, while
the inertia weight in PSO ensures efficient exploitation of the
solution space in the later stages. Initially, the algorithm uses
GA operators to explore the solution space broadly and then
shifts towards exploitation, refining the solutions using PSO’s
local search capabilities. This balance between exploration
and exploitation enables HGAPSO to converge effectively
to a near-optimal solution. The detailed implementation of
the HGAPSO algorithm, including its basic structure and
pseudocode, is illustrated in Figure 1, highlighting how the
hybridization of GA and PSO improves performance over
using either method alone.

Here are the steps involved in implementing the proposed
objective function using the analytical approach:

1) Load the line and bus data of the IEEE 33, 69, 85, 118,
and the practical Brazil 136-bus system.

2) Use BFS load flow analysis to find out the voltage
levels at each bus and the currents flowing through each
branch.

TABLE I
PARAMETERS USED IN THE HGAPSO ALGORITHM [21],

[38]

Name of Parameter Symbol Value Algorithm

Population Size n 50 GA, PSO
Crossover Probability cp 0.8 GA
Mutation Probability mp 0.2 GA
Distribution Index
for Crossover cd 20 GA

Distribution Index
for Mutation md 20 GA

Inertia Weight w 0.4-0.9 PSO
Cognitive Component c1 2.01 PSO
Social Component c2 2.02 PSO

Fig. 1. Pseudo-code for the HGAPSO hybrid approach.
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(a) (b)

(c) (d)

(e)

Fig. 2. Single line diagram of various radial distribution systems considered for the study: (a) IEEE-33 Bus system, (b) IEEE-69 Bus system,
(c) IEEE-85 Bus system, (d) IEEE-118 Bus system, and (e) Practical Brazil-136 Bus system.

3) Compute the cost of energy loss for the base case.
4) Consider the integration of multiple CAP in the presence

of EVCS for optimal performance.
5) Set up the initial parameters for optimization algorithms.
6) Compute the cost of energy loss with CAP and EVCS.
7) Evaluate the objective function as per equation no 5,

with the equality and inequality constraints.
8) Stop the process when the maximum number of itera-

tions is reached.

IV. RESULTS AND DISCUSSION

The proposed methodology and algorithm are validated by
testing in including IEEE 33, 69, 85, 118, and the practical
Brazil 136-bus system. The optimization model was imple-
mented and simulated on a robust Intel i9 64-bit PC with a
3.20 GHz CPU and 32 GB RAM (12th Gen) using MATLAB-
R2024a. The performance was evaluated based on power
loss, voltage profile improvement, and economic feasibility

using NPV. The objective function evaluation uses several
parameters, as shown in Table I, that are computed for each
test system.

The paper investigates four cases to validate the methodol-
ogy:

• Case 1: Base Case (without EVCS or CAP): Establishes
a baseline for comparison with subsequent scenarios that
introduce EVCS and CAP.

• Case 2: Integrated with Charging Station (EVCS integra-
tion without CAP): Evaluates the impact of EV charging
on system performance.

• Case 3: Charging Station with CAP: Studies the com-
bined effect of EVCS and CAP placement on the DN.

• Case 4: Integrated with Charging Station in V2G Mode:
Analyzes the scenario where EVs can provide power back
to the grid (Vehicle-to-Grid, V2G).
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TABLE II
CONSTANT PARAMETERS IN CALCULATION [5], [20], [21]

Parameter Symbol Value
Cost of Energy ($/kWh) CE 1.136
Discount Rate (%) D 7
Installation Cost of CAP ($/loc) Cc

inst 1500
Installation Cost of EVCS ($/loc) Cev

inst 3000
O & M Cost of CAP ($/yr/loc) Cc

OM 800
O & M Cost of EVCS ($/yr/loc) Cev

OM 1200
Purchase Cost of CAP ($/kVAR) Cc

pur 25
Purchase Cost of EVCS ($/kW) Cev

pur 10
Time (hours) T 8760

A. Case 1: Base Case without EVCS and Capacitor

The proposed method was tested and validated on various
distribution system: standard systems (IEEE 33, 69, 85, and
118-bus) and a practical system (Brazil 136-bus). The dis-
tribution system are represented as radial networks, where
Node 1 is the designated source node. Fig 2 illustrates the
network configurations of the study systems considered for this
work, including the standard systems and practical systems.
It’s crucial to note that this study focused on the base case or
initial system configuration. This analysis did not consider the
installation of EVCS and CAP, which can enhance the system.

Table II provides essential information on these systems,
including initial values of the operating voltage and base
MVA and the system’s total active and reactive power load.
After conducting the BFS load flow for these systems, the
results obtained are also tabulated in Table II. These computed
parameters for the base case include power loss (both active
and reactive power loss) and a minimum voltage obtained with
their bus numbers for different systems. Thus, the results and
findings presented in Table II pertain specifically to the base
case scenario without EVCS and CAP.

TABLE III
SYSTEM PARAMETERS AND INITIAL PERFORMANCE

(AFTER LOAD FLOW ANALYSIS)

Parameters Initial Values Power Load Power Loss Min Voltage

Test case
Operating
Voltage

Base
MVA

Active
(kW)

Reactive
(kVAr)

Active
(kW)

Reactive
(kVAr)

Value
(p.u.) at

33-bus [39] 12.66 100 3715 2300 202.7012 135.5124 0.9131 (18)
69-bus [40] 12.66 100 3802.2 2694.6 221.8368 100.8158 0.9099 (54)
85-bus [41] 11 100 2570.3 2622.2 308.0921 193.6096 0.8731 (54)
118-bus [42] 11 100 22710 17041 1260.6 947.1182 0.8706 (77)
136-bus [43] 13.8 100 18314 7934 318.3315 698.423 0.9312 (118)

B. Case 2: Integrated with Charging Station

By considering EVs as loads and modeling EVCS as
constant power loads, the study assumes that EVs primarily
function as electrical power consumers rather than potential
energy sources through V2G operations. The EV charging
station considered has 30 serving points with a fixed capacity
of 1500 kW. This configuration can accommodate 30 EVs
simultaneously, with each charger consuming 50 kW. In this
study, two charging stations, each rated at 1500 kW, are

installed and connected to separate buses to accommodate
more EV users.

The results obtained by the evaluation of the objective
functions and after the conduction of BFS load flow using
the proposed method indicate that there is a potential increase
in APL and a negative impact on the voltage profile compared
to the base case. Table III indicates the effect of EVCS load
on the performance of various test systems.

The table highlights the power losses (APL & RPL) and the
minimum voltage of the system for the optimal bus locations
of the installed EVCS. For the IEEE 33-bus system, the
optimal buses are No. 2 and 19; for the IEEE 69-bus system,
they are No. 2 and 28; for the IEEE 85-bus system, No.
2 and 16; and for the IEEE 118-bus system, No. 2 and
63. Additionally, in the practical Brazil 136-bus system, the
optimal bus locations are No. 2 and 100.

TABLE IV
EFFECT OF THE EVCS LOAD ON THE PERFORMANCE OF

VARIOUS TEST SYSTEMS

Parameters Load of the System Power Loss Voltage
Bus System Bus No Base EVCS Total Active (kW) Reactive (kVAr) Vmin

33
2

3715
1500 5215 211.1464 139.8771 0.9121

2&19 3000 6715 225.7292 148.9082 0.9112

69
2

3802.2
1500 5302.2 221.8837 100.9238 0.9099

2&28 3000 6802.2 222.0608 101.3436 0.9099

85
2

2570.3
1500 4070.3 318.7367 200.9399 0.8715

2&16 3000 5570.3 348.3275 217.3346 0.8700

118
2

22710
1500 24210 1271.1 951.1308 0.8706

2&63 3000 25710 1277.5 960.3918 0.8072

136
2

18314
1500 19814 336.4834 740.2959 0.9312

2&100 3000 21314 337.0616 741.6296 0.9311

C. Case 3: Charging Station with Capacitors

To enhance the voltage profile and reduce power loss, CAP
are strategically placed near EVCS and at the ends of feeders
to provide reactive power. The optimal locations and capacities
of the CAP in the presence of EVCS using the proposed hybrid
method, GA and PSO are articulated in Table IV. Table IV also
depicts the performance of optimal location and size of the
capacitance for the IEEE 33, 69, 85, 118, and Brazil 136 bus
systems, comparing the performance of the proposed hybrid
HGAPSO approach with individual GA and PSO.

The application of the HGAPSO technique for optimal CAP
placement and rating in power DN has yielded significant
improvements in reducing APL, as evident from the results
in Table IV.

Fig. 3 illustrates the voltage profiles of the various IEEE
standard and practical systems under three different scenarios.
From Figures 3a, 3b, 3c, 3d, and 3e, it is evident that the
introduction of EVCS reduced the voltage profile across all the
buses in the network compared to the base case. However, the
strategic introduction of CAP with optimal size and location,
along with EVCS, improved the voltage profile across all the
buses in the considered DN. From the said figures, it is evident
the suggested HGAPSO approach effectively maintains a
healthy voltage profile for the entire DN.

Table V presents the system parameters that include APL,
min voltage Vmin (p.u), Scost, NPV, and Convergence time
(CT) in sec for the optimized location and size of the CAP and
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(a) (b)

(c) (d)

(e)

Fig. 3. Voltage profile comparison of various bus systems under different scenarios: (a) IEEE-33 Bus system, (b) IEEE-69 Bus system, (c)
IEEE-85 Bus system, (d) IEEE-118 Bus system, and (e) Practical Brazil-136 Bus system.

EVCS. Table V has articulated these parameters for different
system configurations that include the IEEE standard system
and practical system for base case, and with optimization
algorithms including GA, PSO, and HGAPSO.

Comparing the APL from Table V for the 33-bus system:
The optimal CAP installation in the presence of EVCS results
in a substantial decrease in APL from the base case of
202.7012 kW to 138.9197 kW, yielding a 31.46 % reduction
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(a) (b)

(c) (d)

(e)

Fig. 4. Convergence curve of various bus systems under different scenarios: (a) IEEE-33 Bus system, (b) IEEE-69 Bus system, (c) IEEE-85
Bus system, (d) IEEE-118 Bus system, and (e) Practical Brazil 136-Bus system.

in the annual cost of energy loss using the proposed hybrid
approach. This improvement in energy savings percentage
highlights the effectiveness of the HGAPSO algorithm appli-
cability in an IEEE standard DN.

In the 69-bus system, the optimal CAP placement leads
to even more significant savings. The APL reduces from
221.8368 kW to 144.7690 kW, translating to a 34.74 %
improvement in annual energy saving using the hybrid ap-
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TABLE V
OPTIMAL CAP VALUES AND LOCATIONS ACROSS
VARIOUS OPTIMIZATION ALGORITHMS AND TEST

OPTIMAL VALUES
Test Case Algorithm Optimal location and rating of the CAP Total Kvar

33
GA 10/386, 24/150, 5/426, 30/1049 2011
PSO 30 / 650, 5/750, 33/188, 14/265 1853

HGAPSO 13/549, 22/150, 25/382, 30/696 1777

69
GA 16/150, 29/1150, 43/150, 50/891 2341
PSO 59/1200, 38/650, 40/920, 50/1200 3970

HGAPSO 16/450, 50/1127, 39/518, 49/150 2245

85
GA 14/528, 9/289, 42/658, 48/831 2306
PSO 68/450, 34/777, 85/304, 57/685 2216

HGAPSO 67/150, 80/1155, 34/150, 8/574 2029

118
GA

10/1200, 21/1200, 41/1200, 47/1200,
61/1200, 72/1200, 81/1200, 90/1200, 112/1200 10800

PSO
50/1200, 27/581, 43/667, 48/1200, 74/1200,

80/1200, 91/1200, 112/1200, 113/1047 9495

HGAPSO
20/183, 8/1130, 35/530, 50/791, 74/1004,

80/780, 91/771, 108/607, 113/965 6761

136
GA

108/1004, 16/192, 25/162, 34/870, 51/501,
60/637, 75/989, 84/986, 89/851, 121/458, 127/1200 7850

PSO
17/666, 39/929, 41/407, 52/769, 71/552, 80/150,

89/1200, 106/1200, 136/522, 13/150, 84/449 6994

HGAPSO
14/674, 18/454, 40/619, 52/311, 69/556,

82/609, 89/373, 106/601, 133/812, 108/192, 29/220 5009

TABLE VI
COMPARATIVE ANALYSIS OF APL REDUCTION, VOLTAGE
PROFILE IMPROVEMENT, AND NPV USING GA, PSO, AND

HYBRID ALGORITHMS ON VARIOUS BUS SYSTEMS

Parameters 33 BUS
Algorithm Base GA PSO HYBRID
APL (kW) 202.7012 157.3869 155.7872 138.9197
Vmin (p.u) 0.9131 0.9502 0.9532 0.9588
Scost (%) - 22.35 23.15 31.46
NPV ($/yr) - 1,39,960 1,46,160 2,24,780

CT (sec) - 18.4160 22.1880 20.9450

69 BUS

APL (kW) 221.8368 152.8025 147.7029 144.7690
Vmin (p.u) 0.9099 0.9501 0.9521 0.9540
Scost (%) - 31.11 33.41 34.74
NPV ($/yr) - 2,45,860 2,30,930 2,88,900

CT (sec) - 27.8700 22.3960 21.7910

85 BUS

APL (kW) 308.0921 195.7415 187.1116 148.77837
Vmin (p.u) 0.8731 0.9569 0.9660 0.9700
Scost (%) - 36.46 39.26 51.7
NPV ($/yr) - 4,72,780 5,61,070 7,56,360

CT (sec) - 28.8460 29.4500 25.4600

118 BUS

APL (kW) 1260.6 981.0726 854.2416 842.9498
Vmin (p.u) 0.8706 0.9542 0.9569 0.9610
Scost (%) - 22.17 32.23 33.13
NPV ($/yr) - 11,90,700 17,62,000 17,86,500

CT (sec) - 90.5680 97.9620 39.4350

136 BUS

APL (kW) 318.332 292.6024 284.7569 281.6196
Vmin (p.u) 0.9312 0.9536 0.9608 0.9680
Scost (%) - 8.08 10.54 11.53
NPV ($/yr) - 53,261 65,104 71,633

CT (sec) - 94.4420 99.1230 64.7280

proach. On the other hand, the other algorithms, including GA

and PSO, obtained a 31.11% and 33.41% increase in annual
savings. This shows the algorithm’s ability to identify optimal
CAP configurations in the presence of EVCS for medium-
sized DN.

For the 85-bus system, the HGAPSO algorithm demon-
strates its effectiveness. The optimal CAP configuration yields
a substantial reduction in APL from 308.0921 kW to 842.9498
kW, achieving a notable 39.87 % improvement in benefit.
This improvement underscores the algorithm’s capability to
optimize CAP placement in the presence of EVCS in larger
and more complex DN.

In the case of the 118-bus system, the optimal CAP
placement results in a reduction of APL from 1260.6 kW
to 186.94 kW, representing a 33.13% improvement in annual
energy savings. This highlights the algorithm’s effectiveness
in optimal CAP placement and rating in larger DN to achieve
significant savings in the presence of EVCS.

Lastly, for a practical system, i.e., the 136-bus system, the
optimal CAP placement in the presence of EVCS using a
GA and PSO. Provided an APL reduction of 292.6024 kW
and 284.7569 kW, respectively. This Translating to 8.08%
and 10.51% improvement in annual savings. On the other
hand, the proposed hybrid algorithm achieved a remarkable
11.53% improvement in annual savings, corresponding to a
reduction in APL from 318.332 kW to 281.6196 kW. While
the percentage reduction is smaller compared to the other
systems, the absolute savings are still substantial due to the
larger scale of the network. Thus, the HGAPSO algorithm
provided a better APL improvement in savings compared to
the individual optimization algorithms.

In addition, Table V presents a comprehensive analysis
of the NPV achieved after integrating EVCS and CAP into
various bus systems using three optimization algorithms: GA,
PSO, and the proposed HGAPSO. For each bus system ana-
lyzed (33-bus, 69-bus, 85-bus, 118-bus, and 136-bus systems),
the HGAPSO algorithm yielded a higher NPV, indicating
superior performance in optimizing the placement and oper-
ation of EVCS and CAP. The improved NPV values for the
different bus systems are as follows: 154,797.5780 $/yr for
the 33-bus system, 298,325.0103 $/yr for the 69-bus system,
549,562.3642 $/yr for the 85-bus system, 1,846,426.1127 $/yr
for the 118-bus system, and 65,056.6595 $/yr for the 136-bus
system, respectively.

The convergence time (CT) and curves of optimization
algorithms are indeed essential metrics for evaluating their effi-
ciency and performance. The CT represents the duration taken
by each algorithm to reach the termination criterion, indicating
its speed and effectiveness in finding optimal solutions. Table
V presents the CT for the HGAPSO, GA, and PSO algorithms
mentioned for the case of EVCS and CAP installation.

Additionally, Fig 4 provides a graphical representation of
the convergence curves for the various bus systems for visual
assessment of the convergence behavior of these algorithms.
This figure allows for a comparative analysis of how the
HGAPSO, GA, and PSO algorithms converge over time,
offering insights into their relative performance for different
systems like IEEE 33, 69, 85, and 118 bus systems and the
practical Brazil 136-bus system.
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D. Case 4: Integrated with Charging Station in V2G MODE

In the study of integrating EVCS with CAP in DN, the V2G
mode plays a crucial role in maintaining system reliability.
When EVs have surplus energy, they can feed this extra energy
back into the grid, helping the grid operator maintain an
acceptable voltage profile and reduce power loss. The study
investigates the impact of V2G mode on the IEEE 33, 69, 85,
and 118 bus systems and the practical Brazil 136-bus system
for the optimal size and location of CAP. Employing the
HGAPSO techies, four scenarios with varying EV penetration
in V2G mode were analyzed: 5%, 10%, 15%, and 20% of
total EVs, as shown in Table VI.

TABLE VII
COMPARATIVE ANALYSIS OF APL REDUCTION AND NPV

USING HGAPSO ON VARIOUS BUS SYSTEMS IN V2G
MODE AT DIFFERENT PENETRATION LEVELS

Penetration 5% 10% 15% 20%
Parameters 33 BUS
APL (kW) 130.5684 129.8836 129.2366 128.6274
Scost (%) 35.58 35.92 36.24 36.54
NPV ($/yr) 2,65,780 2,69,250 2,72,520 2,75,600

69 BUS

APL (kW) 144.5441 144.5387 144.5338 144.5294
Scost (%) 34.84 34.84 34.84 34.84
NPV ($/yr) 2,90,030 2,90,060 2,90,090 2,90,110

85 BUS

APL (kW) 146.2165 145.5809 145.0539 144.6353
Scost (%) 52.54 52.74 52.91 53.05
NPV ($/yr) 7,69,320 7,72,530 7,75,200 7,77,320

118 BUS

APL (kW) 825.7168 824.9627 824.2147 823.4727
Scost (%) 34.49 34.55 34.16 34.67
NPV ($/yr) 18,73,700 18,77,500 18,81,300 18,85,000

136 BUS

APL (kW) 262.3947 261.7077 261.0413 260.3956
Scost (%) 17.57 17.78 17.99 18.19
NPV ($/yr) 97,254 1,00,729 1,04,100 1,07,367

Table VI demonstrates that increasing Vehicle-to-Grid
(V2G) participation leads to a decrease in APL, a reduction in
the percentage of energy loss costs, and an increase in NPV
for the proposed approach. Specifically, as the penetration
of EVs in V2G mode rises from 5% to 20%, there is a
noticeable decrease in APL across the grid. This reduction in
power loss results in significant cost savings for grid operators.
Additionally, for all bus systems analyzed, an increase in EV
penetration percentage correlates with higher savings in cost
(scost) and an increased NPV. For instance:

• In the 33 bus system, as the V2G penetration is increased
from 5% to 20%, the APL decreased from 130.5684 kW
to 128.6274 kW, resulting in a cost savings of 36.54%.
Also, for this increment in penetration, the NPV increased
from 2,65,780 $/yr to 2,75,600 $/yr.

• In the 69-bus system, as the V2G penetration is increased
from 5% to 20%, the APL decreased from 144.5441 kW
to 144.5294 kW, resulting in a cost savings of 34.84%.

(a)

(b)

Fig. 5. Tornado plot of sensitivity analysis for NPV: (a) IEEE-33 Bus
system and (b) Practical Brazil 136-Bus system.

Also, for this increment in penetration, the NPV increased
from 2,90,030 $/yr to 2,90,110 $/yr.

• In the 85-bus system, as the V2G penetration is increased
from 5% to 20%, the APL decreased from 146.2165 kW
to 144.6353 kW, resulting in a cost savings of 53.05%.
Also, for this increment in penetration, the NPV increased
from 7,69,320 $/yr to 7,77,320 $/yr.

• In the 118-bus system, as the V2G penetration is in-
creased from 5% to 20%, the APL decreased from
825.7168 kW to 823.4727 kW, resulting in a cost savings
of 34.67%. Also, for this increment in penetration, the
NPV increased from 18,73,700 $/yr to 18,85,000 $/yr.

• In the 136-bus system, as the V2G penetration is in-
creased from 5% to 20%, the APL decreased from
262.3947 kW to 260.3956 kW, resulting in a cost savings
of 18.19%. Also, for this increment in penetration, the
NPV increased from 97,254 $/yr to 1,07,367 $/yr.

These results affirm the technical and economic benefits of
integrating EVs in V2G mode using the HGAPSO optimiza-
tion technique.

E. Sensitivity Analysis
A sensitivity analysis of the NPV was conducted to evaluate

the economic viability of integrating EVCS and CAP in the
IEEE 33, 69, 85, 118, and Brazil 136-bus systems, focusing on
parameters like the discount rate, energy cost, and installation
costs for CAP and EVCS, as well as operating and mainte-
nance costs.

Figure 5 presents a tornado plot of the sensitivity analysis
results with a ±10% variation for each parameter. Although
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the analysis was conducted across all systems, the figure
specifically illustrates results for the 33 and 136-bus systems,
representing the smallest and largest cases. The results were
consistent across all cases. The analysis shows that the dis-
count rate has the most significant impact on NPV, indicated by
the longest bar in the plot. Energy cost and EVCS installation
costs also considerably influence NPV, highlighting their im-
portance for the project’s financial sustainability. Conversely,
the installation cost of CAP and operating and maintenance
expenses have a lower impact on NPV, as shown by the shorter
bars.

These insights guide decision-makers in prioritizing strate-
gies to secure the project’s financial health. By focusing on
managing the discount rate and energy costs, risks to economic
performance can be mitigated. Optimizing CAP installation
and maintenance, although less influential, can still contribute
to stronger financial results.

V. CONCLUSION

In this study, we focused on optimizing the deployment of
EVCS and CAP in DN to maximize NPV while considering
the benefits of energy loss reduction and investment costs.
Using the HGAPSO algorithm, the research demonstrated
effective planning across the IEEE 33, 69, 85, 118, and
Brazil 136-bus systems. Initially, integrating EVCS into Radial
RDN can lead to increased APL and reduced voltage profiles.
However, through the strategic placement of CAP alongside
EVCS, significant reductions in APL and improvements in
voltage profiles have been achieved. The proposed algorithm
achieved notable reductions in active power losses of 31.46%,
34.74%, 51.7%, 33.13%, and 11.53% for the IEEE 33-bus, 69-
bus, 85-bus, 118-bus, and 136-bus systems, respectively, when
compared to the base case. Additionally, the corresponding
annual maximum NPVs were 224,780 $/year, 288,900 $/year,
756,360 $/year, 1,786,500 $/year, and 71,633 $/year for these
systems. The HGAPSO algorithm has proven instrumental
in swiftly identifying optimal locations and sizes for CAP,
surpassing the effectiveness of standalone optimization ap-
proaches. Our findings highlight the superior performance
of the proposed algorithms in facilitating precise cost-benefit
analyses, particularly in the context of V2G operations. Im-
plementing CAP banks alongside EVCS at optimized sites not
only enhances network efficiency but also yields substantial
positive NPV, providing tangible benefits to utility providers.
The analysis across varying penetration levels (5% to 20%)
shows a consistent reduction in APL for all bus systems. For
the IEEE 33-bus system, APL decreased from 130.5684 kW to
128.6274 kW. For the 69-bus system, APL was reduced from
144.5441 kW to 144.5294 kW. In the 85-bus system, APL
dropped from 146.2165 kW to 144.6353 kW. For the 118-bus
system, APL decreased from 825.7168 kW to 823.4727 kW.
Finally, for the 136-bus system, APL reduced from 262.3947
kW to 260.3956 kW. These results emphasize the effectiveness
of the proposed approach in optimizing operational perfor-
mance in distribution networks.
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