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Deep Learning to Facilitate Power System Event

Detection using PMU Data
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Abstract—Accurate event detection is crucial for initiating
control and protection measures in power systems to ensure
enhanced and reliable operation. Phasor Measurement Units
(PMU’s) play a vital role in various functional aspects of power
systems, including state estimation and intelligent protection
algorithms. However, the authenticity of real-time data from
PMU’s must be verified before feeding it into applicable real-time
algorithms to prevent undesirable or erroneous operations. This
paper aims to present an efficient pre-processing methodology
for identifying unwanted, incorrect, missing, or noisy PMU data
to facilitate robust event detection algorithms. The proposed
methodology leverages real-time data-driven deep learning
techniques for authenticating incoming data. Given the high
sampling rate of PMU’s, the presence of extraneous data
can lead to false event detection, necessitating reliable data
pre-processing. Challenges identified in existing literature, such
as the limitations of Steady State (SS)-Local Outlier Factor
(LOF) in event detection and classification, issues with detecting
line tripping and inter-area oscillations, computational and
bandwidth requirements for micro-PMU installations, and false
alarms resulting from inaccuracies in frequency ramp rate
determination, are addressed. To overcome these challenges,
this research proposes a deep learning approach that utilizes
modified Deep Convolutional Neural Network (DCNN) and
Long Short-Term Memory (LSTM) classifiers to classify and
extract features from PMU data, enabling highly efficient
detection of disturbances using real-time data. Additionally, a
Hybrid Attack Optimization (HAO) technique is employed to
enhance convergence rates, accuracy, and efficiency. Performance
evaluation of the proposed procedure is conducted by calculating
and assessing the data using metrics such as accuracy, precision,
recall, System Average Interruption Duration Index (SAIDI),
and System Average Interruption Frequency Index (SAIFI).
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I. INTRODUCTION
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PHASOR Measurement Units (PMU’s) play an important
role in power systems, offering capabilities for monitor-

ing, detecting, and analyzing the dynamics of power system.
Accurate identification of power system events, is paramount,
which in turn, is possible using real-time PMU data, partic-
ularly in heavy power generating stations, where they assist
in managing critical conditions such as generator trips, load
disconnection failures, and line trips. Effective event detection
not only enhances system visualization but also plays a pivotal
role in ensuring optimal system performance through relay
operations and control. However, the high sampling rate of
PMU’s often results in a significant amount of unbalanced
data, leading to voltage, frequency, and power instability,
as well as increased power distortion. Moreover, with the
integration of distributed energy resources (DERs) into power
systems, there is a growing need for flexible and efficient
voltage and current management.

B. Brief Insights into the Literature

Numerous studies have explored event detection methodolo-
gies in PS using diverse approaches, as evidenced by an exten-
sive literature review conducted by the authors [1]. Challenges
identified in existing literature, including the limitations of
conventional methods such as SS-LOF in event detection and
classification, issues with detecting specific disturbances like
line tripping and inter-area oscillations, and the computational
and bandwidth requirements associated with micro-PMU in-
stallations, underscore the demand for advanced solutions [2],
[3], [1], [4], [5].

Ameen Abdel Hai et al. [2] developed a transfer learning
approach for event detection to reduce equipment costs. Here,
event detection approach is based on a small amount of
transferred relevant labeled data from another power sys-
tem. However, achieving accurate event detection with field-
recorded PMU data remains challenging. Liu Shengyan et al.
[6] introduced a data-driven algorithm using the local outlier
factor (LOF) to detect unstable events in the PS. The SS-LOF
algorithm can be carried out to perform online monitoring
in practical application. This method faces challenges when
dealing with multivariable time series data from PMUs, such
as voltage, frequency, and power. Jie Shi et al [7] explored
the use of graph signal processing to capture spatiotemporal
correlations in synchrophasor data from PMUs. The devel-
oped algorithm demonstrates excellent scalability. The event
timestamps are only available at a minute-level resolution,
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limiting the precision of the dataset. Samira Pouyanfar et
al. [8] developed an ensemble deep learning method called
Automatic Video Event Detection for Imbalance data, which
addresses overfitting and information loss in single models.
This approach mitigates unbalanced data problems in the
multimedia domain, but it involves locally connecting convo-
lutional neural networks (CNNs). The developed framework
outperforms both groups of algorithms in two datasets with
different concepts, which demonstrates it’s advantage effec-
tiveness for video event detection. This increases the training
speed with the elimination of more parameters in the network.
Wang Weikang et al. [4] introduced deep learning methods that
utilize variable frequency and relative angle values to predict
images as input. The model achieves fast decision making. Al-
though the model achieves fast decision making, the presence
of complex spatiotemporal characteristics poses challenges
in detecting frequencies accurately. Cui Mingjian et al. [9]
presented a PMU-supported event detection method called
Dynamic Programming-Swinging Door Trending (DPSDT),
which compresses real time PMU data using a tunable door
width. The developed method is capable of identifying the
significant changes in both the decomposition coefficients
and the normalized wavelet energy (NEW) metric. However,
the performance of the PMU event reorganization fails to
provide the startup time of PMU events, leading to a loss
of information. PawelDawdowski et al. [10] developed an
event detection method using auto encoders and the Fourier
Transform series. The major difference is that the linear auto-
encoder is able to learn it’s filter weights by providing the
signal. They generated three signal datasets, but the major
faults in the Phasor calculation caused the loss of local event
information during detection. Ravi Yadav et al. [11] developed
an event detection method using the Teager-Kaiser energy
operator (TKEO). The method results accurate event detection
and its classification for multiple events in the presence of
intermittent sources in a system. This method exhibits better
performance with single units compared to multiple units,
but the complexity of various classes in terms of power line
locations or magnitudes poses challenges. Dazhong Ma et
al. [12] introduced a multidimensional matrix-based method
using spectral theory and a portioning algorithm for PS event
detection. This method is applicable for both distribution
and transmission systems. However, the inherent nonlinearity,
complexity and uncertainty of the PS event result in poor
performance. ShraddhaJadhav et al. [13] developed a trend
filter technique for achieving accurate detection in real-time
along with event classification using synchrophasor data. The
most important attribute of frequency signals is; it is station-
ary under normal operating conditions. However, classifying
events with multiple frequency modes remains challenging.
Armin Aligholian et al. [14] presented a Generative Adver-
sarial Network Scoring Method for event detection in Micro-
PMU data. However, the statistical method only captures the
step change. Yuxuan Yuan et al. [15] presented a two-stage
learning-based network for real-time event identifications and
CNNs with assistance from spatial pyramid pooling (SPP) are
developed to reliably and efficiently identify operation events.
Although the models achieve efficient results, more than 10%

of data suffers from quality issues. Mohammad Reza Shadi et
al. [16] developed an LSTM model and a Recurrent Neural
Network (RNN) model to find and distinguish Frequency
Disturbance Events (FDEs) with a high degree of accuracy.
The convergence rate on the classification of FDEs and the
location of Generator Trip (GT) and Load Disconnection (LD)
on the validation data is higher than the training data. The
suggested models were less accurate in locating FDEs. Xianjun
Xia et al. [17] developed a Random Forest classification based
Acoustic Event detection using Contextual information and
Bottleneck features. Here, the global bottleneck features can
capture the important contextual information with minimal
input dimension. However, only the prior knowledge of the
event and boundary information is utilized.

C. Description of Suggested Methodology

In response to the aforementioned limitations/challenges,
this research endeavors to develop a deep learning model
for event detection using PMU data. The objective is to
pre-process unbalanced and missing PMU readings using a
curve-fitting algorithm with a polynomial equation of the
anomaly function, thereby enhancing the quality of PMU
feature vectors. Subsequently, labels and features are extracted
from statistical features, and classification is performed using
a Hybrid Attack Optimization (HAO) algorithm integrated
with a deep CNN-LSTM classifier. The proposed methodology
collects required procedural aspects for processing unbalanced
PMU feature vectors, reducing noise and delay time, and
enhancing overall efficiency. The HAO algorithm, a novel
advancement combining Falcons and Echo Bat optimization,
demonstrates high convergence rates, fewer parameters, and
improved tuning of optimal solutions, thereby paving way for
enhancing the robustness and effectiveness in identifying the
unwanted events.

D. Paper Organization

The paper is organized as follows: Section 1 provides an
overview of the research objectives and context. Section 2
elaborates on the proposed methodology of DCNN-LSTM-
based Hybrid Attack Optimization. Section 3 discusses the
implementation of the proposed methodology with result anal-
ysis, and Section 4 concludes the paper.

II. METHODOLOGY OF DCNN-LSTM-BASED HYBRID
ATTACK OPTIMIZATION

This research focuses on developing an initial stage of
event detection model using deep learning techniques with
PMU (Phasor Measurement Unit) data. The PMU dataset
initially suffers from data imbalance and missing values, which
can hinder event detection. To address these challenges, a
comprehensive data pre-processing methodology is suggested
before applying intelligent control algorithms. Fig. 1 provides
an overview of proposed methodology, including data pre-
processing, the modified DCNN-LSTM classifier, and the
HAO optimization technique for event detection [18]. The
overview of the proposed methodology is presented below.
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Fig. 1. Overview of the proposed methodology employing HAO supported DCNN-LSTM approach for data filtering.

1) Data Balancing with Curve-Fitting Algorithm: In this,
data imbalance is tackled by using a curve-fitting algorithm
that employs polynomial equations to balance the dataset.

2) Label and Feature Extraction: Labels and features are
extracted from statistical features computed from PMU data,
enhancing the model’s ability to detect events.

3) Transformation to Tensor Data: A large number of data
points are transformed into tensor data, which is combined
with the statistical features extracted from the PMU data.

4) P-Center Formulation and Normalization: Data under-
goes P-center formulation and normalization to simplify rep-
resentation while preserving essential information.

Subsequently, the resultant data is fed into the modified
DCNN-LSTM classifier. It then optimizes the classifier’s hyper
parameters using the proposed hybrid attack optimization tech-
nique, combining Falcons’ optimization with bat echolocation
for event detection. This methodology is then implemented
in MATLAB and its performance is compare with existing
techniques. The suggested methodology is then assessed using
accuracy, precision and recall metrics, quantifying its effective-
ness in data filtering.

A. PMU Data Pre-processing and Data Balancing

In this deep learning-based data filtering supported event de-
tection model, the authors addressed imbalance and numerical
feature vectors in PMU data. This research aims to identify
disturbances in the PMU data under unexpected real power
events. Pre-processing techniques are applied to the PMU data
to handle imbalanced features. The pre-processing step and its
contributions to the proposed research are explained below.

1) Significant Contributions: The PMU data contains im-
balanced features, including voltage and current values, as
well as discrete data from relay logs, forming structured
heterogeneous data.

• Fig. 1 illustrates the PMU datasets, which consists of raw
data in the form of imbalanced sets

• The authors pre-process Synchro Phasor data by remov-
ing defective data, bundling datasets, eliminating outliers,
interpolating missing samples, and applying trend func-
tions

• During missing data periods, filters capture highly sensi-
tive data ranges

• Outliers are removed, and missing samples are interpo-
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lated.
• Data is classified into parcels, and processed individually

to remove outliers and maintain temporal and geographic
correlations

• The Synthetic Minority Over-Sampling Technique
(SMOTE) is employed to balance unbalanced datasets.

• SMOTE transforms the training dataset, reducing noise
samples [19]. The dataset used in this research contains
minimum number of unbalanced data hence to balance
this unbalance data the SMOTE function is chosen.

B. Modified Deep CNN-LSTM Classifier with Hybrid HAO

In this research, the Modified Deep CNN-LSTM classifier
is employed to overcome limitations found in previous studies.
This classifier combines Deep Convolutional Neural Networks
(DCNN) and Long Short-Term Memory (LSTM) networks
for handling long-term dependencies in sequential data. Also
to address issues with unbalanced hyperparameters in the
DCNN-LSTM classifier and enhance event detection accuracy,
Hybrid Attack Optimization (HAO) method is incorporated.
HAO combines the optimization techniques of Falcons and
Echo Bat Optimization (E-BO). Its advantages include faster
computation, cost-effectiveness, and quicker response with
fewer parameters.

1) The CNN Component:
• Extracts spatial patterns or features relevant to classifica-

tion from input data.
• Enhances spatial structure extraction.
2) The LSTM Component:
• Addresses gradient disappearance in deep networks dur-

ing training.
• Captures and retains long-term dependencies in sequen-

tial data.
• Improves overall performance.
3) The HAO Component:
• The Falcon algorithm is known for its simplicity, fast con-

vergence, strong local search capabilities, and a smaller
number of parameters.

• On the other hand, the E-BO algorithm is characterized
by its flexibility and its ability to solve mathematical and
data mining problems.

• By incorporating the HAO algorithm, the DCNN-LSTM
classifier can effectively capture and attack prey within a
short duration of time, improving the accuracy of event
detection.

4) Applicability: Proven effectiveness in various domains
like natural language processing, machine translation, and
emotional analysis where sequential data is crucial

The DCNN-LSTM, consists of four main layers: input layer,
convolutional layer, pooling layer, and output layer. Each layer
performs a specific function to extract features and generate
predictions.

The functional aspects of various layers in the algorithm are
outlined as follows.

It creates a dimensional representation of the input data
(symbolized as it) and outputs data (symbolized as gt−1 over
time (t− 1)), capturing temporal dependencies.

TABLE I
FUNCTIONS OF VARIOUS LAYERS

Layer Function
Input Layer Receives input data
Convolutional Layer Extracts features
Pooling Layer Reduces dimensionality and retains

essential features
Fully Connected Layer The softmax function is used

to connect CNN and LSTM layers
Output Layer Generates the final output based

on high-order features
LSTM Layer Manages memory units and gates

for information flow control

5) LSTM Gates:
• Forgetting Gate (0 or 1): Retains or forgets information

from the previous cell state.

ft = (Wf [ht−1, xt] + bf ) (1)

Where ftϵ [0.1] is the output of the forgetting gate, 0
positions indicate information task is completed 1 means
that the process of the execution returned, wfand bf ,
mean bias and weight matrix. The input gate symbolizes
the updating degree of current information in a cell, the
sigmoid function is updated by the value of the tan h
function is used to generate the state variable Ct and it,
σ means sigmoid function [11].

• Input Gate: Controls new information flow into the cell.

it = σ(Wi.[ht−1, xt] + bi) (2)

• Output Gate: Determines output based on current cell
state.

ot = σ(W0.⌊ht−1, xt⌋+ b0) (3)
ht = ot.tanh(Ct) (4)

Where ot means input gate output and ht is the output
value for the output layer. These equations control the
flow of information and update cell states. However,
some hyper parameters fail to detect events in imbalanced
data properly. These hyper parameter values are input
into the Hybrid Attack Optimization (HAO) for further
refinement. Figure 1 illustrates the process of falcons
attacking and encircling bunnies from both the sky and
the ground. Algorithm 1 describes the HAO process.

III. CASE STUDY

The successful implementation of advanced algorithms for
power system analysis relies heavily on the availability of
reliable data sources, particularly from PMU’s. In the con-
text of Maharashtra’s 400kV grid, equipped with 21 PMU’s
distributed across various substations, accessing pertinent data
is crucial for accurate analysis and decision-making.

A. Identification of Crucial Data
Among the several State Load Dispatch Centres (SLDCs)

in Maharashtra, Lonikand SLDC emerges as a strategic choice
for this research endeavor. Its location within the grid en-
sures comprehensive coverage and accessibility to critical data
points necessary for algorithm development and validation.
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S. No HAO Algorithm
1. Start
2. Initialize the parameters
3. Evaluate the Fitness Function
4. Solution Update
5. While dot > tmax

6. If r ≤ 0.9 then Exploration Phase
7. If n ≥ 0.5

8. yt+1
j = ytrd(1− g1) + 2g1g2.yt + g3.vrd

9. else (n < 0.5)
10. yt+1

j = ytq − yavg − g3(LBO+ g4(HBO−LBO))+ vti
11. Else if r > 0.9 then Exploitation Phase
12. If n ≥ 0.5

13. yt+1
j = ytq − ∂

∂t
yt + ∂2

∂t
dt

14. Else n < 0.5

15 Y t+1
j = yti(1− β + δ)− δym + y∗.β − ytq

16. Re-evaluate the fitness function
17. Declare the best solution
18. Terminate the process
19. End While

1) PMU Distribution Overview: As seen in Fig. 2, the 400
kV grid in Maharashtra hosts a network of 21 PMUs strate-
gically deployed across different substations. The distribution
includes;

• 5 PMUs at Chandrapur SLDC
• 7 PMUs at Padghe SLDC
• 4 PMUs at Lonikand SLDC (highlighted in Fig. 2)
• 2 PMUs at Kalwa substation
• 3 PMUs at Kolhapur substation
The selection of Lonikand SLDC as the primary data source

stems from its pivotal position within the grid architecture. By
leveraging data from Lonikand SLDC, researchers can capture
comprehensive insights into grid dynamics and performance,
facilitating the robustness and efficacy of the algorithm under
development.

Fig. 2. Single-line diagram of real-time system from where data is
collected.

A real-time three-day dataset of the considered system
is chosen, which encompassed a power failure event. The
threshold levels for sag and swell detection were taken to be
0.9 per unit (p.u.) and 1.1 p.u., respectively. Subsequent to the
execution of the analysis using MATLAB, the data samples
are plotted in Fig. 3. The analysis results reveal the presence

of power quality events in the 400 kV grid, including a notable
power failure event. These findings underscore the importance
of continuous monitoring and analysis using PMUs to maintain
grid stability and reliability.

Fig. 3. Data set with a power failure event

B. Overview of Real-time Data

The dataset comprises of a collection of time series data
related to different electrical grid situations including instances
with no faults and occurrences of short circuits. It is fact that
the robustness of any learning based approach depends on the
number of trainings carried out by considering applicable and
real-time data sets. The datasets associated with the major
events experienced by the considered power system is very
limited and hence may provide limited insights to evaluate the
efficacy of the proposed methodology. However, the additional
datasets will always strengthen the algorithm to avoid any mis-
lead for data filtering supported power system event detection.
Hence, additional data sets are also considered by simulating
various scenarios using ePMU DSA tools pertaining to 400
kV transmission system with a resolution of 120 data samples
per second. The study is performed on a digital platform using
MATLAB with Windows 10 operating system having 8 GB
RAM [20]. The parameters of the DCNN is Kernel size as 3,
Stride size as 1, Convolution layer size 5, ReLU as activation
function, ADAM as default optimizer, leraning rate as 0.01
and Batch size as 64.

C. Results and Discussion

This section provides an overview of the results obtained
using the DCNN-LSTM classifier with HAO for handling un-
balanced data from PMU datasets. Performance analysis was
conducted based on parameters such as accuracy, precision,
recall, F1-score, System Average Interruption Duration Index
(SAIDI), and System Average Interruption Frequency Index
(SAIFI) [21]. Standard formulae to calculate these were used.
Evaluation of HAO in terms of accuracy, precision, F1-score,
SAIDI, and SAIFI based on training percentage (TP). The
effectiveness of the event detection method is demonstrated
with PMU data references. The performance analysis at TP
40, 50, 60, 70, and 80, with epoch values of 20, 40, 60, 80,
and 100.

In particular, the developed technique achieved an accuracy
of 98.47% at epoch 100 and TP of 80%; this high accuracy
highlights the model’s ability to correctly predict events. The
developed approach shows a precision of 98.29% at TP of
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80% for epoch 100. This indicates the model’s capability to
accurately identify true positive instances among predicted
positives. For epoch 100 at TP 80%, the F1-score of the
suggested system is 98.65%. This strong F1-score indicates
that a significant percentage of the real positive cases were
captured by the model. The developed method’s SAIDI at TP
of 80% for epoch 100 is 2.00, suggesting a comparatively short
average duration of interruptions. Furthermore, the developed
method’s SAIFI for epoch 100 is 1.00 at a TP of 80%,
indicating a low average interruption frequency. These values
highlight the efficiency of the method in handling unbalanced
data with high-performance values.

D. Performance Analysis based on K-fold
Evaluation of HAO in terms of accuracy, precision, F1-

score, SAIDI, and SAIFI based on K-fold with various epoch
values (20, 40, 60, 80, 100) and k-fold values (5, 6, 7, 8, 9,
10).

The developed method acquired a high accuracy of 97.36%
at epoch 100 and K-fold 10, demonstrating the model’s
capacity for accurate event prediction. With a K-fold 10 for
epoch 100, the developed method demonstrates a precision
of 98.69%. This shows how well the model can distinguish
real positive cases from anticipated positives. The proposed
system has a 97.84% F1-score for epoch 100 at K-fold 10.
This excellent F1-score suggests that the model was able to
account for a sizable portion of the true positive cases. The
developed approach shows a relatively low average time of
interruptions, with a SAIDI of 1.92 at K-fold 10 for epoch
100. Additionally, the developed method’s SAIFI for epoch
100 is 1.00 at K-fold 10, suggesting a low average frequency of
interruptions. These values emphasize the method’s efficiency
in handling unbalanced data with high performance values.

E. Comparison with Other Methods
The effectiveness of the proposed HAO-DCNN-LSTM is

evaluated through a comparative analysis with conventional
techniques, including K-Nearest Neighbor (KNN) [22], Sup-
port Vector Machine (SVM) [23], Random Forest (RF) [17],
Artificial Neural Network (ANN) [24], DCNN-LSTM [25],
Harris Hawk Optimizer based DCNN-LSTM (HHO-DCNN-
LSTM) [17], and Bat Algorithm Optimizer based DCNN-
LSTM (BAO-DCNN-LSTM ) [13].

TABLE II
COMPARATIVE DISCUSSION BASED ON TRAINING

PERCENTAGE

Methods Metrics
Accuracy%Precision%F1-score%SAIDISAIFI

KNN 90.72 91.29 91.17 1.93 0.92
SVM 91.5 91.92 91.96 1.94 0.93
RF 92.05 92.56 92.51 1.94 0.93

ANN 93.06 93.2 93.52 1.95 0.95
DCNN-LSTM 93.84 93.84 94.31 1.96 0.96

HHO-DCNN-LSTM 94.62 94.47 95.09 1.96 0.97
BAO-DCNN-LSTM 95.4 95.11 95.87 1.97 0.98
HAO-DCNN-LSTM 98.47 98.29 98.65 2 1

1) Comparative Analysis based on Trained Percentage
Data: Table II highlights the superiority of the proposed
HAO-DCNN-LSTM method over other methods in terms
of accuracy, precision, F1-score, SAIDI, and SAIFI, with
improvements ranging from 3.12% to 7.87% compared to
existing methods.

When compared to previous approaches, (refer Table II)
such as KNN, SVM, RF, ANN, DCNN-LSTM, and HHO-
DCNN-LSTM, the proposed method shows improvement of
7.87%, 7.08%, 6.52%, 5.5%, 4.7%, 3.91%, and 3.12%, re-
spectively by attaining an accuracy of 98.47 % at TP 80%.
Similar to this, precision at TP 80 is 98.29%, and when
compared to the previously mentioned existing methods, it
shows an enhancement of 7.13%, 6.48%, 5.83%, 5.18%,
4.54%, 3.89%, and 3.24%, respectively. When compared to
the previously described existing approaches, the F1-score
at TP 80 is 98.65%, and it is improved to 7.58%, 6.78%,
6.22%, 5.19%, 4.40%, 3.61%, and 2.81%, respectively. The
developed method attains SAIDI of 2.00 at TP 80% which
shows an improvement of 3.61%, 3.28%, 2.95%, 2.62%,
2.295, 1.97%, and 1.64%, respectively over other compared
methods. Similarly, the developed method’s SAIFI is 1.00 at
TP 80%, which shows a significant increase of 8.02%, 7.08%,
6.615, 5.205, 4.265, 3.32%, and 2.38% over other compared
methods. According to these findings, the HAO approach
continuously beats the other approaches, offering improved
SAIDI, SAIFI, recall, accuracy, and precision scores for event
prediction.

The analysis based on training percentage demonstrates
that the HAO-DCNN-LSTM method consistently outperforms
existing methods, providing higher accuracy and performance
values for event detection. The generated values are presented
in Table 2 below.

TABLE III
COMPARATIVE DISCUSSION BASED ON K–FOLD

Methods Metrics
Accuracy%Precision%F1-score%SAIDISAIFI

KNN 91.21 91.82 91.67 1.85 0.92
SVM 91.98 92.45 92.44 1.85 0.93
RF 92.74 93.07 93.20 1.86 0.94

ANN 93.46 93.66 93.93 1.86 0.95
DCNN-LSTM 94.27 94.32 94.74 1.87 0.96

HHO-DCNN-LSTM 95.03 94.94 95.50 1.88 0.97
BAO-DCNN-LSTM 95.79 95.57 96.27 1.88 0.98
HAO-DCNN-LSTM 97.36 98.69 97.84 1.92 1

2) Comparative Analysis based on K-fold: Comparative
analysis of the developed HAO-DCNN-LSTM method against
KNN, SVM, RF, ANN, DCNN-LSTM, HHO-DCNN-LSTM,
and BAO-DCNN-LSTM, while varying K-fold values. Table II
gives improvements in accuracy, precision, F1-score, SAIDI,
and SAIFI when compared with other methods.

The suggested method achieves an accuracy of 97.36% at
K-fold 10, which shows an improvement of 6.79%, 6.01%,
5.23%, 4.49%, 3.67%, 2.89%, and 2.11% when compared to
earlier approaches, such as KNN, SVM, RF, ANN, DCNN-
LSTM, and HHO-DCNN-LSTM. Comparing this to the previ-
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ously mentioned existing methods, the precision at K-fold 10 is
98.68%, and there has been an improvement of 6.96%, 6.32%,
5.69%, 5.09%, 5.09%, 4.43%, 3.79%, and 3.16% respectively.
The F1-score at K-fold 10 is 97.84%, and it is enhanced to
6.31%, 5.52%, 4.74%, 3.99%, 3.17%, 2.39%, and 1.60%, in
comparison to the previously reported existing methodologies.
The developed method achieves a SAIDI of 1.92 at K-fold
10, indicating improvements over other compared methods
of 3.69%, 3.35%, 3.02%, 2.70%, 2.35%, 2.01%, and 1.68%
respectively. Similar to the other examined methods, the
developed method’s SAIFI is 1.00 at K-fold 10, indicating a
significant increase of 7.46%, 6.50%, 5.55%, 4.655, 3.65%,
2.70%, 1.74%. The proposed method consistently achieves
higher performance values, indicating its superiority. HAO-
DCNN-LSTM not only delivers high performance but also
exhibits faster computation speed. Overall, the HAO-DCNN-
LSTM model proves effective in achieving high-performance
results and efficient computation for event detection.

The analysis is conducted by varying the K-fold iteration
values, and it demonstrates that the hybrid attack optimization
coupled with the deep CNN-LSTM classifier outperforms
existing methods, achieving the best values. The achieved
values are summarized in Table III.

TABLE IV
RUN TIME ANALYSIS OF HAO-DCNN-LSTM

Methods Run time (s)
KNN 0.90
SVM 0.89
RF 0.70

ANN 0.70
DCNN-LSTM 0.70

HHO-DCNN-LSTM 0.70
BAO-DCNN-LSTM 0.59
HAO-DCNN-LSTM 0.54
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Fig. 4. Plot showing execution times of methods with iterations.

F. Run Time Analysis

The comparison of execution times among the considered
methods is conducted across multiple iterations to showcase
the efficacy of the developed HAO-DCNN-LSTM. The results
show that the model requires much less run time than other
existing approaches. At iteration 100, the suggested solution
has the lowest runtime of 0.54 s when compared to other
existing approaches. These results are depicted in Table IV.
This short runtime is made possible by the use of HAO in

DCNN-LSTM. Tuning the classifier using HAO speeds up the
execution and improves its efficiency. The run time analysis
of the model is depicted in Fig. 4.

G. Convergence Curve Analysis

The convergence analysis of the HAO-DCNN-LSTM frame-
work is illustrated in Fig. 6. The convergence rate of the pro-
posed HAO-DCNN-LSTM model is conducted across multiple
epochs to showcase the loss of the HAO-DCNN-LSTM model.
At 300 epochs the proposed model attains the lowest loss of
0.17.

Fig. 5. Convergence Curve Analysis of HAO-DCNN-LSTM model.

H. Statistical Analysis

The statistical analysis is carried out in terms of best, mean,
and variance for precision, sensitivity, and specificity. Here the
results of the proposed HAO-DCNN-LSTM is compared with
the existing methods KNN, SVM, RF, ANN, DCNN-LSTM,
HHO-DCNN-LSTM, BAO-DCNN-LSTM. Table V includes
the statistical analysis of the proposed model compared with
the existing model.

IV. CONCLUSION

This paper proposed a deep learning approach to support
power system event detection using real-time PMU data. In
specific, a validation approach for data filtering is presented
against the presence unwanted and noisy data. This, in turn,
enhances reliability of real-time control algorithms in practical
power system. The proposed method utilized deep convolu-
tional neural networks (DCNN) and long short-term memory
(LSTM) to effectively detect and classify events in power
system.

To address the issue of unbalanced data, the SMOTE
function was employed to achieve data balance by generating
synthetic samples. This, in turn, improves the accuracy and
precision for unbalanced datasets by separating labels and fea-
tures from the dataset. Further, statistical features are extracted
from the pre-processed data to reduce the dimensionality of
the data and to improve the efficiency of the model.

The hybrid attack optimization (HAO) technique was incor-
porated to enhance the performance of the deep learning model
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TABLE V
STATISTICAL ANALYSIS OF HAO-DCNN-LSTM

DCNN- HHO- BAO- HAO-
Methods/Metrics KNN SVM RF ANN LSTM DCNN- DCNN- DCNN-

LSTM LSTM LSTM

Best

Accuracy% 90.72 91.50 92.05 93.06 93.84 94.62 95.40 98.47
Precision% 91.29 91.92 92.56 93.20 93.84 94.47 95.11 98.29
F1-score% 91.17 91.96 92.51 93.52 94.31 95.09 95.87 98.65

SAIDI 1.93 1.94 1.94 1.95 1.96 1.96 1.97 2.00
SAIFI 0.92 0.93 0.93 0.95 0.96 0.97 0.98 1.00

Mean

Accuracy% 85.94 86.72 87.28 88.28 89.06 89.78 90.46 93.79
Precision% 86.39 87.02 87.66 88.30 88.93 89.57 90.21 93.39
F1-score% 86.37 87.16 87.72 88.72 89.51 90.29 91.07 94.74

SAIDI 1.88 1.89 1.89 1.90 1.91 1.91 1.92 1.95
SAIFI 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.96

Variance

Accuracy% 11.41 11.41 11.35 11.38 11.40 12.07 12.60 10.94
Precision% 12.01 12.01 12.01 12.00 12.00 12.00 12.00 12.00
F1-score% 11.52 11.52 11.47 11.50 11.52 11.52 11.52 9.57

SAIDI 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012
SAIFI 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0009

by tuning the parameters of the modified DCNN-LSTM clas-
sifier. The HAO-DCNN-LSTM approach demonstrated high
efficiency, accuracy, fast response. Accuracy, precision, F1-
score, SAIDI, and SAIFI values of 98.47%, 98.29%, 98.65%,
1.00, and 2.00, respectively are observed.
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