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A Prediction Model for Heat Exchanger Fouling
Factor based on Stacking Model

Zhiping Chen , Yongle Meng , Haoshan Yu , Ruiqi Wang , and Wenwu Zhou

Abstract—Given the pressing demand for energy conservation,
the petrochemical sector faces increasingly stringent energy-
saving mandates. Heat exchangers, essential to this sector,
suffer efficiency losses and increased energy consumption due to
fouling. To ensure optimal operation of heat exchange systems,
regular assessment of solid deposits and the implementation
of cleaning schedules are imperative. However, the multitude
of influencing factors renders traditional estimation methods
unreliable. Consequently, we developed a stacking model to
predict the fouling factor of heat exchangers. Specifically, we
first constructed fouling factor prediction models using various
machine learning techniques, then selected the best-performing
models—random forest, extreme gradient boosting , and
light gradient boosting machine—for integration. Finally, the
predictions from these three models were fed into a linear
regression layer to form the final stacking model. The results
indicate that the constructed stacking model significantly
enhances the accuracy of fouling factor prediction. This model
not only surpasses traditional multilayer perceptron neural
network methods but also outperforms the well-performing
gaussian process regression. This achievement not only validates
the effectiveness of our model but also provides robust support
for future research and applications in related fields.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9050

Index Terms—Fouling Factor Prediction, Heat Exchanger
Fouling, Stacking Model.

I. INTRODUCTION

H eat exchangers, crucial equipment in the petrochemi-
cal industry, facilitate thermal energy transfer between

fluids, playing a pivotal role in enhancing energy efficiency
[1]. However, fouling—a common issue in heat exchang-
ers—occurs during operation when solid deposits form on
heat transfer surfaces due to the presence of particulate
matter or chemical reaction products in the fluid [2], [3].
This phenomenon leads to reduced heat transfer performance,
increased pressure drop, intensified corrosion, and ultimately
affects process efficiency, equipment lifespan, energy con-
sumption, and safety risks. Consequently, proactive fouling
prevention and timely removal are vital for ensuring efficient
heat exchanger operation [4]–[6]. Unfortunately, measuring
fouling severity is both challenging and time-consuming, often
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yielding imprecise results. Therefore, there is an urgent need to
explore novel methods for predicting fouling factor (Rf ) from
easily measurable variables. The Rf serves as a fundamental
parameter for planning cleaning schedules. Its formation and
severity depend on various factors, including heat transfer sur-
face shape, material, roughness, temperature, fluid properties,
flow velocity, flow rate, concentration, pH, etc. To accurately
predict the Rf , nonlinear relationships and interactions among
multiple variables must be considered. Consequently, predict-
ing heat exchanger Rf becomes a complex and challenging
task [7]–[10].

Artificial neural networks (ANNs), computational models
inspired by biological neural systems, excel at learning com-
plex patterns from data. By utilizing different input variables
and configurations, ANNs can predict and analyze fouling in
heat exchangers [11]–[13]. For instance, using input variables
such as crude oil flow rate, temperature, and pipe diameter,
ANNs can predict output variables like fouling layer thickness,
fouling coefficient, and thermal resistance within heat ex-
changers [14]–[16]. These variables reflect fouling phenomena
and their impact on heat exchanger performance. Aminian et
al [17]. employed a four-layer feedforward neural network
model with crude oil flow rate, pipe surface temperature,
and diameter as input variables to predict fouling rates in
crude oil preheaters, achieving an average relative error (MRE)
of 26.23%. Similarly, Aminian et al [18]. predicted fouling
thresholds in crude oil preheaters using surface temperature,
Reynolds number, and Prandtl number, achieving an absolute
mean relative error (AMRE) of 15.83%. Other studies have
explored dynamic and static ANN modeling techniques for
fault detection [19], isolation, and adaptation in heat exchanger
closed-loop temperature control. Additionally, optimized ANN
models based on moving window technology have been used
for online monitoring and prediction of crude oil fouling
behavior in industrial shell-and-tube heat exchangers [20],
achieving early fouling estimation with an MRE of approx-
imately 8%. Local linear wavelet neural network models
have also been applied to predict temperature differences and
efficiency in heat exchangers [21], with predictions closely
aligned with experimental results. While ANNs offer powerful
fouling coefficient prediction capabilities, they require substan-
tial training data. Insufficient or low-quality datasets may limit
their generalization ability across diverse fouling scenarios.
Consequently, researchers are increasingly exploring ensem-
ble learning algorithms to achieve more accurate predictions
[22], [23]. Ensemble learning algorithm, as meta-algorithms,
enhance model accuracy and robustness while reducing bias
and variance by constructing and combining multiple machine
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learning (ML) models. Hosseini et al [24] successfully pre-
dicted Rf in heat exchangers using various ML methods, with
their proposed gaussian process regression (GPR) model out-
performing ANNs and other ML approaches. Leveraging data
characteristics and distributions, ensemble learning algorithms
automatically select suitable ML methods and parameters,
minimizing manual intervention and enhancing model relia-
bility and usability. Additionally, these algorithms construct
multiple ensemble models by employing different algorithms
in the first layer of the ensemble architecture, allowing diverse
algorithms to capture trends in training data and produce
accurate results [25].

In our study, we utilized 11,626 actual samples analyzed
by Davoudi et al [26]. After comparing the predictive perfor-
mance of several classical ML models, we employ ensemble
learning to construct a stacking model that integrates high-
performing ML methods. Compared to traditional ML ap-
proaches, our model exhibits superior robustness and more
accurate fouling coefficient calculations within heat exchang-
ers.

II. RESEARCH METHODOLOGY

This section elaborates on experimental data, ML models,
the model development process, and performance evaluation
criteria. Relevant analyses and ML algorithms provide theoret-
ical and practical foundations for the model. Fig.1 illustrates
the regression learning workflow employed in our ML study.

Data preprocessing

Correlation analysis

Model Evaluation

Model Building

Model Application

Fig. 1. Flowchart of the ML regression process.

A. Data Collection

The experimental dataset used in this study is sourced
from [26]. As previously mentioned, we leveraged 11,626
laboratory-measured Rf to develop and test the proposed
methods. Complete details about this database are provided
in the supplementary materials.

B. Modeling of ML Methods

In our study, we selected k-nearest neighbors (knn) [27],
random forest [28], bootstrap aggregating (bagging) [29], ex-
treme gradient boosting (xgboost) [30], light gradient boosting

machine (lightgbm) [31], and GPR [32] for comparison based
on their diverse methodologies and widespread usage in the
field of machine learning. Knn was chosen for its simplicity
and effectiveness in handling non-linear data patterns. Random
forest and bagging were included for their robustness as
ensemble methods, improving model stability and accuracy
by reducing variance. Xgboost and lightgbm were selected
for their advanced boosting techniques, known for high per-
formance and efficiency in processing large datasets. Finally,
GPR was included for its probabilistic approach, provid-
ing valuable uncertainty estimates. Comparing these varied
techniques allows for a comprehensive evaluation of their
performance in fouling factor prediction, providing deeper
insights into their respective strengths and applications.

In all of the following model training process, we divided
the dataset into a training set and a test set, which account for
80% and 20% of the total dataset respectively. This division
method effectively evaluates the generalization ability of the
model and avoids overfitting.

1) Knn: Initially, we preprocessed the collected data by
addressing missing values, handling outliers, and standardizing
the data to ensure consistency and accuracy. The features
relevant to Rf were utilized as input variables for our model.
To determine the optimal K value, we employed 5-fold cross-
validation. Through this rigorous validation process, we identi-
fied K=5 as optimal for implementing the knn algorithm, strik-
ing a balance between bias and variance and ensuring robust
classification performance on our dataset [33]. Subsequently,
having selected the optimal K, we trained the knn model
using the entire training set. Finally, we assessed the model’s
predictive performance on the testing set. Based on these
results, we further refined the model parameters to enhance
accuracy and reliability [34].

2) Random Forest: Random forest offers advantages such
as reduced overfitting risk, improved generalization, adapt-
ability to high-dimensional and large-scale data, and feature
importance assessment. Input variables included operational
and design parameters of the heat exchanger. By using random
sampling and feature subset selection, we increased diversity
among decision trees, thereby enhancing prediction accuracy
and stability [35]. The objective function of random forest can
be expressed as:

f(x) =
1

B

B∑
b=1

Tb(x), (1)

Where f(x) represents the random forest prediction, B de-
notes the number of trees in the forest, and Tb(x) represents
the prediction of the b-th tree for input x.

3) Bagging: Bagging is an ensemble learning technique
used for both regression and classification tasks. It involves
training multiple base models independently and in parallel
on different subsets of the training data [36]. These subsets
are generated using bootstrap sampling, where the data points
are randomly selected with replacement. In the case of the
bagging classifier, the final prediction is made by aggregating
the predictions of all base models using majority voting. For
regression models, the final prediction is obtained by aver-
aging the predictions of all base models. Bagging improves
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Fig. 2. Network structure diagram of stacking Model.

accuracy and reduces overfitting, especially in models with
high variance.

4) Xgboost: Xgboost is an ensemble model of decision
trees used for predicting Rf in heat exchangers. After data
preprocessing and feature selection, the dataset is split into
training and testing sets. The xgboost regression model is
initialized and tuned, and its performance is evaluated on
the testing set [37]. Xgboost excels in data processing speed,
prediction performance, and feature importance assessment.
Its objective function can be expressed as:

Obj =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk), (2)

Where n is the number of samples, K represents the number
of trees, yi is the true value of the i-th sample, ŷi is the
predicted value of the i-th sample, fk is the function of the
K-th tree, and Ω(fk) is the prediction of the K-th tree.

5) GPR: Firstly, after data cleaning and preprocessing,
we used the prepared training data to train the GPR model.
GPR estimates relationships between data points based on
the selected kernel function and the covariance matrix of
the training data, establishing a mapping between Rf and
operating conditions. For new data samples, the model uses
Gaussian processes for interpolation or regression to predict
Rf . Additionally, GPR provides uncertainty estimates related
to the predictions, crucial for assessing prediction reliability.
Finally, we evaluated the model’s performance using the test
set. [38].

6) Lightgbm: After cleaning and preprocessing the data, we
train the lightgbm model using the prepared training data. We
employ a gradient boosting approach, constructing multiple
decision tree models iteratively to enhance the model. We
obtain the final prediction through weighted averaging or
voting. During training, lightgbm adjusts tree parameters based

on the gradient of the loss function to minimize the loss. For
new data samples, the model combines predictions from an
ensemble of decision trees. Finally, we evaluate the model’s
performance using a testing set and optimize it based on the
evaluation results [39].

C. Stacking Model
The stacking model combines multiple individual models

into a multi-output prediction system. Compared to standalone
ML models, stacking models leverage the strengths of multiple
individual models, significantly enhancing prediction accuracy
and stability by learning the relationships between different
models [40], [41]. Our constructed stacking model consists of
two layers (Fig.2):

Base Model Layer (First Layer): This layer comprises
several ML models, including xgboost, lightgbm, and ran-
dom forest. Each model independently predicts the training
data, and their predictions are then passed to the next layer.
The purpose is to exploit the unique advantages of each
model in handling specific data types or tasks, capturing
different aspects of the data. Notably, xgboost and lightgbm
are gradient-boosted decision tree models, highly effective
in handling nonlinear relationships and feature interactions.
Random forest, on the other hand, is an ensemble learning
method based on bagging, adept at handling high-dimensional
data and mitigating overfitting.

Meta Model or Final Output Layer (Second Layer): In
this layer, the first-layer predictions serve as input features
for the final prediction. In our approach, the second layer
consists of a linear regression model. It aims to learn the op-
timal combination of predictions from different base models,
thereby improving prediction accuracy and stability. The key
advantage of stacking model lies in its ability to overcome
limitations inherent in individual models.
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Fig. 3. Correlation heat map of factors affecting heat exchanger fouling.

Model parameter settings significantly impact the perfor-
mance of stacking model. We split the dataset into 80%
training data and 20% testing data, adjusting base model
parameters for optimal performance. For xgboost, we set the
learning rate to 0.1, the number of trees to 800, and the
maximum tree depth to 8. In lightgbm, the typical learning
rate is 0.05, with 800 trees and a maximum of 16 leaves. For
random forest, we use 300 trees and a maximum depth of 6.

D. Data Preprocessing

1) Data Cleaning: Data cleaning is a fundamental step
in data analysis and mining, enhancing data quality and
model accuracy [7]. In this study, we initially removed rows
containing missing values to reduce the number of gaps. Next,
we employed mean imputation, replacing missing values with
the dataset’s average to maintain data integrity [8]. Finally,
we replaced negative values with zeros to avoid unreasonable
values. These steps completed the data cleaning process.

2) Feature Scaling: Feature scaling is a common prepro-
cessing step in ML, ensuring that features with different scales
have similar ranges. This step is crucial for algorithms that are
sensitive to the scale of input data. In our study, we applied
mean normalization [42] to scale the feature values to a range
of [-1, 1] and centered the data around a mean of 0.

The formula for mean normalization is:

X ′ =
X − µ

Xmax −Xmin
, (3)

where X is the original feature value, µ is the mean of the
feature, Xmax is the maximum value of the feature, Xmin is
the minimum value of the feature.

E. Correlation Verification

To assess the correlation between Rf and relevant fea-
tures, we employed Kendall’s correlation coefficient. This
non-parametric statistic measures the degree of consistency
between two ordered variables. It does not rely on parameter
estimation or hypothesis testing and is robust against outliers
[43]. Kendall’s coefficient considers only the ranking relation-
ship between data points, making it suitable for different data
scales [44]. The formula for Kendall’s correlation coefficient
(τ ) is:

τ =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

sgn(xi − xj) · sgn(yi − yj) (4)

Kendall’s τ correlation coefficient measures the ranking con-
sistency between two variables by comparing all pairs of data
in the sample. n in the formula is the total number of samples,
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sgn(xi − xj) and sgn(yi − yj) are symbolic functions used to
determine the relative size between variables.

The Kendall correlation heatmap (Fig. 3) reveals the follow-
ing relationships between different variables: density shows a
moderate positive correlation with surface temperature (corre-
lation coefficient of 0.31) and a moderate negative correlation
with fluid temperature (correlation coefficient of -0.34). Time
and Rf exhibit a moderate positive correlation (correlation
coefficient of 0.27). Surface temperature and equivalent diam-
eter have a relatively strong positive correlation (correlation
coefficient of 0.35), but surface temperature is moderately
negatively correlated with flow rate (correlation coefficient of
-0.38). Fluid temperature and flow rate exhibit a moderate
positive correlation (correlation coefficient of 0.37), while
fluid temperature and equivalent diameter have a relatively
strong negative correlation (correlation coefficient of -0.57).
Additionally, flow rate and equivalent diameter exhibit a
relatively strong negative correlation (correlation coefficient of
-0.67), while equivalent diameter and dissolved oxygen show
a strong positive correlation (correlation coefficient of 0.70).
The Rf is moderately positively correlated with time and
weakly positively correlated with surface temperature, with
no significant correlations with other variables.

III. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the con-
structed ML models. Our evaluation is based on training and
testing datasets, and we compare our model with existing ones.

A. Evaluation Metrics

In ML, model construction involves efficient algorithms,
consideration of prediction accuracy, determination of optimal
model structures and parameters, and comparison with other
scenarios. To assess model performance, we employ five
statistical uncertainty metrics [45], [46]: Mean Squared Error
(MSE), Mean Absolute Error (MAE), Coefficient of Determi-
nation (R2), Relative Average Absolute Error (RAE%), and
Mean Absolute Percentage Error (MAPE%). These metrics
quantitatively measure the differences between actual and
predicted data, objectively assessing model fit quality and
generalization ability. Each metric serves a specific role in
evaluation: MSE and MAE assess overall fit, R2 measures
explanatory variability, while RAE% and MAPE focus on
relative and percentage errors. Lower values of MAE, RAE,
MSE, and MAPE indicate higher regression model accuracy.
The R2 value ranges from 0 to 1, with values closer to 1
indicating better model fit and values closer to 0 indicating
poorer fit. Establishing ML models requires comprehensive
consideration of various factors, and these uncertainty metrics
provide a comprehensive, objective approach to guide model
selection and optimization, leading to improved performance
across diverse application scenarios. The formulas for different
evaluation metrics are as follows:

MAPE% =

(
100

n

)
×

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , (5)

MSE =

(
1

n

)
×

n∑
i=1

(ŷi − yi)
2, (6)

MAE =

(
1

n

)
×

n∑
i=1

|ŷi − yi|, (7)

RAE% = 100×
∑n

i=1 |ŷi − yi|∑n
i=1 |yi − y|

, (8)

R2 = 1−
∑n

i=1(ŷi − yi)
2∑n

i=1(yi − y)2
, (9)

Where yi represents the actual value, ŷi represents the
predicted value, and n is the number of samples,y represents
the mean of the actual values.

B. Comparison and Validation of ML Models

We evaluate the predictive performance of knn, random
forest, bagging, xgboost, GPR, and lightgbm ML algorithms
using five metrics. Table 1 reveals that random forest outper-
forms other methods in terms of MSE, MAE, and MAPE%,
while achieving the highest R2 and RAE%. This indicates
that random forest is the most suitable method among the
six for predicting Rf . Conversely, knn performs poorly across
all metrics, indicating its unsuitability for this task. GPR ex-
hibits subpar performance in MSE but moderate performance
in other metrics, suggesting some adaptability for fouling
factor prediction but lacking stability. Bagging, xgboost, and
lightgbm perform well across all metrics, demonstrating high
adaptability and stability for this problem. These methods
exhibit significantly smaller MSE, MAE, and MAPE% than
knn and GPR, with superior R2 and RAE%. Notably, xgboost
excels in R2, while lightgbm performs best in MAE(Table I).

TABLE I
PERFORMANCE COMPARISON OF CLASSICAL ML

PREDICTION MODELS

Methods MSE MAE MAPE% R2 RAE%
Knn 6.94× 10−4 7.08× 10−3 19.19 0.98029 4.63

Random forest 1.30× 10−4 4.40× 10−3 16.68 0.99631 2.87
Bagging 1.54× 10−4 4.80× 10−3 16.06 0.99561 3.13
Xgboost 1.65× 10−4 4.82× 10−3 16.23 0.99671 3.09

Lightgbm 1.50× 10−4 4.34× 10−3 16.59 0.99622 3.28
GPR 4.50× 10−4 5.18× 10−3 16.21 0.99221 5.81

In order to more directly reflect the experimental results,
we compared the experimental predicted Rf values of knn,
random forest, bagging, xgboost, GPR and lightgbm with the
real Rf values by regression graph (Fig. 4).

Fig. 4 presents regression graphs for various models, com-
monly used to display the relationship between predicted and
actual values, thereby assessing model performance. Typically,
the x-axis represents actual values, while the y-axis represents
predicted values. Each point corresponds to an observation,
with its x-coordinate representing the actual value and its y-
coordinate representing the model’s prediction. The regression
line (best-fit line) indicates the degree of fit between actual and
predicted values. Specifically, if the regression line coincides
with the diagonal (y = x), it signifies perfect alignment
between model predictions and actual values. Deviation from
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Fig. 4. Regression plots of Rf predictions from different ML methods
against experimentally measured data.

the diagonal indicates discrepancies between predictions and
actual values.

From Fig. 4, we observe that the predicted results align
with the evaluation metrics. Notably, knn and GPR exhibit
poor predictive performance. Conversely, xgboost, lightgbm,
and random forest yield predictions close to actual values,
demonstrating robust predictive capabilities. We employ en-
semble learning to construct a stacking model, which will be
discussed separately in Section III-C.

C. Comparison and Verification of Stacking Models

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Methods MSE MAE MAPE% R2 RAE%
MLPNN 1.88× 10−3 2.01× 10−2 33.13 0.9463 15.7

GPR 4.5× 10−4 5.18× 10−3 16.21 0.99221 5.81
Stacking 1.26× 10−4 4.38× 10−3 15.94 0.99683 2.39

In previous studies, Davoudi and Vaferi [26] used the same
dataset to build the multilayer perceptron neural network
(MLPNN) model for predicting the fourth root 4

√
Rf of Rf ,

while Saleh Hosseini [24] used the GPR method to predict
the quadratic root

√
Rf of Rf . Excellent results have been

obtained in the prediction effect (Table II). By comparing the
forecasting performance indicators, it is not difficult to see that
the ensemble model we constructed has better performance in
predicting Rf s. Table 1 outperforms a single ML model on
all evaluation metrics, specifically: The Mean Squared Error
MSE of the stacking model is the lowest, only 1.26 × 10−4.
The MSE of the MLPNN model and the GPR method are

1.88× 10−3 and 4.51× 10−4, respectively, which means that
the difference between the predicted value and the real value
is minimal. The Mean Absolute Error (MAE) of the stacking
model is also the lowest, only 4.38× 10−3. The MAE of the
MLPNN model and the GPR method are 2.01 × 10−2 and
5.18×10−3, respectively, which means that the absolute error
between the predicted value and the real value is the smallest.
The Mean Absolute Percentage Error MAPE% of the stacking
model is also the lowest, only 15.94%. The MAPE% of the
MLPNN model and the GPR method are 33.13% and 16.21%,
respectively, which means that the relative error between the
predicted value and the real value is minimal. The Coefficient
of Determination R2 of the stacking model is the highest,
reaching 0.99683. The R2 of the MLPNN model and the
GPR method are 0.9463 and 0.99221, respectively, which
means that it has the highest linear correlation between the
predicted value and the real value. The Relative Absolute Error
RAE% of the stacking model is also the lowest, at 2.39%. The
RAE% of the MLPNN model and GPR method are 15.70%
and 5.81% respectively, which means that the relative absolute
error between the predicted value and the true value is minimal
compared with the simple average method.

Our research results robustly demonstrate the significant
advantages of our designed stacking model in predicting
pollution factors. Its predictive performance not only sur-
passes traditional MLPNN methods but even outperforms
well-performing GPR methods. This achievement not only
confirms the effectiveness of our model but also provides
strong support for future research and applications in related
fields.

P
re
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ic

t

Measured

Fig. 5. Regression plots of Rf predictions from stacking Model
methods against experimentally measured data.

For a more intuitive representation of experimental results,
we have created a regression graph (Fig. 5) comparing the
stacking model’s experimental predicted Rf values with the
actual Rf values. This regression graph further validates the
consistency and accuracy of the model’s Rf predictions. The
underlying idea of the regression graph is that for a perfect
model, the regression line (fitted to the scatter plot) would
align with the diagonal reference line (y = x).

It is clear that each prediction is closely related to the
ground truth. From the figure, we notice that most of the
predictions are very close to the ideal line and the regression
line itself almost coincides with the y = x diagonal line. This
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(a) Feature importance-xgboost
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(b) Feature importance-random forest
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(c) Feature importance-lightgbm

Fig. 6. Feature contribution diagram of different methods in stacking model.

further emphasizes the minimal error and variance between
the predicted and actual values. Therefore, we can assert that
the model has achieved near-perfect results.

D. Feature Contributions of the Stacking Methods

To explore the factors influencing Rf , we analyzed the
feature contributions of the three ensemble learning mod-
els—xgboost, lightgbm, and random forest—within the stack-
ing model (Fig. 6).

From the data, we deduce that the three ensemble learning
models within the stacking model exhibit varying influence
weights and feature contributions. For xgboost and lightgbm,
the most influential features are Time, Surface temperature,
and Fluid temperature. The least influential features are Equiv-
alent diameter and Dissolved oxygen. In the case of random
forest, the most influential features are Fluid velocity and
Surface temperature, while the least influential features are
Time and Dissolved oxygen. By integrating random forest,
xgboost, and lightgbm, our stacking model optimally considers
different feature contributions, overcoming the challenges of
arbitrary model combinations and selection order, resulting in
superior predictive performance.

IV. CONCLUSIONS

In this study, we focus on enhancing the prediction accu-
racy of Rf using ensemble learning. Under the premise of
ensuring data quality and suitability through preprocessing, we
employ Kendall’s correlation coefficient to validate the data’s
interrelationships. This analysis provides valuable insights
into data trends, informing subsequent model development.
We train knn, random forest, bagging, xgboost, GPR, and
lightgbm methods, comprehensively comparing their perfor-
mance and integrating the best-performing methods into a
stacking model. Rigorous model construction and performance
comparison robustly demonstrate the significant advantages
of the stacking method in predicting Rf . Specifically, the

stacking model excels across all evaluation metrics, surpassing
not only traditional MLPNN methods but also outperforming
well-performing GPR methods. Notably, the stacking model
achieves an outstanding R2 value of 0.99683, signifying
high accuracy and robustness. Our research introduces novel
insights and methods for predicting Rf in heat exchangers,
providing valuable saupport for future applications.
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