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A Convolutional and Long Short-time Memory
Network Configuration to Predict the Remaining

Useful Life of Rotating Machinery
Hélcio Ferreira Sarabando , and Eurípedes Guilherme de Oliveira Nobrega

Abstract—Recently, several machine learning approaches have
been proposed to provide predictions of the remaining useful life
of rotating machine. This study presents a strong framework
that employs machine learning algorithms to predict the useful
life of rotating machines by evaluating their vibration signals.
In this approach, the raw vibration signal undergoes feature
extraction through auxiliary methods, trend analysis through
statistical methods, and time-dependent feature extraction
through a specialized hybrid neural network algorithm. The
architecture is composed of three distinct phases: feature
analysis, where the raw vibration data are processed to extract
important characteristics for the definition of the signal trend
creating a time series; modeling, where the training data is
processed in a hybrid convolutional neural network, which
returns a degradation model aiming at estimating the instant of
total failure; and prediction, where the future failure trend of
the test data is identified, using the failure threshold extracted
from the training data. A neural network is used to analyze test
data and identify the moment just prior to the occurrence of
failure. We used the architecture to predict the remaining useful
life of rotating machines in various cases, and the results error
ranged between 3 and 4%, which is considered a satisfactory
result.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9110

Index Terms—Convolutional network, Recurrent neural net-
work, Wavelet transform, Short-time Fourier transform, Remain-
ing useful life, Hybrid neural network.

I. INTRODUCTION

Condition monitoring (CM) is the most common mainte-
nance approach to predicting machine faults and system

failures through vibration measurement. Continuous analysis
of a system’s operational life-cycle can bring several benefits,
such as improving machine availability and productivity, and
decreasing maintenance expenses. [1]. To achieve these objec-
tives, a CM program, based on diagnostics and prognostics,
can minimize the number of maintenance operations using
three main steps: data acquisition, processing and informed
decision making [2]. Maintenance programming based on
data-driven models represent up-to-date solutions for CM and
predictive management.
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Reliable estimation of Remaining Useful Life (RUL) for
industrial rotating machinery is crucial for scheduling cor-
rective maintenance and preventing unscheduled downtime
[3], [4]. However, optimizing operational efficiency in this
context remains a challenging research objective. The main
task in machine prognosis is to predict the RUL based on
condition analysis [5]. A significant amount of research has
been published on this topic in recent years. In [6] the RUL
is calculated following a four-step process that includes data
acquisition, definition of health indicator, degradation model
construction and RUL prediction. Features extracted from
machine vibration data series can reveal trends corresponding
to specific machine behavior leading to failure, permitting
estimation of RUL prognostics [7]. Degradation models that
use health indicators are a useful way to track changes in
bearing behavior, which can help predict future failures and
estimate RUL [8], [9]. Machine diagnosis and prognosis are
tradicionally performed using signal processing techniques to
build health indicators. To estimate the operational condition
of a machine it is necessary to build indicators that model the
degradation of its components [10]. The respective data must
be preprocessed to extract these indicators [11], providing
crucial information for a proper assessment of the system’s
integrity.

Wavelet Transform processed vibration signals are used by
data-driven models to diagnose faults in rotating machines,
specifically evaluating vibration signals. According to [12], a
research trend was observed focusing on wavelet applications
in the field of fault diagnosis of rotating machines. Applying
the Continuous Wavelet Transform (CWT) to a signal produces
a series of wavelet coefficients at different scales, where vari-
ous indicators can be extracted and used as input to data-driven
algorithms to characterize machine healthy status. This method
can detect early gear faults and is insensitive to variable
loads [13]. CWT-based adaptive bandpass filters are used to
track energy and reduce noise contamination in frequency
bands related to time-varying faults in monitored machine
signals [14], [15]. The architecture suggested in [16] aims the
automatic identification of bearing failures, preprocessing the
vibration signals using Wavelet Packet followed by a neural
network to create degradation models.

In the past few years deep learning models have been used
to predict future values for fault diagnosis using measurable
variables in mechanical systems with complex fluctuations in
the measured data [17]. So far, we have seen algorithms per-
forming fault diagnosis, classifying degradation, recognizing
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patterns and predicting RUL of mechanical components. The
challenge is to integrate diagnostic and prognostic technolo-
gies to predict and isolate impending failures to help maintain
system performance cost effectively. The deep learning ap-
proach using neural networks has been used for system health
monitoring to model high-level data representation and predict
patterns by stacking multiple layers of information processing
modules into hierarquical structures. These structures are able
to process massive amounts of data in a new bottom-up diag-
nostic paradigm. In [18] the vibration data is pre-processed by
scaled Discrete Fourier Transform. The signal is collected on a
mechanical experimental platform and fed into a Convolutional
Neural Network (CNN) capable of autonomously learn useful
features for bearing failure detection. In [19] a CNN based
on LeNet-5 with two alternating convolutional-pooling layers
and two fully connected layers is used to perform bearing
fault diagnosis. In [20] an intelligent method, named Deep
Recurrent Neural Network (DRNN), constructed through the
stacking of Long Short-Term Memory (LSTM) cells, is used to
automaticaly learn valuable features from the input spectrum
sequences of vibration bearing data.

In [21], a LSTM and a Gated Recurrent Unit (GRU) are
used to analyze the time series properties of vibration data to
predict the abnormal states of electrical motors in a drone. The
LSTM network is successfully applied in [22] to predict the
RUL for mechanical components of turboprop aircraft engines,
using multidimensional data and adding life labels in the data
preprocessing stage.

A framework based on a hybrid CNN-LSTM network is
used in [23] for Fault Detection and Diagnosis (FDD) on
rotating machinery, aided by Fast Fourier Transform (FFT),
CWT and raw signal statistical analysis to provide a deeper
understanding of the fault’s identity.

The proposed method for predicting RUL of a machine
has three important modules: feature analysis, modeling, and
prediction. Firstly, the feature analysis module decomposes
vibration signals using function transforms to extract local
spectral and temporal information with noise reduction. In
modeling, a degradation model is generated using a hybrid
convolutional and recurrent neural network and an autore-
gressive signal, enabling spatio-temporal sequence prediction.
Finally, in prediction, post-processing and filtering functions
are used to detect shifts in the data, and a high-degree
function optimization curve is used to determine the RUL by
extrapolating the trend of the post-processed data. The main
contribution of this method is the combination of transforms
and a hybrid convolutional and recurrent neural network aided
by statistical techniques based on time-domain and signal
energy determination to discover trends, which enhances the
accuracy of the modeling and prediction modules. Overall,
this three-module method is effective in predicting the RUL
of rotating machines.

The other sections of this article are organized as follows:
Section II substantiates the definition of RUL, the fundamental
and theoretical bases of the techniques used in the algorithms
developed for the proposed architecture. Section III presents
the proposed architecture to determine the RUL in detail, with
its feature analysis, modeling and prediction phases. In Section

IV a case study is presented, including experimental outcomes,
using a publicly accessible dataset. In Section V, the con-
clusions about the study are presented. Finally, in Subsection
V-A some discussions about the performed experiments are
developed.

II. THEORETICAL FOUNDATION

The RUL of a machine consists of the estimation of its re-
maining operating time, generally used to schedule a corrective
maintenance. Indicators are extracted from analyzed machine
data, which are then used as inputs for degradation models
[24]. These models predict the RUL by detecting trends in
machine behavior analysis. The method used to determine the
RUL depends on how the data is made available, namely:
lifetime data, indicating how long it took for similar machines
to reach failure; run-to-failure data derived from past records
of machines that share similarities with the one under analysis;
and threshold data, known from threshold values of a condition
indicator also extracted from previous histories. This work fo-
cuses on the run-to-failure data acquisition method, where the
used database contains behavior data of similar components.
Data from a standard component is registered until the moment
the failure occurs, then we process degradation profiles and
compare them with new data from similar components to
define the future point in time for a failure to occur.

Wavelet analysis and short-time Fourier transform (STFT)
are employed to analyze non-stationary signals due to their
higher sensitivity compared to conventional Fourier tech-
niques. They excel in detecting signal components, identifying
discontinuities and irregularities, accomplishing this by multi-
plying the signal with an analysis function and integrating it in
the time domain [25], [26]. The Wavelet is a small wave, with
energy concentrated in time, and a tool for the simultaneous
analysis of time and frequency, of transient, non-stationary or
time-varying phenomena [27].

CNNs are commonly used for image recognition and are
composed of 3 types of layers: convolutional, pooling, and
fully connected [28], [29]. In the convolutional layer, filters
calculate the dot product between weights and regions of the
input volume to produce a n-dimensional activation map that
learns specific features. The output volume of the layer is
formed by stacking these activation maps along the depth
dimension [28]–[30].

The convolution layer produces an activation map, which is
submitted to the pooling layer for dimension reduction. After
one or more of these layers, the last map is presented to a
fully connected layer for final data classification [28]–[30].

The proposed architecture combines a CNN and an LSTM
network to model the degradation of a failure. The CNN
extracts features from the input data, which are then fed into
the LSTM network [31] to predict future behavior.

The LSTM network is made up of memory cells [32], which
have three inputs (input gate, output gate, and forget gate).
The state of the network will then be stored by this recurrent
backpropagation, in the chain of modules by the signal Ct. The
input port (it) is responsible for deciding whether new data
flows internally to the cell or not. Output port (ot) defines
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whether the state of cell (Ct) has any effect on other cells.
The forget gate (ft) defines whether the cell remembers the
previous state (Ct−1) [31], [32]. To analyze an LSTM cell
we need to define an input data set (xt) at a given time
instant t [28], [33]. We get an output vector (ht) by inserting
the data vector (xt) into the cell. Internally weight matrices,
(Wi,Wf ,Wc,Wo,Ui,Uf ,Uc,Uo,Vo), is stored, necessary for
the activation of the internal gates, and the polarization vectors
or bias (bi, bf , bc and bo), both used in the equations that
define the values of the gates of the LSTM cell. We can then
calculate the values of the input port (it) and the possible
(candidate) values of the cell state (C̃t), using Equations (1)
and (2).

it = σ(Wi.xt + Ui.ht−1 + bi) (1)

C̃t = tanh(Wc.xt + Uc.ht−1 + bc), (2)

where σ is a sigmoid function and tanh is a hyperbolic tangent
function, both gate activation functions.

Equation 3 defines the activation of the forget gate (ft).

ft = σ(Wf .xt + Uf .ht−1 + bf ) (3)

With the values of gates it, C̃t (cell state candidate) and ft,
defined by Equations (1), (2) and (3), it is now possible to
determine the value of the current state of the cell (Ct), using
Equation (4). The value of the output port (ot) can be obtained
from Equation (5), right after determining the cell state value,
defined by Equation (4). Then, it is possible to determine the
output value of cell (ht) in possession of the current state value
of the cell, using Equation (6).

Ct = it ∗ C̃t + ft ∗ Ct−1 (4)
ot = σ(Wo.xt + Uo.ht−1 + Vo.Ct + bi) (5)
ht = ot. tanh(Ct) (6)

The internal matrix of weights is updated during network
training through a Backpropagation Through Time algorithm
(BPTT), a gradient-based technique for training the LSTM
network, unwinding and determining the gradient at all time
steps.

Exponentially Weighted Moving Average (EWMA) is a type
of Infinite Impulse Response (IIR) filter, where filtered data
is represented as a weighted sum of previous measurements,
which gives greater weight and meaning to more recent points
of the data with the aim of smoothing the data series [34].
Thus, EWMA can be used to remove high-frequency noise,
exponentially averaging a point with previous measurements,
in a defined window of data, as we see in the Equation (7)

x̂t = αxt + (1− α)x̂t−1, (7)

where x̂t is the EWMA of the data window, xt is the sample
data of the data window, x̂t−1 is the exponentially weighted
average of the data window immediately preceding it, α is a
smoothing parameter, adjustable between zero and one, which
defines the cutoff frequency above which values are dropped.

The EWMA filter weights show that the filter coefficients
drop exponentially depending on the α parameter, giving more
importance to the most recent measurements. Higher α values

cause the filter coefficients to fall faster, increasing the cutoff
frequency, however, lower α values decrease the exponential
fall of the coefficients, decreasing the cutoff frequency [34].

Statistical indicators such as Root Mean Square (RMS)
and Kurtosis (KU), given respectively by Equation (8) and
Equation (9), are used to calculate the overall energy and shape
of the supplied signal, as auxiliary methods of processing raw
data to extract a trend [11], [35].

RMS =

√√√√ 1

N
.

N∑
i=1

(xi)2, (8)

KU =

∑N
i=1(xi − µ)4

(N − 1)σ4
, (9)

where xi is the i-th point of the sample data, in the time
domain, of length N. Support Vector Regression (SVR) is
a supervised learning algorithm used here to predict future
values [36], [37]. The basic idea is to find the hyperplane in the
feature space that best represents the data in a consistent way.
Having a vector of training data {(x1, y1), · · · , (xl, yl)} ⊂
X x ℜ, where X denotes the space of input patterns (e.g.,
X = ℜd), the regression ϵ-SV must find a function f(x) that
has at most ϵ deviation from the actually obtained targets yi,
for all training data. Its primary objective is to minimize the
error or distance between the predicted values and the actual
values.

III. METHODOLOGY

The proposed architecture is composed of 3 phases called
feature analysis, modeling and prediction, linked in a serial,
sequential way. The goal is to predict when a catastrophic
failure might occur by processing training data with the target
architecture’s algorithms to determine a threshold. The test
data is then processed with the same algorithms and the trend
of the truncated data is extrapolated to find the future time
when the failure threshold is reached. The RUL is defined as
the time until this point.

A. Feature Analysis
The vibration signal is firstly analyzed using STFT and

Discrete Wavelet Transform (DWT). The Wavelet transform
adopts a Mexican hat function to extract a centered time
series with positive values. This time series only considers
the differences between the maximum and minimum values
of the original data in the time domain, resulting in a vector
with values ranging from zero to the peak-to-peak value of
the signal, as can be seen in Fig. 1a.

The STFT is applied to vibration signals from a test dataset
to study changes in frequency over time. The signal sampling
frequency is 25.6 kHz, and the STFT, considering only the
positive frequencies and calculated with a 50% overlap, results
in 64 frequencies bands, as can be seen in Fig. 1b. It creates a
time series of the signal transformed by the STFT, the windows
is connected consecutively in time, resulting in a periodogram.
This can be seen in the close-up illustration shown in Fig. 1b.
It is important to note that the processing of the vibration data
from the training set was done using the same methods and
with the same parameters as described above.
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(a) Series composed by the transformed Wavelet Ricker

(b) Series composed by the STFT transform

Fig. 1. Time series of vibration measurements, extracted from test
data

Fig. 2. Schematic diagram of the proposed CNN-LSTM hybrid neural
network

B. Modeling

A degradation model is built based on the detected evolution
of each STFT along time, feeding the decomposed data into
a CNN-LSTM to extract hidden features in the analyzed
data. Fig. 2 presents the architecture of the proposed neural
network. The convolutional layer applies filters to extract
local features from an input frame of size 8x8. Activation
functions introduce non-linearity, pooling layers reduce spatial
dimensions while retaining crucial features, time distributed
layers help reshape the data into a two-dimensional format
suitable for LSTM layers across multiple time steps. Finally,
dense layers are utilized as the last layers of the network,
enabling feature extraction, non-linear transformations, and
serving as the output layers.

Before entering the transformed vibration data to the con-
volutional layer, the windowed RMS is calculated, using
Equation (8) where each data window has 64 sample points
giving rise to a new time series Y(t). This new time series
forms a two-dimensional frame with dimension 8 by 8 sample
points, to be inserted in the convolutional layer of the neural
network. The frames were processed by convolution with 2×2
kernels and the ReLU activation function, followed by a 2×2
max pooling. The flattened result was transformed into a 1D

vector and becomes a 3D tensor (n × 3), with the help of
the TimeDistributed layer to fit the input format of the LSTM
submodel. The network is trained with 1024 data batches over
5 epochs, using a single LSTM layer of 128 cells. One network
was trained on the full dataset to build the degradation model,
while the other network, trained on 70% of the data set, was
used for prediction, reserving 30% for testing. The models
were built by auto-predicting the input data using a series of
one-step ahead predictions from the training data and five-
step ahead predictions from the test data. The training data
(Bearing1_1) was transformed by the Wavelet method and is
shown in Fig. 3a while the test data (Bearing1_3) is shown in
Fig. 3b. These datasets were obtained from the PRONOSTIA
platform [38], as described in Section IV-A

(a) Training data degradation model

(b) Test data degradation model

Fig. 3. Time series produced by autoregression of data on the CNN-
LSTM network

C. Prediction

From the degradation model it is possible to extract a
threshold for the occurrence of a catastrophic failure in the
training data and project a possible occurrence of failure in
the future time in the test data. Both the training data degra-
dation model was transformed by calculating the energy of its
time series in 64-sample point windows using the equation:
Energywindow =

∑N
i=1(U

2
i ), where N is the number of

sample points in the window (64) and Ui is the i-th sample
point in the data window. The EWMA of the entire time series
was then calculated using the energy. The training results are
shown in Fig. 4, which displays the time series of the signal
energy modeled with the transformed training data, and the
progression of the data in the last 1280 sample points in three
different modes: simple moving average, linearly weighted
moving average, and EWMA

The operating limit or threshold of a rotating machine is
determined from training data and represents the point of
total failure. The highest point in the mean amplitude is
considered the failure threshold. Test data is evaluated against
this threshold, with the goal of detecting a failure before it
occurs. Fig. 5 shows the time series transformed by Wavelet,
described from the signal energy modeled with the test data,
and the moving averages. Moving average window size and
last data window details are shown in the legend of Fig. 4.
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Fig. 4. Energy time series and EWMA of the modeled signal (training
- Bearing1_1), highlighted in the last data window

Fig. 5. Energy time series and EWMA of the modeled signal (test -
Bearing1_3), highlighted in the last data window

IV. RESULTS

A. Experimental platform

Fig. 6 presents the PRONOSTIA test bench. The experi-
mental setup features a 250 W asynchronous motor connected
to a gearbox and two shafts: one near the motor and the other
positioned near an incremental encoder. The motor transfers
rotational motion through the gearbox, and shaft couplings
ensure the motion is transmitted to the shaft support bearing.
The bearing support shaft is fixed with a shoulder on one side
and a threaded locking ring on the other.

The PRONOSTIA platform presents two datasets. One is
labeled as the training set, which contains vibration data from
the moment the bearing starts operating until a catastrophic
failure occurs. This dataset is known as "run-to-failure". The
training dataset is named Bearing1_1 and represents the vi-
bration data for bearing 1 in operating condition 1 with 1800
RPM speed and 4000 N of force applied to the shaft. The
second dataset, called the test set, is intended to be used to
adopt the previously trained models to determine the RUL. For
this reason, vibration measurement sequences are truncated
at some point before reaching the failure level. The test set
is named Bearing1_3 and represents the vibration data for
bearing 3 in operating condition 1. The vibration signals were
captured using two accelerometers positioned at 90◦ from each
other, one on the vertical axis (Y) and one on the horizontal
axis (X) of the bearing. This study used only the vibration
data in the vertical direction and made no assumptions about

the type or origin of failure. The tests were ended when the
vibration signal amplitude exceeded 20g (training set).

Fig. 6. Overview of the PRONOSTIA experimental platform, adapted
from [38]

The accelerometer signals were acquired during 0.1 s with a
sampling frequency of 25.6 kHz, which results in 2560 discrete
points, with measurements repeated at intervals of 10 seconds.

B. Experimental Outcomes
The data trend was projected using a combination of

EWMA curve, exponential function, and a third degree poly-
nomial function. The regression was optimized based on the
trend of the data in the test dataset, and the results were
transformed using Wavelet. The failure threshold was defined
using the training data, and the estimated point of failure was
found. The results are shown in the Fig. 7 and include the
polynomial and exponential curves, the estimated point of
failure, and the RUL provided by the PRONOSTIA platform.

The RUL is calculated by subtracting the time between the
last recorded measurement in the model and the predicted
future failure. However, caution must be taken as the dataset
only includes sample data and the measurement cycle’s latency
times are missing. The time series data was also compressed
using EWMA, Linear Weighted Moving Average (LWMA)
e Simple Moving Average (SMA), but this compression was
taken into account in the RUL calculation.

It is worth noting that there was a late prediction, with a
smaller time difference between the predicted value and the
actual value, which was made with test data pre-processed
by STFT, with the regression of the EWMA data trend
performed by an SVR algorithm, and the extrapolation of
future data made from a third degree polynomial curve, having
its coefficients optimized using the trend regression curve of
the measured data. Fig. 8 shows the result of this regression
and extrapolation of the data, indicating the RUL.

The proposed method was compared with similar works
carried out by [39]–[43] on the same dataset. The results
of the comparison are shown in Table I, which presents the
RUL estimation absolute errors (in seconds) and the respective
percentages for each method in the analysis of the Bearing1_3
test. The proposed method obtained the best performance
among the compared methods, exhibiting the lowest RUL
estimation error.
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Fig. 7. Data extrapolation curves with the curves molded to the trend
of the progression of the moving average of the energy of the signal
transformed by the Wavelet

Fig. 8. Extrapolation curves of the data with the curve shaped to the
trend of the progression of the SVR regression of the energy of the
transformed signal by the STFT

TABLE I
COMPARISON TABLE OF SIMILAR WORKS

Method Actual RUL (s) Estimated RUL (s) Error (s) Error (%)
Proposed Method 5730 5902 172 3.0
[39] Method 2 5730 5440 290 5.1
[40] 5730 5293.5 436.5 7.6
[41] 5730 3604 2126 37.1
[42] 5730 Not provided Not provided 4
[43] 5730 4731 989 17.3

V. CONCLUSIONS

The proposed architecture has three phases: feature analysis,
modeling, and prediction. Each phase acts as a filter or feature
extractor on the data. This chain of filters is designed to
process the data and extract specific information at each step.
To create a prognostic indicator, time series compression was
necessary between phases or during signal processing.

Non-linear function transforms were applied to the data to
extract local and temporal features from the vibration signal
spectrum. Hybrid neural networks were used to create models
for fault diagnosis and predicting failures. Vibration data was
processed using an autoregression prediction model, followed
by an EWMA filter and extrapolation using a polynomial
function. This resulted in a RUL of forecast error between 3%
and 4%, based on the previously established threshold value.

The proposed architecture proved to be robust and accurate
in determining the RUL in relation to other similar methods

tested with the same dataset, as compared in Subsection Sub-
section IV-B, confirming its effectiveness.

A. Discussions

The best-performing architecture in predicting the RUL of
a rotating machine on the PRONOSTIA platform achieved
5496 seconds for case A and 5902 seconds for case B. It
involved preprocessing the raw vibration signal using Ricker-
type Wavelet transform and using a CNN-LSTM hybrid neural
network to extract the degradation model (Bearing1_1) from
a dataset with run-to-failure type. The model extracted the
failure occurrence threshold, and the test data (Bearing1_3)
was preprocessed using the same Wavelet transform. Using
the CNN-LSTM hybrid network with the same configuration,
the degradation model was built from the test data. To detect
potential equipment failure, two methods were used:

- In Case A, data was postprocessed using an EWMA filter
and modeled with exponential and third-degree polynomial
functions, then extrapolated to predict failure time.

- In Case B, the data was pre-processed using STFT and
modeled using an SVR on energy data obtained from a CNN-
LSTM hybrid neural network. The resulting curve was used
to predict failure time.

The PRONOSTIA platform proponents measured a remain-
ing lifetime of 5730 seconds after data truncation for the test
dataset bearing (Bearing1_3).

- In Case A, the best prediction was 5496 seconds using a
3rd degree polynomial curve, with an early prediction of 234
seconds (4% of the data range).

- In Case B, using the same method, the late RUL was 5902
seconds with a delay of 172 seconds (3% of the data range),
starting with energy data degradation model regression.

In this case, although the early forecast was preferred, the
late forecast had a smaller error. To optimize the forecast error,
new sample data can be used to adjust the forecast each time
new operating data is collected. Processing a new dataset and
adjusting the forecast can decrease the confidence interval and
improve the forecast.
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