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Deep Learning and Object Detection for Water
Level Measurement using Patterned Visual Markers

G. M. Domingues Filho , C. M. Ranieri , S. N. Matos , R. I. Meneguette , and J. Ueyama

Abstract—Flooding is one of the most impactful natural
disasters, causing significant losses and prompting extensive
research into monitoring water levels in urban streams. Current
technologies rely on pressure and ultrasonic sensors, which,
while accurate, can be susceptible to damage from floods and
are often costly. As an alternative, ground camera approaches
offer a low-cost solution; however, most of these methods
use raw images from the water stream and are sensitive to
environmental factors. This study addressed this gap with a
dataset comprising a visual marker with black bars indicating
the water level, hereby referred to as the “barcode panel”. The
method employed various deep-learning algorithms to predict
the water level and compared their performance. The proposed
approach was evaluated using classic classification and error
metrics. The models demonstrated accuracy in detecting the
water level. These promising results provide important insights
for practical applications and future studies.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9046

Index Terms—Deep learning, computer vision, flood manage-
ment, visual marker.

I. INTRODUCTION

In terms of natural disasters, floods are among the most im-
pactful, causing significant losses of human lives, financial

assets, land degradation, and infrastructure damage [1], [2].
Floods have severely affected Brazil recently [3], with notable
events in Rio Grande do Sul State in 2024, Acre State in
2024 and 2023, and Petrópolis City in Rio de Janeiro State
in 2022. According to the Brazilian National Water Agency
(ANA), floods affected approximately 800,000 individuals in
2020. This number exceeded 1 million people in 2021, and
the latest report indicates 1.5 million people affected by flood
events in 2022 [4], [5].

While deploying sensors in contact with the measurand to
measure water levels may provide accurate results, maintaining
such devices requires constant interventions that may be costly
in terms of financial resources and time. Furthermore, contact
sensors are prone to failure and damage in flooding situations
due to direct contact with debris and sand [6]. On the other
hand, a computer vision-based system that relies on fixed
cameras placed beside a water course is cheaper to deploy in
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terms of financial and human resources. The placement of the
camera and the embedded computing platform is not limited
to the immediate vicinity of the water; it does not need to
be in contact with the liquid. This means the equipment can
be placed on a nearby pole close to a power source without
requiring long wired connections. Essentially, the camera can
be deployed just like a simple surveillance camera in an urban
environment.

However, the existing research has not adequately studied
the use of visual markers for measuring water levels. Pre-
vious studies mostly relied on traditional image processing
methods, which can be affected by lighting, camera positions,
and weather conditions [7]. Recognizing this gap, this study
has chosen to investigate different deep learning techniques
combined with a stainless steel panel featuring evenly spaced
rectangular bars, hereby referred to as a “barcode panel”. The
number of bars above the water surface is designed to be
inversely proportional to the water level.

The barcode panel, a mechanical plate with no need for a
power supply and minimal maintenance requirements (as long
as it remains fixed to the creek wall), adds little complexity
to this ground camera approach. As a result, this setup can be
deployed to more points to monitor flood risk in a given area,
including remote locations that are difficult to access.

The patent BR 10 2023 004081 0 [8] describes a similar
panel as the one used in this study. The invention describes
an elongated rigid body with markings to create high-contrast
patterns. The barcode panel was also described by Domingues
et al. [9]. The present work used it along with a dataset
of images of this panel immersed in a pool under several
different conditions. It employed classification, regression,
object detection, and Siamese network algorithms to evaluate
how each type of model would handle the task and compare
the results between them. The main idea is to determine the
number of black bars or the region of the panel that is above
the water level. This information would enable a damage
control system to respond appropriately to the water level.
The results demonstrated that the approaches yielded similar
outcomes.

II. RELATED WORK

Many studies and approaches have addressed water level
detection and flood prediction. This section presents, reviews
and discusses studies on Machine Learning, Deep Learning,
and Visual Markers.

Lo et al. [6] presented a method for automatically monitor-
ing floods using image processing and remote cyber surveil-
lance systems, achieving instant flood feedback. The authors
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considered a flood as an invasion object in the intrusion
detection of the surveillance systems and concluded that the
system can provide reference for warning actions in small
areas, making them more effective. Another approach based on
surveillance systems was developed by Pan et al. [10], aiming
to create a low-cost system with remote measurement stations
and a monitoring center. This system uses cameras, water level
analyzers, wireless routers, and a ruler. They evaluated the
system using the difference between frames to analyze water
variation, Dictionary Learning, and Deep Learning.

Park et al. [11] proposed a system based on multiclass
transformers using SpaceNet8 as a dataset to predict flood
occurrence while classifying roads and buildings. The results
surpassed those of classic CNN models. Wu et al. [12] col-
lected SAR images from 16 flood events in the Yangtze River
Basin and divided them for training, testing, and application.
They evaluated the use of several CNN models on this dataset
and concluded that these models have great potential for near-
real-time flood prediction.

Lin et al. [13] proposed a method for automatic water-
level detection using a single camera and a water gauge.
They employed image processing techniques and co-linearity
equations to determine the water level, minimize noise, and
used photogrammetric techniques to track camera movements.
The results showed that this approach can overcome changing
weather conditions and unexpected camera movements to
accurately identify the water level. However, too extreme
changes in camera position and weather conditions can com-
promise the detection.

Chen et al. [14] presented a novel method for recog-
nizing water levels from water gauge images. The studies
were conducted in Wuyuan City, Jiangxi Province, China.
They used Fully Convolutional One-Stage Object Detection
(FCOS) in combination with a contextual adjustment to meet
the requirements of edge computing and ensure considerable
detection accuracy. This contextual adjustment was used with
DeepLabv3+ to segment the water gauge area above the water
level line. The method achieved an error margin of 1 cm and
was capable of dealing with complex scenarios.

Zhang et al. [15] developed a method utilizing surveil-
lance cameras. The authors presumed that the water level
line is commonly located where the greatest change in gray
color occurs in the water gauge. Utilizing image processing
techniques, such as the maximum mean difference between
gray and edges, they demonstrated an accuracy of 90%.
They encountered challenges with water vibration and floating
debris during floods in front of the water gauge.

Vandaele et al. [16] developed an approach based on Deep
Learning for automated semantic water segmentation to es-
timate the water level on a river from camera angles. They
acquired the dataset from the Severn and Avon rivers in the
United Kingdom. They compared the results with water gauge
markers near the cameras and concluded that this approach can
be easy and low cost, especially for environments where water
gauges are not available.

Sabbatini et al. [17] proposed a solution based on automatic
Computer Vision, processing images from a staff gauge. The
authors acquired the images from an IoT device, and the

solution consists of two modules. The first module deals
with power consumption at the edge, selecting frames with
good quality, while the second module is implemented on a
Cloud server, where the water level is extracted. The model
performed well in nighttime environments but had difficulties
dealing with sunlight during the day.

The previously mentioned works emphasize the potential
of using cameras, deep learning, and visual markers. How-
ever, approaches that primarily rely on raw images of water
bodies encounter issues with weather variations and lighting
conditions. Additionally, some of these methods are limited
to specific environments and are not easily generalizable.
Other approaches yield good results but come with high
implementation costs and are not straightforward to use in
various locations, such as those based on SAR images. Con-
sequently, this work integrated the concept of visual markers
with various deep-learning techniques to tackle these existing
issues and reduce the solution’s cost. This study aims to
advance research in the field of water level detection and flood
prediction, contributing to solutions that are more robust, more
generalizable, and easier to implement than the current ones.

III. ARTIFICIAL INTELLIGENCE APPROACHES

As already stated, this study aimed to assess the effec-
tiveness of distinct deep learning algorithms on a dataset for
water level measurement. It examined: (i) a classification task,
treating the bars of the barcode as categories; (ii) a regression
task, estimating the number of bars above the water as a
number; (iii) an object detection task, detecting the barcode
area above the water; and (iv) two distinct Siamese networks,
classifying the number of bars above the water based on a
distance metric.

A. Dataset

The dataset consisted of images of a barcode-patterned
panel [9] consisting of 7 evenly spaced black bars printed on
it, resembling a “zebra” pattern. This panel was constructed
from stainless steel to maintain its properties, as stainless
steel is not susceptible to degradation effects such as oxi-
dation. The dataset was collected outdoors with exposure to
sunlight, which could cause reflectance issues. However, as
demonstrated further, the suggested techniques successfully
addressed this challenge.

The dataset contains 214 images of the barplate in a
controlled environment (i.e., a swimming pool), with various
angles and position variations. The Barcode was also adjusted
in the water to create different scenarios, and some images
include artificial rain, although all the images were taken
during daylight. Within this dataset, the number of visible bars
above the water ranges from 3 to 7, representing the classes
in the dataset. Fig. 1 shows a sample of the dataset, and Fig.
2 shows the class distribution.

B. Classification and Regression

One approach utilized was categorizing the problem into
classification and regression. For this, the images from the
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Fig. 1. Barcode panel sample with bounding box highlighting the
plate area above the water, indicating class 3.
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Fig. 2. Classes distribution over the dataset.

dataset were used as inputs. In the classification problem, the
results were values belonging to classes 3 to 7, whereas for
Regression, the values were continuous numbers in the range
of 3 to 7. These numbers denote the number of black bars
above the water level. The base network was a ResNet 50 [18]
model pre-trained with weights from ImageNet. The backbone
was frozen, and additional layers were added: a Global Aver-
age Pooling layer added, followed by a Fully Connected Layer
with 256 units, 20% Dropout, ReLU activation, and an Output
Layer with 5 units and softmax activation. The model was then
fine-tuned on the dataset. Fig. 3 presents the model and the
newly added layers.

To train the model, the method used the Stratified K-Fold
technique, ensuring equal representation of each class across
the folds, which is important for handling overfitting and bias.
This technique divides the dataset into K folds, where one fold
is used to validate the model, and the remaining K-1 folds are
used to train the model. This training process is repeated for
K iterations, changing each iteration’s validation fold so that
each fold is used once for validation. This approach allowed
us to utilize the available data better and make more confident
estimates, as the average performance across all K iterations

ResNet 50 V2 
Backbone

Global
Average
Pooling

Output Layer
Units: 5
Activation: Softmax

Input Image

FC Layer
Units: 256
Dropout: 20%
Activation: ReLu

Fig. 3. Classification model architecture: The input image is pro-
cessed through a frozen ResNet 50 V2 backbone, followed by global
average pooling, a fully connected layer, and finally, the output layer
with softmax activation.

determines the model’s performance. Compared to a hold-
out approach, this produces more reliable and better-estimated
results.

The number of folds was 5. All the models were trained
for 100 epochs. Images were preprocessed and resized to
224 × 224 pixels, and were loaded in batches of 32. The
Adam optimizer was employed with a learning rate of 10−4.
Categorical Crossentropy was utilized as the loss function for
classification tasks, while Mean Squared Error (MSE) was
used for regression tasks. The preprocessing and augmentation
techniques applied were pixel normalization to the range [0, 1],
random horizontal flipping, random zoom variations up to
40%, random rotations up to 40 degrees, random vertical and
horizontal shifts up to 30% of the image dimensions, and the
nearest method for filling pixels outside the image boundaries.

C. Object Detection

Another approach employed was object detection, which
aimed at identifying the region of the image containing the
plate. This region was then extracted from the image and
passed through the classification algorithm again. This ap-
proach is expected to achieve better generalization, allowing
the barcode to be inserted in any region, cropped, and classi-
fied.

In the object detection literature, there is a trade-off between
two-stage detectors with higher average precision but slower,
and single-stage detectors that compute faster at the expense
of lower average precision. The most noticeable difference is
that two-stage detectors comprise a separate architecture for
the proposal of regions of interest that result in the bounding
boxes identifying the location and scale of the objects. In
contrast, single-stage detectors employ a single neural network
for object detection and classification. The most widely used
two-stage object detection architecture is the Faster-RCNN and
its variants [19]. At the same time, single-stage detectors are
represented by the single-shot detectors (SSD) [20], the YOLO
family [21], the RetinaNet [22] and others.

The approach hereby presented aimed at understanding how
different deep learning techniques could tackle the problem of
water level identification based on the barcode panel monitored
by a video camera. To provide an overview of the performance
of deep learning-based object detectors in identifying the
panel, the Faster-RCNN 101 was chosen to represent the two-
stage detectors, and the RetinaNet was selected to represent
the single-stage detectors. RetinaNet was favored over YOLO
architectures because post YOLO-v3 models were released
as YOLO without being a direct upgrade over the earlier
models of the series. Additionally, the most recent YOLO
models are developed by private entities that do not disclose
the architecture with scientifically rigorous analysis of their
results. Furthermore, RetinaNet has shown promising results
for detecting distant objects, making it particularly useful for
drone imagery. This capability could be valuable for specific
ground camera and barcode panel configurations.

Moreover, although the level of a water stream in a real-
world environment can change in a matter of minutes during
heavy rainfall events, any changes occurring in intervals at
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the scale of milliseconds are negligible. Hence, the issue at
hand does not necessitate rapid computation, as is provided by
single-shot detectors designed for real-time object detection
at several frames per second. Conversely, damage control
measures based on flood risk alerts benefit from more accurate
predictions and are not affected by delays in scales lower than
a few dozen seconds. Therefore, a two-stage detector such
as Faster-RCNN can be the most suitable for the task. As a
single-stage detector, RetinaNet was included as a reference
for comparison purposes.

In both cases, the networks were previously trained on the
COCO dataset and then fine-tuned on the barcode dataset. To
ensure a direct comparison, all parameters used were identical
between the two networks, as were the training and testing
data. In this case, a simple train-test split approach was used
for testing, as the computational cost for detection is rela-
tively higher than for simple classification or regression. After
training both models, the barcodes in all dataset images were
detected and cropped, generating two pre-processed datasets,
which were used to train new models identical to those in
section III-B.

Both models were trained for 250 epochs. Images were
preprocessed and resized to 384x384 pixels and were loaded
in batches of 16. The learning rate was set to 10−3 using the
Stochastic Gradient Descent (SGD) optimizer. For the Faster
R-CNN, the loss functions employed were Softmax Cross-
Entropy for the classification component and Smooth L1 Loss
for the bounding-box regression. RetinaNet’s classification
loss function was Sigmoid Focal Loss, and the bounding-box
regression loss was Smooth L1 Loss. These classification and
bounding-box regression loss functions are the default settings
in the Detectron2 framework. The classification components
of these models were not used. In both models, the following
augmentation techniques were applied: random horizontal flip,
random rotation up to 25 degrees, random zoom variation
between 10% and 30%, random noise with an intensity of
0.12, random contrast and brightness variation between 0.1
and 0.5, elastic transformation with an alpha of 1.2 and a
sigma of 0.2, and crop and pad up to 40%.

D. Siamese Network I

Siamese networks perform metric learning, a branch of
few-shot learning aimed at problems with a small number
of samples from each class. Besides, it accounts for class
imbalance for these problems [23], which is the situation posed
by the class distribution illustrated in Fig. 2. This is why we
considered using this technique, as more common methods,
such as oversampling, have not shown any improvements in
preliminary experiments.

The first approach, called SNI, involved adapting a neural
network for classification, and the training method followed
exactly those of the network described in Section III-B.
However, to evaluate the model, the classification head is
removed. Train images were processed, and their feature
vectors were stored. Then, the test images were processed, and
their vectors were compared with the stored ones. To compare
the images, this approach used the Euclidean distance, defined

as d(b, p) =
√∑n

i=1(bi − pi)2, where b represents the stored
feature vector, p represents the newly processed vector and
n it the dimension of the vector. The pair with the smallest
distance to the new feature vector is considered to be from the
same class.

The architecture of the SNI Network and the parameters
used are the same as those described in section III-B. The
test images were resized to 224x224 and normalized to the
range [0, 1]. The augmentation techniques applied were the
same as the model in section III-B. To evaluate the model,
several tests were conducted. In addition to assessing standard
metrics, these tests aimed to evaluate the quantity of images
required in the reference database to achieve good results. The
tests are as follows:

• Test 1: This test consisted of randomly placing in the
reference database only one image from each class from
the training set, totaling 5 images. Additionally, since the
model was trained using the K-Fold method with 5 folds
and 5 different sets of training and test data, this test was
performed for each K. For each K, the method consisted
of selecting images and calculating the metrics 20 times.
Thus, the final results were the averages of the 100 times
the model was evaluated;

• Test 2: This test consisted of repeating Test 1, but this
time randomly placing 3 images from each class in the
reference database, totaling 15 images.

• Test 3: This test consisted of repeating Test 1, but this
time placing 5 images from each class in the reference
database, totaling 25 images.

• Test 4: The final test consisted of placing all training
images in the reference database, and evaluating the test
only once for each K, resulting in an average over the 5
folds.

E. Siamese Network II

The second implementation, called SNII, consists of a
classical Siamese Network, in contrast with SNI, which is
an adapted version of a classification network into a Siamese
network model. In SNII, two identical networks with shared
weights provide and process a pair of inputs. At the end,
the feature vectors of the images are generated and can be
compared. In this network, the loss function must be able to
distinguish between pairs of identical images (positives) and
different images (negatives). For this, the method employed
Contrastive Loss with margin and Euclidean distance, as
proposed by [24] and given by:

L(Y,D) =
1

2
Y D2 +

1

2
(1− Y ){max(0,m−D)}2 (1)

where Y is the binary label indicating positive (Y = 1)
or negative (Y = 0) pairs, m is the margin parameter for
dissimilar pairs, and D is the Euclidean distance between
the feature vectors [25]. The base network was a ResNet
50 [18] model pre-trained with weights from ImageNet. The
backbone was frozen, and additional layers were added: a
Fully Connected Layer with 256 units, 20% Dropout, ReLU
activation, and a final Linear Layer with 128 units. The model
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Fig. 4. SNII model architecture: The input image is processed through
a frozen ResNet 50 V2 backbone, then a fully connected layer, and
finally, the output layer with 128 units.
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Fig. 5. Training pipeline of the SNII model: Two images are pro-
cessed by a twin model with shared weights. The resulting vectors
are then processed and compared using Contrastive Loss, producing
an output. This output is utilized to predict whether the pair is similar
or dissimilar, and the weights are updated accordingly.

was then fine-tuned on the barcode dataset. Fig. 4 shows the
model architecture and Fig. 5 illustrates the proposal.

The model was trained for 250 epochs. Images were resized
to 224x224, normalized to the range [0,1], and loaded in
batches of 16. The SGD optimizer, with a learning rate of
10−3 and momentum of 0.9, was employed. The loss function
was Contrastive Loss, as previously mentioned. The margin
parameter was set to 1.4. The model was trained with a
stratified train-test split, using 80% of the data for training and
20% for testing. With this data, training pairs were created.
It is important to carefully create pairs, ensuring an equal
number of positive and negative pairs. Additionally, the class
that creates the fewest positive pairs should limit the number
of positive pairs from other classes to maintain balance. The
augmentation techniques applied were: pixel normalization to
the range [0,1], random horizontal flipping, random zoom
variations up to 40%, random rotations up to 40 degrees,
random vertical and horizontal shifts up to 30% of the image
dimensions, mean equal to [0.485, 0.456, 0.406] e standard
deviation equal to [0.229, 0.224, 0.225], and the nearest
method for filling pixels outside the image boundaries.

The test step followed the SN1 model, using Euclidean
distance to compare the test images with the images in the
reference database. The same tests were conducted with a
slight difference: this model was trained five different times.
Therefore, Tests 1, 2, and 3 were conducted 50 times instead
of 20, and Test 4 was conducted one time. All the results of
the tests are the average results of the five models.

F. Experimental Setup

The design of the experimental setup aimed to facilitate
direct comparisons between the models presented in this paper
and similar studies reported in the literature. For classification
and regression algorithms, this study used the Keras frame-
work with a TensorFlow backend. For object detection, this
study employed the Detectron2 framework. Siamese Networks
were implemented using both PyTorch and Keras frameworks.
All training processes were conducted on Google Colabora-
tory, which offers a free environment with access to a free
GPU.

IV. RESULTS

The results of the experiments performed can be shown in
terms of classification metrics (i.e., whether the number of
bars above the water surface was correctly classified or not)
or regression metrics (i.e., how large was the error between
the predicted and the actual number of bars above the water
surface). Table I showcases the classification metrics for the
classification models and Siamese Networks in the experi-
ments. This section considers the precision, the recall, and
the F1-score. Besides being more adequate than the accuracy
for imbalanced datasets, these metrics are among the most
commonly used in related work, allowing for comparisons
with other models in the literature.

TABLE I
CLASSIFICATION METRICS FOR CLASSIFICATION MODELS

AND SIAMESE NETWORKS TESTS

Precision Recall F1-Score
Classi. Original Images 0.85 0.84 0.84

Classi. Faster-RCNN crop 0.87 0.88 0.87
Classi. RetinaNet crop 0.85 0.85 0.85

SNI Test 1 0.70 0.70 0.66
SNI Test 2 0.77 0.76 0.73
SNI Test 3 0.82 0.82 0.81
SNI Test 4 0.93 0.92 0.92
SNII Test 1 0.71 0.73 0.68
SNII Test 2 0.75 0.76 0.74
SNII Test 3 0.78 0.79 0.77
SNII Test 4 0.82 0.85 0.82

Table II presents the regression metrics for the classification
and regression models, as well as for the Siamese Networks.
The table shows the Mean Average Error (MAE), the Mean
Squared Error (MSE), the Coefficient of Determination or R2,
and Root Mean Squared Error (RMSE). The evaluations are
with respect to the number of bars above the water surface. For
instance, the MAE of a given model corresponds to the average
difference between the predicted and the actual number of bars
above the water surface.

Table III shows the results for the object detection models,
comparing the Faster-RCNN and RetinaNet approaches. The
metrics considered were the Average precision (AP), Average
Recall (AR) and Intersection over Union (IoU). Fig. 6 shows
the confusion matrix corresponding to the best-performing
model in the results, SNI Test 4.

The classification models using original images, images
cropped after Faster R-CNN detection, and images cropped
after RetinaNet detection show very similar results in terms
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TABLE II
ERROR METRICS FOR CLASSIFICATION MODELS,
REGRESSION MODELS AND SIAMESE NETWORKS

MAE MSE R2 RMSE
Classification Orig. Images 0.192 0.277 0.848 0.526
Classification RCNN Crop 0.177 0.262 0.858 0.512
Classification RNet Crop 0.168 0.205 0.894 0.453
Regression Orig. Images 0.502 0.474 0.614 0.688
Regression RCNN Crop 0.373 0.234 0.842 0.484
Regression RNet Crop 0.416 0.284 0.802 0.533

SNI Test 1 0.603 1.349 0.273 1.161
SNI Test 2 0.411 0.898 0.552 0.948
SNI Test 3 0.331 0.656 0.653 0.810
SNI Test 4 0.103 0.168 0.906 0.410
SNII Test 1 0.452 0.971 0.435 0.985
SNII Test 2 0.383 0.847 0.528 0.904
SNII Test 3 0.323 0.656 0.630 0.810
SNII Test 4 0.274 0.619 0.651 0.787

TABLE III
OBJECT DETECTION METRICS FOR FASTER-RCNN AND

RETINANET MODELS

Faster R-CNN RetinaNet
AP @ IoU=0.5:0.95 0.837 0.898
AP @ IoU=0.75 0.982 0.983
AP @ IoU=0.5 0.996 0.983
AR @ IoU=0.5:0.95 0.871 0.922
IoU 0.909 0.936

0 1 2 3 4
Predicted Labels

0

1

2

3

4

Tr
ue

 L
ab

el
s

24 0 1 0 1

1 31 5 0 0

0 1 37 2 0

0 0 0 43 5

0 0 0 2 61

Fig. 6. Confusion Matrix for SNI Test 4

of precision, recall, and F1-score. The results after Faster R-
CNN cropping are marginally superior, as shown in Table I.
Analyzing the errors of these models reveals that the errors are
slightly lower after cropping with RetinaNet. Overall, these
models achieved precision greater than 85%, and the RMSE
was below 0.526, indicating less than one error bar on average
per model. This demonstrates the accuracy of the models.

Regarding the object detection models, Table III shows that
RetinaNet delivers the best results across all metrics. Both
models achieve an IoU greater than 0.909, with an Average
Recall above 0.871, indicating that the models are effec-
tively cropping the regions containing the bars. The Average
Precision exceeds 0.837. However, even though RetinaNet
outperforms in detection metrics, this difference is not as
evident in the classification results after image cropping. This
suggests that precise cropping may not be crucial for achieving
good classification performance. Considering the complete
solution, it would be more advantageous to use RetinaNet for

real-time applications, as it is a single-shot detector, meaning
it has a shorter execution time compared to Faster R-CNN.

Another interesting point is the performance of the complete
SN1, as evidenced by Test 4 in Tables I and II. Despite
using the same base architecture as the classification models,
transforming it into a Siamese Network increased classifica-
tion metrics by approximately 8%. The error metrics also
decreased. When comparing the performance of SN2 in Test
4, SN2 is closer to the classification networks and performs
approximately 10% lower than SN1. Evaluating Tests 1, 2,
and 3 of the Siamese Networks, it can be observed that with
the available image dataset, the results improve over time,
requiring 5 images per class to achieve 80% accuracy with an
RMSE of 0.810. In situations with limited images, the model
could start with a few images and gradually expand the dataset
to achieve good results. It is noteworthy that all models used
images with clear water. Notably, especially in detection, the
models can distinguish between what is above and below the
water, detecting only the region above the threshold.

V. CONCLUSIONS

This paper introduces the utilization of various deep learning
algorithms for water level measurement in conjunction with
the barcode panel. All algorithms were evaluated using the
same metrics. In the case of the object detection algorithm, the
image cropping and classification steps were added to create
a more comprehensive model. For the Siamese networks, tests
on the quantity of images in the database were conducted to
assess how this quantity influences the results.

Using an object detection model followed by a classification
network after image cropping is a more robust solution and
would likely yield better results in terms of generalization.
However, transforming the network into an SN1 type yields
better metric results but requires a database for comparison,
thus increasing the complexity of the solution. An SN2-type
network is faster, but its implementation is more complex, and
the results are slightly worse.

In most cases, errors occur between closely related numbers
of bars above the water surface. Consequently, the magnitude
of the error impact in a real-world scenario is smaller. While
a misclassification to a distant class (e.g., actual class is 3,
predicted class is 7) could result in an actual error of up
to 85 cm, potentially indicating a false flooding event, a
misclassification between classes corresponding to adjacent
bars in the panel (e.g., actual class is 3, predicted class is
4) yields an error around 15-25 cm in water level.

Future work will involve using images that are not from
this dataset, such as images taken from rivers. This will allow
testing the models in real-world conditions, with a variety of
image types and lighting conditions.
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