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Abstract—Indoor human positioning has become crucial for
applications such as health monitoring, security surveillance,
human pose identification and rescue operations. However,
achieving reliable indoor human positioning is challenging
due to numerous constraints.This paper aims to compare and
analyze radio waves techniques and approaches for indoor
positioning, providing a comprehensive review for human
detection, positioning and activity recognition. A systematic
review of the scientific literature and datasets was conducted.
Four digital libraries, ACM Library Digital, IEEE Xplore,
ScienceDirect and Springer Link were searched to identify
results that met the selection criteria. A data extraction process
was performed on the selected articles and datasets. The Parsifal
platform was utilized to extract relevant information. After
completing the systematic review, it was identified 26 eligible
articles and extracted 11 methods for radio wave detection.
The overview of indoor positioning system with radio waves
was introduced. The most frequently mentioned tools in the
articles for the capture stage were Radio Frequency Sensors,
Antennas, WiFi, Radar Sensors and BLE Beacons. For the
processing stage, Filtering and Transformation Methods, Deep
Neural Networks Techniques, Specifc Algorithms followed
by Fingerprint, Trilateration, and other machine learning
algorithms formed the majority.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9219

Index Terms—Indoor positioning systems, Radio Waves, Radio
Frequency Sensors, Antennas, Filtering, Fingerprint.

I. INTRODUCTION

INDOOR Positioning Systems represent a relevant area for
the development of methods capable of accurately moni-

toring the location of individuals indoors [1]–[3], especially
in the context of human health monitoring [4], [5]. Precise
location in real time can make it possible to track patients in
hospitals or the elderly in homes [6], [7], making it easier to
detect falls [8], [9] and abnormal behavior. This technology
plays a crucial role in improving medical care, contributing to
the safety and well-being of monitored individuals [10]–[13].

However, in human health monitoring, camera-based indoor
positioning systems, although widely used due to their high ac-
curacy [14]–[17], have limitations related to privacy [18], [19].
Constant surveillance by means of image-capturing devices
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raises ethical and operational concerns, given the potential
for invasion of privacy in personal spaces [20], [21]. Radio
frequency (RF) based systems are therefore emerging as a
viable complementary technology, offering alternatives that
do not rely on image capture to detect the presence and
movements of individuals.

In this context, Radio Frequency (RF) techniques have
gained prominence [22]–[24]. RF techniques encompass a set
of methodologies, technologies, and devices applied in various
domains, such as communication [25]–[27] and sensing [28]–
[30]. In the realm of indoor positioning, RF techniques play
a pivotal role in estimating human poses in environments
with poor lighting and even through walls [31]–[33]. These
methods are based on the interpretation of electromagnetic
waves, which are effective for long-distance communication as
they do not require a physical medium for propagation [34]–
[36].

Wi-Fi and Bluetooth are widely recognized RF techniques
used for indoor positioning [37]–[41]. These technologies esti-
mate a target’s position through the transmission and reception
of RF signals between devices, such as smartphones and access
points. By measuring signal strength, time of flight, and other
relevant features, these systems can triangulate the target’s
position with relatively high accuracy [42].

Another approach involves deploying dedicated RF beacons
or tags throughout the indoor environment [43]–[46]. These
devices emit unique RF signals that can be detected and
interpreted by strategically placed receivers or sensors. The
target’s position can be estimated using techniques such as
trilateration or fingerprinting by analyzing the signal strength
and arrival time of these beacon signals at different receiver
nodes [47]–[50].

Moreover, Radio Frequency Identification (RFID) technol-
ogy has facilitated the development of RFID-based indoor
positioning systems [51]–[54]. These systems use RF tags or
labels attached to objects or individuals, which emit signals
detectable by RFID readers distributed throughout the envi-
ronment. The position of tagged objects or individuals can
be determined with precision by correlating readings from
multiple RFID readers [55]–[58].

Indoor Positioning Systems (IPS) [59]–[61] are becoming
increasingly vital for determining the locations of individuals
and objects by leveraging resources such as smartphone sen-
sors, embedded sources, localization mapping, and wireless
communication networks [62], [63]. Among electromagnetic
waves, radio waves stand out for their ability to transmit
information wirelessly over long distances [64]. Radio waves
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are defined as the use of unguided propagating electromagnetic
fields within the frequency range of 3 kHz to 300 GHz
to convey information [65]. Their unique property of being
able to travel through air, vacuum, or other materials with
minimal attenuation allows for efficient communication across
various environments [66]–[68]. Thus, understanding radio
wave capture techniques, also referred to as RF techniques, is
essential for developing effective indoor positioning systems.

A. Background
This section describes the studies that explore indoor local-

ization with RF techniques reviewed by researchers proposed
in the literature.

The paper [69] provides an overview of positioning systems,
with an emphasis on indoor positioning systems (IPS). It
highlights the growing use of radio frequency (RF) commu-
nication technologies, such as Wi-Fi, BLE, RFID and UWB.
Among these technologies, the Received Signal Strength In-
dicator (RSSI) algorithm stands out for its effectiveness. In
addition, the trilateration technique is recommended for its
cost-effectiveness, ease of implementation and high accuracy.

The paper [70] provides a meta-analysis that carried out a
comprehensive compilation of 62 review articles in the field of
indoor positioning. Thus, the meta-analysis allows to quickly
inspect the current state of IPS and serves as a guide to easily
find more details about each technology used in IPS. The meta-
analysis contributed insights into the abundance and academic
importance of published GST proposals, using the criterion of
the number of citations.

[71] examines radio wave signals for indoor environments,
presenting the challenges faced by current algorithms and
problem-solving strategies. The creation of radio maps and
the use of crowdsourcing are considered promising strategies
for improving regional accuracy in difficult environments.
In addition, the combination of machine learning has been
explored as a way to accurately and efficiently improve the
indoor positioning at home.

Despite the significant advances documented in the aca-
demic literature, there is still a gap in the comprehensive
analysis of radio wave capture techniques, including a detailed
comparison of usability, advantages, limitations and accuracy
in different usage scenarios. The papers reviewed provide an
overview of the techniques available but there is still a need
for in-depth analysis and systematic comparison.

B. Objectives
This systematic review aims to provide concepts about

radio waves, while presenting a comprehensive study of the
techniques used to capture these waves. Therefore, the ob-
jectives of this article are as follows: (1) to establish the
definition of radio wave capture techniques; (2) to conduct
a study that promotes discussions about the usability of each
of these techniques; (3) to carry out a comparison between the
techniques in order to obtain a more complete analysis of their
implementations; and (4) to present the results obtained by
each of the techniques mentioned in this article, highlighting
their advantages, limitations and accuracy in different usage
scenarios.

II. METHODOLOGY

This research followed the guidelines proposed by Kitchen-
ham et al [72] for systematic literature reviews in software
engineering for the planning and execution of the study
proposed. The review was conducted in three main stages:
planning, conducting research and analyzing the results. To
assist in this process, we used the Parsifal.al tool [73], which
offers an environment conducive to planning and carrying out
systematic reviews. In this section, we will present in detail
how this review was planned and performed.

A. Research Questions

In order to achieve the objectives of this systematic review,
we established the following research questions:

• RQ1: What are the most widely used techniques for
capturing radio waves?

• RQ2: What are the theoretical bases that underpin the
development of these techniques?

• RQ3: What are the procedures used to carry out these
techniques?

• RQ4: What tools are used to implement these techniques?
• RQ5: What processing techniques are used during signal

capture?
• RQ6: What are the advantages and limitations of each

technique?
• RQ7: Which technique has the best accuracy in capturing

radio waves?

B. Search Strategy

The search aimed to identify studies that provided data
relevant for this review. The following digital libraries were
used: ACM Library Digital, IEEE Xplore, ScienceDirect
and Springer Link. These libraries were selected due to the
reliability of their studies in the field of technology. The search
string was designed to look for sets of articles dealing with
radio waves and the techniques used. This search was carefully
developed based on the focus of the review and the established
research questions. It was decided to use the boolean operator
"OR" as a link between the alternative terms in order to obtain
comprehensive results, and the boolean operator "AND" as a
link between the sets of terms. In the end, the sets of duplicate
articles were identified and removed using the Parsifal.al tool
[73] tool. The terms used were:

("Radio Frequency" OR "Radio Wave") AND ("Approach"
OR "Instrument" OR "Method" OR "Technique") AND ("Ac-
curacy" OR "Assessment" OR "Efficiency" OR "Evaluation"
OR "Measurement" OR "Testing")

C. Selection Criteria

A set of selection criteria was established to select the
research articles. The selection process took place in two
sequential stages: (1) filtering the studies by analyzing the
metadata, such as title, abstract and keywords; (2) analyzing
the full text of the articles selected in the first filtering stage.
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TABLE I
DATA EXTRACTION

Information Description

Title Original title, preserving the
original language

Authors Include the names of all authors,
regardless of quantity

Publication Venue Database where the document is
located

Year of Publication Year of publication available in
the journal and/or database

Publication Type
Indicate the type of publication,
e.g., conference paper, academic

journal article, etc.

Radio Wave Context Discuss the context in which
radio waves are embedded

Radio Wave Capture Techniques Specify the techniques used or
mentioned in the document

Methodology Highlight the methodology
employed by the publications

Accuracy Present the obtained results

Inclusion Criteria
The paper describes the use of radio wave capture techniques.
The paper makes a comparative study of radio wave capture
techniques. The paper describes a process for developing a
technique used to capture radio waves.

Exclusion Criteria
The paper deals with signals outside the scope of radio waves.
The paper is duplicated, i.e. it was already selected from
another digital library. The paper does not describe the use of
radio wave capture techniques. The paper is not a scientific
article, but a summary of a short course, introduction to a
conference, etc. The paper was published before 2010.

D. Data Extraction

Throughout this stage, data were systematically gathered
from the papers to address the research questions delineated
in this review. A thoroughly designed form, elaborated in Table
I, was employed for this purpose. The components within this
form were thoughtfully devised to extract pertinent informa-
tion from these studies, thereby enabling the acquisition of
responses to the research inquiries and the discernment of
research gaps and trends.

III. RESULTS

A. Study Selection

An overview of the review process is presented in the prism
shown in Fig. 1 , in which 4 digital libraries (ACM, IEEE,
ScienceDirect and Spring Link) were used to search for sci-
entific articles that presented content relating to radio waves.
A total of 54,499 articles were returned. After a meticulous
analysis phase, a total of 54,473 articles were excluded based
on predefined criteria. These criteria encompassed the follow-
ing: The focus on signals outside the scope of radio waves;

Duplication, where the article had already been selected from
another digital library; A lack of description regarding the
use of radio wave capture techniques; Classification as non-
scientific publications, such as summaries of short courses or
conference introductions; and publication dates prior to 2010.
This process culminating in the final selection of 26 articles
that met the requirements of interest.

Fig. 1. Flowchart illustrating the Prism methodology applied in the
systematic review process, detailing the stages of article selection,
inclusion, and exclusion based on predefined criteria.

B. Techniques for Capturing Radio Waves

Fig. 2. Distribution of capture techniques in the reviewed studies,
with radio frequency sensors being the most prevalent.

The analysis of capture techniques, as evidenced by the
Fig. 2 illustrates the distribution of the most commonly used
capture techniques in monitoring and localization systems. The
techniques have been grouped and quantified in terms of usage
frequency, providing an overview of how different approaches
are applied in current technological environments. It reveals a
greater utilization of RF-based techniques and antennas, which
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are widely applied to ensure accuracy in various fields such as
healthcare, security, and indoor localization. In contrast, SDR,
Radar, and Mobile Terminals are more commonly applied in
specialized scenarios, with RF-based Device-Free showing a
growing trend due to its non-intrusive application, although it
still has a limited presence.

The most prevalent techniques are Radio Frequency Sen-
sors, which are widely employed for monitoring and tracking
objects due to their ability to measure signal intensity and char-
acteristics [74]–[80]. This technique is particularly effective in
industrial environments, where its robustness and resistance to
interference make it an ideal choice for challenging settings.

Another essential component is Antennas, which are exten-
sively used for transmitting and receiving radio waves [81]–
[86]. They play a crucial role in signal detection and in
determining the relative position of devices based on metrics
such as signal strength and time of arrival. The capture
process using Antennas can involve both directional versions,
which offer greater precision for specific applications, and
omnidirectional versions, which provide broader and more
flexible coverage.

The use of Wi-Fi signals in indoor positioning systems
is widely acknowledged for its ubiquity and easy integration
with existing infrastructure [87], [88]. Wi-Fi signal capture
involves measuring the signal strength received from multiple
access points and applying triangulation techniques to estimate
location, making it an effective approach, especially in loca-
tions with an established network infrastructure, minimizing
the need for new installations

Radar sensors also hold significant importance, as indi-
cated by the number of occurrences in the histogram, due to
their ability to emit high-frequency radio waves and analyze
the echoes to detect the position and movement of objects [89],
[90]. The use of these sensors involves strategically installing
devices to ensure the desired coverage of the environment,
making them widely applied in security monitoring systems
and scenarios that require high precision, particularly because
they can operate efficiently in environments with obstacles
such as thin walls.

BLE (Bluetooth Low Energy) beacons stand out as a
capture technique due to their energy efficiency and ease of in-
stallation [42], [81], [91]. These devices transmit short signals
at regular intervals and detect the proximity of mobile devices
based on the received signal strength. The implementation
process involves strategically placing the beacons within the
environment and using processing algorithms to analyze the
received signals and determine device location.

Wireless Sensor Systems (WSS) integrate multiple sen-
sor technologies to create comprehensive monitoring networks
[85], [92]–[94]. These systems are used for continuous and
detailed tracking in complex environments, combining data
from various types of sensors to provide a complete and
accurate view of the monitored environment.

Software Defined Radio (SDR) emerges as a versatile cap-
ture technique due to its ability to perform signal processing
through software rather than dedicated hardware [95], [96].
This flexibility allows SDR to dynamically adapt to different
frequencies, modulation schemes and communication proto-

cols, making it highly suitable for a variety of applications,
including indoor positioning systems.

In research and development contexts, the use of Universal
Software Radio Peripheral (USRP) is also relevant, although
less frequently observed in the analysis. The USRP, as a hard-
ware platform that supports SDR, facilitates advanced signal
capture and processing testing, providing greater precision and
control over experiments.

Finally, capture techniques based on Mobile Terminals
[97], Wireless Sensors, and RF-based Device-Free [98] are
less prevalent but remain relevant in specific niches, where
mobility and integration with other monitoring systems are
essential for accurate location and tracking data collection.

In summary, the analyzed capture techniques reveal a diver-
sity of approaches that meet various needs and environments,
ranging from security systems and industrial monitoring to
applications in complex indoor environments, such as wireless
sensor networks and radio signal-based positioning. The selec-
tion of the most suitable technique depends on the specificities
of the environment and the requirements for precision and cov-
erage, with careful consideration of the signal characteristics
and the devices used.

C. Processing Techniques

Fig. 3. Distribution of processing techniques in the reviewed studies,
highlighting the dominance of filtering and transformation methods.

The Fig. 3 illustrates the distribution of processing tech-
niques most commonly used in systems related to monitor-
ing and localization. The techniques have been grouped and
quantified based on their frequency of usage, providing an
overview of how different approaches are applied in current
technological environments. As shown in the histogram, Fil-
tering and Transformation Methods are the most widely used
processing techniques. These methods are crucial for data
preprocessing, enhancing signal quality, and improving the
accuracy of results, particularly in systems involving sensor
data or signal processing.

In summary, the graph reveals that Filtering and Transfor-
mation Methods, alongside DNN Techniques, are the most
common approaches in the field, with an increasing shift
towards machine learning and deep learning techniques in
modern processing systems. On the other hand, RSSI and
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Probabilistic Classification Methods are applied in more spe-
cific contexts, where they provide precise solutions to partic-
ular challenges.

Filtering and transformation methods play a vital role
in ensuring the quality of captured signals, especially in
environments where noise and interference may affect the
performance of positioning systems [74], [77], [82], [83], [85],
[87]–[90], [93], [95], [96]. Techniques such as the Kalman
filter, fast Fourier transform (FFT), and wavelets are utilized
to filter out noise and extract relevant data, enabling more
accurate location estimation. Efficient filtering helps maintain
system accuracy by removing inconsistencies and unwanted
interferences, even in challenging conditions.

Following closely are the DNN Techniques (Deep Neural
Networks). DNN techniques have gained prominence due
to their ability to handle complex sensor data, such as Wi-
Fi and Bluetooth signals, and identify intricate patterns to
improve location estimation [75], [78], [80], [84], [85], [98].
Inspired by the neural structures of the human brain, these
models learn from large datasets and are particularly effective
in environments where high precision is required.

Specific Algorithms also feature prominently in the his-
togram. They are designed to address specific positioning
challenges through optimization, error correction, and adaptive
approaches [81], [83], [86], [87], [91], [94]. These algorithms
are customized to work with various signal types, such as Wi-
Fi, BLE, and RFID, and are adapted to the unique character-
istics of indoor environments. This category includes classical
methods like trilateration and probabilistic techniques, as well
as innovative combinations that improve the accuracy of
position calculations.

Trilateration is a classical geometric processing technique
used to calculate the position of an object by measuring the
distance from three or more known reference points [47]. This
method is common in radio signal systems that rely on signal
strength or time of arrival (TOA) data to estimate distances
[87]. While robust and well-established, trilateration can be
affected by signal reflections and interference, necessitating
additional corrections in more complex scenarios.

Probabilistic classification methods are employed to pro-
cess positioning data by estimating the probability of an object
being located within a set of possible positions [79]. These
methods are particularly effective for managing uncertainties
and variations in data, using models such as Bayesian analysis
and Monte Carlo techniques to predict the most likely location.
This approach provides reliable positioning estimates even
under conditions of high variability and noise.

Fingerprinting is another essential method used for pro-
cessing radio wave data. This approach involves creating prere-
corded signal maps that can be compared with captured signals
to determine a device’s location [42], [75], [91]. Fingerprinting
provesvhighly effective in environments where other methods,
such as trilateration, may struggle due to signal variability.
Its application is widespread in complex indoor environments,
like shopping centers and airports, where detailed signal maps
enhance positioning precision

Fingerprint Matching and SVM (Support Vector Ma-
chines) appear in the histogram, reflecting their use in match-

ing fingerprint data to known templates and applying machine
learning techniques, such as SVM [97], for classification tasks,
commonly in security and authentication systems. Addition-
ally, Fingerprinting and DNN Techniques and Filtering
and Transformation Methods and DNN Techniques are
presented as combined approaches, highlighting the integration
of traditional fingerprinting or filtering methods with deep
learning techniques to enhance processing accuracy and pre-
dictive power.

RSSI (Received Signal Strength Indicator) is another
technique used for positioning, which involves measuring the
strength of the received signal to estimate the distance between
the device and the source [92]. While not as prevalent as
some other techniques, RSSI remains an important method
in wireless positioning systems.

These varied processing techniques, each with distinct
methodologies and applications, emphasize the significant ad-
vancements in radio wave signal processing. Their implemen-
tation holds considerable potential across fields such as health-
care, security, and wireless connectivity, driving improvements
in accuracy and reliability within indoor positioning systems.
The continuous development and refinement of these methods
are expanding the possibilities for more precise, adaptable, and
robust location-based solutions.

D. Accuracy

Fig. 4. Accuracy evaluation of methods for indoor positioning and
human activity recognition using RF signals.

This section focuses on assessing the accuracy of the meth-
ods discussed in the previous sections. Accuracy is a crucial
element in assessing the quality and reliability of methods
used to locate and recognize human activity based on radio
frequency (RF) signals indoors.

Furthermore, accuracy is indispensable in safeguarding the
security and privacy of users, as well as meeting the demands
and expectations inherent in the possible applications of these
methods. In order to summarize the levels of accuracy of the
studies examined, a Fig. 4 was drawn up classifying them into
categories of low, moderate and high accuracy.

Inaccurate: Accuracy is less than 80% or average error is
greater than 1 m.
Precise: Accuracy is between 80% and 95% or the average
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error is between 0.5 m and 1 m.
Very precise: Accuracy is greater than 95% or the average
error is less than 0.5 m.

This metric is based on typical values found in the literature
[99], [100] and can vary depending on the context and applica-
tion of the methods. This metric was chosen to make it simpler
and more intuitive to compare the articles and highlight the
most accurate ones.

The accuracy of the localization and detection systems
discussed in this review is a critical factor for applications
in areas such as health monitoring, security surveillance,
human pose identification, and rescue operations. Accuracy is
measured in different ways depending on the technology used
and the application scenario, and the results indicate significant
advancements in the precision of these systems, especially in
complex and dynamic environments.

In health monitoring [89], systems based on radar and
depth sensors showed highly accurate results, with radar
sensors achieving an average error of less than 0.04 m/s
for walking speeds between 0.5 m/s and 0.8 m/s. These
sensors maintained a standard deviation of less than 0.08 m/s,
demonstrating great capability for monitoring movement in
healthcare environments such as hospitals and clinics, with
precise tracking of patients’ mobility. In parallel, depth sensors
showed an average error of less than 0.03 m/s, with standard
deviation below 0.08 m/s, further reinforcing the reliability of
these systems for continuous monitoring of patient movement.

For security surveillance, the RF-Capture system [76], used
to identify and track body parts in controlled environments,
achieved 99.13% accuracy in detecting body parts at a distance
of 3 meters, with a hand tracking error of only 2.19 cm
(median). These results highlight the high precision of the
system, which is essential for real-time surveillance in high-
density areas and in non-line-of-sight (NLOS) conditions,
common in urban or indoor environments with obstacles. The
high performance of RF-Capture makes it a valuable tool for
security systems in real-time, enabling precise detection of
people and objects in critical areas.

In the field of human pose identification [85], the WiPose
system, which uses Wi-Fi signals to reconstruct 3D poses,
achieved an average error of 2.83 cm in locating human
skeleton joints, representing a 35% improvement in accuracy
compared to previous radar-based systems. The high accuracy
of WiPose is crucial for applications that require detailed
tracking of human movements, such as in augmented reality
environments or rehabilitation systems, as well as in rescue
operations, where accurate pose reconstruction can be used to
identify people at risk in disaster situations.

In rescue operations, where the ability to detect and locate
individuals in real-time is vital, systems like RF-Net [98] and
RFlow [77] demonstrated superior accuracy. RF-Net, used for
human activity recognition, achieved 95% accuracy with only
one example per class (one-shot learning), making it ideal
for dynamic environments like rescue scenarios, where rapid
identification of human activities is needed. RFlow, used for
gesture tracking, achieved an average error of less than 5 cm,
equivalent to an accuracy greater than 95%. This high accuracy
is crucial for gesture detection in complex environments with

obstacles, such as in rescue operations in areas with limited
visibility or access.

For indoor localization, such as in hospitals or industrial
environments, the RFMap system [84] proved highly effective,
with the ability to generate well-defined maps without the
need for extensive movement of the setup. This demonstrates
the effectiveness of the method for mobile device navigation
in closed environments, with qualitatively high accuracy, al-
though no exact error values were provided in the article.

These results demonstrate that the monitoring and detection
systems have achieved very high accuracy across various
applications, with most systems exhibiting average errors
below 1 meter. This precision is essential for ensuring the
effectiveness of these systems in health monitoring, security
surveillance, human pose identification, and rescue operations,
where high accuracy not only enhances operational efficiency
but also contributes to the safety and well-being of indi-
viduals in critical situations. The continuous advancement
in RF and machine learning-based technologies has allowed
these systems to reach high levels of precision, showing their
potential to improve security and effectiveness in challenging
and dynamic environments.

E. Advantages and Limitations

Technological advances in the area of positioning and de-
tection based on Radio Frequency (RF), Wi-Fi and Bluetooth
Low Energy (BLE) signals have enabled a wide range of
applications, from precise indoor location to the detection of
objects and people through obstacles. This section analyzes the
main advantages and limitations found, as can be seen bellow.

Table II summarizes the principal characteristics of diverse
positioning and detection methods and systems utilizing RF,
Wi-Fi, and BLE signals. It is evident that these approaches
provide several noteworthy advantages; however, they also
entail significant limitations. Analyzing the main ones:

High Accuracy and Low Latency: Numerous articles,
exemplified by [42] and [97], underscore the capability to
deliver high accuracy and low latency. This aspect holds par-
ticular significance for time-sensitive applications like indoor
navigation and asset tracking.

Need for Specialized Infrastructure: Conversely, articles
like [74] and [83] require necessitate specialized infrastruc-
ture, such as deploying multiple sensors or antennas, thereby
potentially elevating implementation costs and complexity.

Consideration of Signal Variation: Certain articles, ex-
emplified by [93], leverage pre-existing infrastructure but may
encounter signal variations stemming from network congestion
or interference, thereby impacting accuracy.

Use of Machine Learning and Signal Processing: Articles
integrating machine learning and signal processing methodolo-
gies, such as [98] and [85], showcase promising outcomes;
however, they frequently demand significant computational
complexity and extensive training datasets.

Detection through obstacles: The capability to detect
through barriers, as demonstrated in [95] and [87] is notewor-
thy. However, limitations in resolution and false alarm rates
may arise.
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TABLE II
ADVANTAGES AND RESTRICTIONS OF CAPTURE AND PROCESSING TECHNIQUES

Article Capture Technique Processing Technique Advantages Restrictions
[42] BLE Beacons Fingerprint High accuracy and low latency Requires a large number of BLE bea-

cons; increased cost and complexity
[92] Wireless Sensor Network RSSI Does not require prior knowledge; han-

dles dynamic changes
RSSI fluctuations affect accuracy and
robustness

[95] SDR Filtering and Transformation
Methods

Uses existing Wi-Fi devices; detection
through walls

Low resolution and high false alarm
rate

[81] Beacons and Mobile Node Op-
erate and Antennas

Specific Algorithms Theoretical analysis and experimental
validation

Ideal scenarios; does not reflect realistic
conditions

[74] Radio Frequency Sensor Filtering and Transformation
Methods

Accurate detection and tracking High complexity and calibration; af-
fected by noise

[97] Mobile Terminal Fingerprint Matching and
SVM (Support Vector
Machine)

High accuracy and low complexity Requires a large amount of training data

[75] Radio Frequency Sensor Fingerprinting and DNN Tech-
niques

High accuracy and adaptability High computational complexity

[93] Wireless Sensor Filtering and Transformation
Methods

Existing LTE-A infrastructure; wide
coverage

Low accuracy and high latency due to
RSSI variations

[82] Antennas Filtering and Transformation
Methods

Low power consumption; fast response Low accuracy and robustness due to
interference

[83] Antennas Filtering and Transformation
Methods and Specific Algo-
rithms

High accuracy and resolution High hardware cost and complexity

[84] Antennas DNN Techniques High-quality indoor maps High computational complexity and
memory requirements

[85] Antennas and Wireless Sensor Filtering and Transformation
Methods and DNN Techniques

Detailed information; combines signal
processing and machine learning

Low accuracy and stability due to noise

[76] Radio Frequency Sensor Filtering and Transformation
Methods

Robust information Low resolution and detail

[77] Radio Frequency Sensor Filtering and Transformation
Methods

Natural user interaction Low accuracy and responsiveness due
to latency

[98] RF-based Device-Free DNN Techniques High accuracy and adaptability High computational complexity and
memory requirements

[87] WiFi Filtering and Transformation
Methods and Specific Algo-
rithms

NLOS detection using common Wi-Fi
devices

Low accuracy and reliability due to
interference

[78] Radio Frequency Sensor DNN Techniques High security and robustness High computational complexity and en-
ergy consumption

[88] WiFi Filtering and Transformation
Methods

Improves positioning accuracy and ro-
bustness

High complexity and calibration re-
quirements

[79] Radio Frequency Sensor Probabilistic Classification
Methods

Improves DFPL performance and scal-
ability

Low accuracy and stability due to un-
certainty

[91] Beacons BLE Fingerprinting and Specific
Algorithms

Accuracy, Dynamic Management, Cost
Reduction

Prior knowledge, Interference, Com-
plexity

[89] Radar Sensors Filtering and Transformation
Methods

Robust Estimation, Noisy Data, Multi-
Sensors

Parameter Selection, Bias, Non-
Linearity

[86] Antennas Specific Algorithms Wave Patterns, Efficient Mining, Prop-
agation Modeling

Loss of Rare Patterns, Redundant Se-
quences, High Cost

[96] SDR (Software Defined Ra-
dio)

Filtering and Transformation
Methods

Filter Design, Resource Reduction,
Field Implementation

Balance, Output Errors, Design Limita-
tions

[94] WSS (Wireless Sensor Sys-
tem)

Specific Algorithms High Resolution, Sampling Reduction,
MLE

Sparsity, Reconstruction Errors, Com-
plexity

[90] Radar Sensors Filtering and Transformation
Methods

High Resolution, Chip Integration, Sig-
nal Generation

Design Challenges, Phase Noise Degra-
dation, Antenna Design

[80] Radio Frequency Sensor DNN Techniques Identification, Fast Training, Temporal
Features

Labeled Data, Domain Adaptation,
Overfitting / Underfitting

Energy Consumption: [82] emphasizes low energy con-
sumption. Nevertheless, accuracy may be compromised by
interference.

Security and Intrusion: [78] addresses security issues,
albeit at the expense of increased computational complexity
and energy consumption.

Calibration and Training Data: Numerous articles, such
as [88] and [79], require necessitate calibration procedures and
extensive training datasets, thereby amplifying the implemen-
tation workload.

The selection of the most suitable method hinges on the

specific requirements of an application. While certain methods
boast high accuracy and diminished latency, others prioritize
ease of implementation and scalability. A comprehensive un-
derstanding of these advantages and limitations is imperative
to steer the selection and development of positioning and
detection solutions. As research progresses in this domain, it
is plausible that novel innovations will emerge to alleviate
some of the identified limitations, ushering in a new era of
increasingly precise and resilient applications.
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IV. FINAL CONSIDERATIONS

After completing the systematic review, It was identified
26 eligible articles and extracted 11 methods for radio wave
detection . The overview of indoor positioning system with
radio waves was introduced. The most frequently mentioned
tools in the articles for the capture stage were Radar Sensors,
Wireless Sensor, and Antennas. For the processing stage, DNN
Techniques, Processing Algorithms followed by Filtering, Fin-
gerprint, Trilateration, and other machine learning algorithms
formed the majority.

Of the analyzed works, 65% showed accuracy with the
"very precise" metric, indicating that the methods are effective
and robust for indoor positioning. Conversely, 27% returned
"precise" results, while only 8% were found to be inaccurate,
suggesting that there are still challenges and limitations to
overcome, such as high implementation costs and high com-
putational complexity.

The implications of this study encompass the theoretical
realm of radio wave investigation, fostering a more profound
comprehension of the hurdles encountered in utilizing radio
waves indoors. Drawing from the gaps unearthed in this sys-
tematic review of radio wave acquisition, numerous promising
avenues for prospective research emerge.
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