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Real-time Object Detection Performance Analysis
Using YOLOv7 on Edge Devices

Ricardo C. Câmara de M. Santos , Mateus Coelho Silva , and Ricardo A. R. Oliveira

Abstract—Real-time object detection in images is one of the
most important areas in computer vision and finds applications in
several fields, such as security systems, protection, independent
vehicles, and robotics. Many of these applications need to
use edge hardware platforms, and it is vital to know the
performance of the object detector on these hardware platforms
before developing the system. Therefore, in this work, we
executed performance benchmark tests of the YOLOv7-tiny
model for real-time object detection using a camera and three
embedded hardware platforms: Raspberry Pi 4B, Jetson Nano,
and Jetson Xavier NX. We tested and analyzed the NVIDIA
platforms and their different power modes. The Raspberry Pi
4B achieved an average of 0.9 FPS. The Jetson Xavier NX
achieved 30 FPS, the maximum possible FPS rate, in three
power modes. In the tests, it was possible to notice that the
maximum CPU clock of the Jetson Xavier NX impacts the FPS
rate more than the GPU clock itself. The Jetson Nano achieved
7.4 and 5.2 FPS in its two power consumption modes.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9019

Index Terms—Object detection, YOLOv7, Embedded devices.

I. INTRODUCTION

Object detection is one of the essential areas in computer
vision, playing a fundamental role in various practical

scenarios. Currently, various applications such as robotics [1],
autonomous vehicles [2], security systems [3], and industrial
processes [4] have adopted object detection algorithms in
images as a crucial part. These systems use these algorithms
to interpret their environment by detecting the presence or
absence of specific objects by processing images of the
environment. When these objects are present, in addition to
object classification, i.e., providing information about the type
of objects present, the position and area occupied by them in
the image are also provided.

Fig. 1 shows two robots with which we apply the concept
of object detection in images executed on edge devices. The
robot on the left uses a Jetson Xavier NX. It was used in the
proposal for a navigation method based on image detection [5]
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where it performed object detection to execute the perception
task of the robot. The robot on the right uses a Jetson Nano. We
utilized this robot in the ground truth collection methodology
for odometry based on computer vision proposed in [6], and
object detection was performed to execute the location task.

Fig. 1. Robots using NVIDIA embedded devices. The robot on the
left, shown in [5], uses a Jetson Xavier NX, while the robot on the
right, in [6], uses a Jetson Nano.

Object detection in real-time images is a challenging task
and, consequently, is not inexpensive in terms of computation
cost. Therefore, the scientific community has made great
efforts to reduce the computational cost while maintaining
a high accuracy rate of these algorithms. Making these al-
gorithms computationally cheaper is even more relevant for
embedded systems such as robots and autonomous vehicles,
where detection must occur on edge devices with limited
computational capabilities rather than cloud servers or desktop
computers.

Today, object detection in images is typically performed
in real-time by a deep neural network which, in most cases,
depending on its architecture, cannot be executed in real-
time on a Central Processing Unit (CPU), especially when
it comes to single-core processors or embedded CPUs. Thus,
specific hardware is required for its use. These hardware
components can include, for instance, Graphics Processing
Unit (GPU) [7], Neural Processing Unit (NPU) [8], and Tensor
Processing Unit (TPU) [9]. Before developing real-world ap-
plications utilizing object detection algorithms, it is imperative
to understand the algorithm’s performance in advance when
executing the system’s final hardware. Therefore, conducting
benchmark tests of these algorithms on different hardware
configurations is essential. These tests enable measurement of
the hardware’s performance in executing the algorithms and
evaluating whether it meets the system’s requirements.

In this article, we present an analysis of the performance
of the You Only Look Once (YOLO) model for real-time
object detection when executed on three popular embedded
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TABLE I
HARDWARE SPECIFICATIONS OF THE THREE EMBEDDED PLATFORMS USED IN THIS STUDY

NVIDIA
Jetson Nano

NVIDIA
Jetson Xavier NX Raspberry Pi 4B

Edge Accelerator 128-core NVIDIA
Maxwell GPU

384-core
NVIDIA Volta GPU
(48 Tensor Cores)

-

AI Performance 0.5 TFLOPs 1.3 TFLOPs -

CPU
Quad-core

ARM Cortex-A57
MPCore processor

6-core NVIDIA
Carmel ARM v8.2
64-bit CPU 6 MB

L2 + 4 MB L3

Quad-core
ARM Cortex-A72

Memory 4 GB 64-bit
LPDDR4 25.6 GB/s

8 GB 128-bit
LPDDR4x 51.2 GB/s 4 GB LPDDR4

Dimensions 69.6 mm × 45 mm 69.6 mm × 45 mm 85 mm × 56 mm
Nominal Power

Envelope 5W–10W 10W–20W 3W–6.25W

development platforms. YOLO is a one-stage object detection
in images algorithm created by Redmon et al. [10]. The
platforms used in this work are the Raspberry Pi 4B, Jetson
Nano, and Jetson Xavier NX. We carried out this analysis by
comparing the processing speed of the neural network, using
the Frames per Second (FPS) rate on each of these platforms
and the use of hardware resources on both NVIDIA platforms.
The FPS rate is the crucial index for object detection models
and one of the main factors for deploying AI applications
on intelligent edges. The hardware resources used in the
comparison are the usage rate of Random Access Memory
(RAM), CPU, and GPU. The tests presented here consider
the different power consumption modes of the two NVIDIA
platforms.

II. RELATED WORKS

A. Applications of Object Detection in Edge Devices

Edge devices are end devices closest to the user, such as
mobile phones, cyber-physical systems (CPSs), wearables, the
Internet of Things (IoT), embedded and autonomous systems,
and intelligent sensors [11]. These devices perform data pro-
cessing near the origin or location where the data is generated
instead of sending it to servers for processing. These devices
are a fundamental part of edge computing.

Object detection in edge device images proves beneficial in
a wide range of applications. In [12], the authors compare
YOLOv3 and Faster R-CNN for citrus fruit detection in
embedded applications. Meanwhile, in [13], the authors pro-
posed a fire detection system using YOLOv7 on edge devices.
The automotive industry extensively utilizes object detection
in edge devices ranging from fatigue detection applications
[14] to more advanced ADAS systems [15]. Another area
frequently using object detection is robotics [16]–[18]. In [5],
we demonstrate the usage of real-time object detection for
sensing and local navigation in autonomous mobile robots.

B. Performance Analysis of Object Detection in Edge Devices

In [19], performance tests are presented by executing
YOLOv3 and PPYOLO [20] models on the Jetson Nano
and Jetson Xavier NX. PPYOLO is a modified version of
YOLO. They used the tiny model for the tests on Jetson
Nano. They tested the models using two input image sizes,
320x320 and 608x608. The PPYOLO model proved faster
than YOLOv3 on both hardware. They showed that the input
image size significantly affects the inference speed, with a
smaller size resulting in faster inference speed. However, using
a smaller input image size compromises the model’s accuracy.
In addition to inference time tests, the study analyzes the usage
of CPU, GPU, and RAM when using the models on different
hardware. For the tests, they used 500 images from the COCO
dataset [21] rather than real-time collected camera images.

In [22], the authors conducted tests with four models of
object detectors in images: YOLOv3, YOLOv3-tiny, YOLOv4,
and YOLOv4-tiny on NVIDIA Jetson Nano, NVIDIA Jetson
Xavier NX, and Raspberry Pi 4B (RPi) with Intel Neural
Compute Stick2 (NCS2). Again, they made a comparison
between the tiny models and the standard models of each
YOLO version. The FPS rate of the RPi + NCS2 set running
YOLOv3-tiny was 7.6 times higher than that of YOLOv3. Jet-
son Nano achieved a rate of 15 FPS when running YOLOv4-
tiny. Jetson Xavier NX reached a rate of 41 FPS when running
YOLOv3-tiny. They tested the models with four input image
sizes: 320, 416, and 608. The authors executed the tests
without using a camera through the processing of previously
recorded videos.

Thus far, we have not encountered any literature that ana-
lyzes the performance of YOLOv7-tiny on Jetson Nano and
Jetson Xavier NX devices, nor do we find studies that examine
the FPS rate and hardware resource consumption across their
various power consumption modes. This rationale underpins
the experiments carried out in this study.
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TABLE II
JETSON XAVIER NX POWER MODES

Mode
ID

Power
Mode (watts)

Online
CPU

CPU Max.
Freq. (MHz)

GPU Max.
Freq. (MHz)

0 15 2 1907 1109
1 15 4 1420 1109
2 15 6 1420 1109
3 10 2 1497 803
4 10 4 1190 803
5 10 4 1907 510
6 20 2 1907 1109
7 20 4 1420 1109
8 20 6 1420 1109

TABLE III
JETSON NANO POWER MODES

Mode
ID

Power
Mode (watts)

Online
CPU

CPU Max.
Freq. (MHz)

GPU Max.
Freq. (MHz)

0 10 4 1479 921.6
1 5 2 918 640

III. BACKGROUND AND METHODOLOGY

A. Object Detection and YOLOv7

Object detection involves classifying objects in images or
videos while simultaneously returning their location. After
processing the image, the detector returns a pair of coordinates
X and Y, height and width values, and the object type for
each detected object. The coordinates and the height and width
values are typically given as bounding boxes.

Object detection has started using deep learning models
since the early 2000s [23]. These models are generally classi-
fied as one-stage or two-stage detectors. Before understanding
these two approaches, it is crucial to know the classification
and region proposal concepts. Classification involves catego-
rizing objects into specific classes, while region proposal is an
algorithm that identifies areas where objects may be located.
A one-stage detection model performs both classification and
region proposal in a unified manner, aiming to increase speed.

YOLO is a single-stage object detection algorithm [10]. It
was named this way because it is a one-stage detector. Its
popularity is due to the speed of processing and accuracy it
offers. Since its publication, YOLO has undergone various
improvements over the years, reaching its seventh version
recently [24].

YOLOv7 [25] brings several improvements compared to its
predecessors. One of these improvements is anchor boxes, a
set of pre-defined boxes with different aspect ratios that detect
objects of different shapes. The network uses nine anchor
boxes, facilitating the detection of a broader range of shapes
and sizes of objects compared to previous versions. This also
contributes to reducing false positives. Another improvement
is the use of a new loss function called focal loss. Previous
versions used the cross-entropy loss function, which is less
effective in detecting small objects than focal loss. Focal loss
addresses this issue by reducing the weight of the loss for well-
classified examples and focusing on the most difficult objects
to detect.

B. Hardware Platforms

In this work, we used two devices from NVIDIA Corpora-
tion’s Jetson series and a Raspberry Pi 4B. The Jetson series is
characterized by small size and powerful performance. Jetson
Nano is the entry-level platform in the series, with the lowest
price and computational power. Jetson Xavier NX has higher
performance while maintaining a compact size and can also
be used as edge devices and, depending on the scenario, even
as edge servers. These two devices have heterogeneous CPU-
GPU architecture, which is highly compatible with various
edge AI applications. In addition to the two NVIDIA devices,
we also conducted performance tests with the Raspberry Pi 4B.
The main difference between the Raspberry Pi and the Jetsons
is that the Raspberry Pi 4 does not have an AI accelerator.
Table I shows the specifications of the three devices used in
the benchmark of this work.

The NVIDIA hardware platforms offer a variety of power
modes, each with its unique characteristics. These power
modes have unique identifiers and configurable power con-
sumption, CPU usage, and maximum CPU/GPU frequency,
providing flexibility and control to the developers. Table II
details the power modes of the Jetson Xavier NX, while Table
III outlines the power modes of the Jetson Nano. The Jetson
Nano, for instance, offers two power modes, one at 10 watts
and the other at 5 watts. On the other hand, the Jetson Xavier
NX offers nine standard power modes, ranging between 10,
15, and 20 watts. This detailed information allows users to
optimize the performance of these devices for their specific
needs.

C. Methodology

We used the YOLOv7-Tiny model trained to detect traffic
cones to carry out the tests performed in this work. YOLOv7-
tiny is a small model of YOLOv7 that is better suited for
edge hardware platforms. To train this model, we used 584
images collected from the internet, each containing one or
more cones. During training, we used 537 images for training
and 47 for validation. This model was the same one used in [5].
The model input size is 640x640. YOLOv7 uses the PyTorch
framework, which offers support for NVIDIA GPUs. We used
Python3 and the OpenCV library to develop the application
used in our experiments. The code can be found here: https:
//github.com/ricardocamara03/fps_yolov7

We perform FPS and hardware utilization measurements
when running YOLOv7-tiny. In order to carry out tests similar
to real applications, pre-recorded videos were not used, but
rather a Logitech C920 camera with a resolution of 640x480.
We executed the tests of FPS and hardware utilization mea-
surements while running the model in each power mode for
120 seconds. To measure hardware utilization, we used the
NVIDIA tegrastats tool, configured with a delay between
measurements of 20 ms. Hardware utilization at idle for each
power mode was also measured. Thus enabling a comparison
of hardware utilization at idle and when running the model.
Before carrying out the tests, we certified that using the camera
without running the model achieves an average rate of 30 FPS,
so the maximum FPS rate possible in our case is 30 FPS. We

https://github.com/ricardocamara03/fps_yolov7
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Fig. 2. Average FPS comparison.

used a 30 FPS camera because it is the most common FPS rate
in the market. Therefore, our results can benefit more people.

IV. RESULTS

Fig. 2 shows the results of measuring the average FPS
rate for each device in each power mode. The Jetson Xavier
NX reaches a rate of 30 FPS for power modes 0, 5, and
6. Therefore, we can see that on the Jetson Xavier NX, the
CPU clock influenced the FPS rate more than the GPU clock
itself since these three power modes are the only ones that
utilized the highest maximum CPU clocks. Our hypothesis is
that the application’s bottleneck lies in collecting the images
until they are submitted to the neural network, which demands
only the CPU rather than the object detection itself. Regarding
the GPU, mode 5 reached 30 FPS despite having the lowest
maximum clock value among the modes. There was no ev-
idence that the power options and number of CPUs online
considerably influenced the FPS rate since modes 0 and 6
only use two CPUs, and mode 5 uses 10 watts of power and
still reaches the maximum FPS rate. Another fact that indicates
that the maximum CPU clock is the factor that most influences
the FPS rate is that mode 4, with the lowest maximum CPU
clock, resulted in the lowest FPS rate among all Jetson Xavier
NX modes, 23.9 FPS. The Jetson Nano achieved a rate of 7.4
FPS for mode 0 and 5.1 FPS for mode 1.

The Raspberry PI 4B achieved the lowest FPS rate among
all hardware, with 0.9 FPS. This is because it is the only
platform among all three hardware that does not have an
AI accelerator to execute the model. Therefore, the hardware
utilization measurements below were only carried out on the
two NVIDIA platforms.

Fig. 3 shows the hardware utilization in percentage for
CPU, GPU, and RAM related to all energy consumption
modes of the Jetson Xavier NX at idle without running the
object detection software. This work’s CPU usage percentage
calculation does not consider offline CPU. The calculation was
done by using the average consumption of online CPUs. In idle
mode, RAM usage remains fixed at 26%, and GPU consump-
tion is around 1%. CPU consumption reaches a maximum
consumption of 13% for modes 0, 3, and 6 as they are the
only modes with only two online CPUs. CPU consumption
is inversely proportional to the number of CPUs online when

the system is idle, as the computational load remains the same
and the number of available CPUs varies.

Fig. 4 shows the Jetson Xavier NX’s hardware utilization
for all power consumption modes when running the YOLOv7-
tiny model. RAM consumption remains between 52% and 56%
considering all power modes. CPU consumption maintains the
same behavior as when the system was idle, with a decreasing
consumption for 2, 4, and 6 CPUs online in that order. For
modes with only two CPUs online, consumption is between
55% and 59%; for four CPUs online, 30% and 26%; and for
those with six CPUs online, consumption is between 15% and
20%. So, it shows that Jetson Xavier NX higher FPS rates
are more related to the maximum CPU clock rate than the
number of available CPUs. GPU consumption varies between
29% and 61%, reaching the highest FPS rate in power mode 5,
which has the lowest maximum GPU frequency. We notice that
GPU consumption has the most significant standard deviation
among all hardware utilization measurements.

Fig. 5 shows the hardware utilization of CPU, GPU, and
RAM for the Jetson Nano at idle. It presents 31% for RAM
in both power modes. In contrast to the CPU, it presents 4%
for mode 0 and 9% for mode 1. About the GPU, the image
presents practically zero consumption for both modes, being
0.02 for mode 0 and 0.01% for mode 1.

Fig. 6 shows the hardware utilization for Jetson Nano when
running the YOLOv7-tiny model. Average RAM consumption
is between 71% and 78%. The average CPU consumption was
27% for mode 0 and 63% for mode 1. The average GPU
consumption was 61% for mode 0 and 49% for mode 1.

V. CONCLUSIONS

Real-time object detection in images is one of the most
important areas of computer vision. It plays a fundamental
role in several practical applications, such as security systems,
industrial applications, autonomous cars, and robotics. Many
of these applications have an embedded computing platform as
their leading hardware. Therefore, before developing a system
of this nature, it is crucial to know the performance of the
object detector on the target hardware.

This article presented an analysis of the performance of
the YOLOv7-tiny model for real-time object detection. We
conducted this analysis by running the model while processing
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Fig. 3. Average hardware utilization for Jetson Xavier NX in idle.

Fig. 4. Average hardware utilization for Jetson Xavier NX executing YOLOv7.

Fig. 5. Average hardware utilization for Jetson Nano in idle.

images captured from a 30 FPS camera on three embedded
hardware platforms: Raspberry Pi 4B, Jetson Nano, and Jet-
son Xavier NX. Regarding the FPS rate, the Raspberry Pi
4B proved unfeasible for executing the model in real-time,
reaching an average FPS rate of 0.9. We covered nine different
power modes in the Jetson Xavier NX experiments. These
modes have different settings, including the number of CPUs

Fig. 6. Average hardware utilization for Jetson Nano executing
YOLOv7.

online, maximum CPU/GPU frequency, and power. The Jetson
Xavier NX reached maximum FPS in three different power
modes and showed a significant relationship between FPS
rate and maximum CPU clock. The maximum CPU clock has
been shown to have a more significant impact on the FPS rate
than the GPU clock and the power of the modes. The Jetson
Nano achieved an FPS rate of 7.4 and 5.2 in its two power
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consumption modes.
In future work, we intend to compare the FPS rate and

hardware utilization when processing images from previously
recorded videos and images captured from cameras in real-
time, as shown here. This allows an analysis of the impact of
camera use on hardware utilization. As the Jetson Xavier NX
proves to be the best platform, we intend to keep it as the
main hardware platform to execute real-time object detection
for our mobile robots’ ongoing research.

ACKNOWLEDGEMENTS

The authors would like to thank MICHELIN Connected
Fleet, NVIDIA, UFOP, CAPES and CNPq for supporting
this work. This work was partially financed by Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Finance Code 001, and by Conselho Nacional de Desen-
volvimento Científico e Tecnológico (CNPq) - Finance code
308219/2020-1.

REFERENCES

[1] E. Maiettini, G. Pasquale, L. Rosasco, and L. Natale, “On-line object
detection: a robotics challenge,” Autonomous Robots, vol. 44, no. 5, pp.
739–757, 2020. doi: https://doi.org/10.3390/pharmaceutics13081318.
[Online]. Available: https://www.mdpi.com/1999-4923/13/8/1318

[2] D. Feng, A. Harakeh, S. L. Waslander, and K. Dietmayer,
“A review and comparative study on probabilistic object
detection in autonomous driving,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 8, pp. 9961–9980, 2021.
doi: https://doi.org/10.1109/TITS.2021.3096854. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9525313

[3] J. Wu, X. Xu, and J. Yang, “Object detection and x-
ray security imaging: A survey,” IEEE Access, 2023. doi:
https://doi.org/10.1109/ACCESS.2023.3273736. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10120944

[4] X. Zhang, C. Wang, Y. Tang, Z. Zhou, and X. Lu, “A survey of few-shot
learning and its application in industrial object detection tasks,” in
International Workshop of Advanced Manufacturing and Automation.
Springer, 2021. doi: https://doi.org/10.1007/978-981-19-0572-8-81 pp.
637–647. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-981-19-0572-8_81

[5] R. C. C. d. M. Santos, M. C. Silva, R. L. Santos,
E. Klippel, and R. A. Oliveira, “Towards autonomous mobile
inspection robots using edge ai.” in ICEIS (1), 2023. doi:
https://www.scitepress.org/Link.aspx?doi=10.5220/0011972200003467
pp. 555–562. [Online]. Available: https://sol.sbc.org.br/index.php/
semish/article/view/25073/24894

[6] R. C. C. d. M. Santos, M. C. Silva, and R. A. Oliveira, “A
computer vision-based method for collecting ground truth for mobile
robot odometry,” Proceedings of the 26th International Conference
on Enterprise Information Systems - (Volume 1), pp. 116–127, 2024.
doi: http://dx.doi.org/10.5220/0012622900003690. [Online]. Available:
https://www.scitepress.org/publishedPapers/2024/126229/pdf/index.html

[7] T. Fukagai, K. Maeda, S. Tanabe, K. Shirahata, Y. Tomita, A. Ike,
and A. Nakagawa, “Speed-up of object detection neural network with
gpu,” in 2018 25th IEEE International conference on image processing
(ICIP). IEEE, 2018. doi: https://doi.org/10.1109/ICIP.2018.8451814
pp. 301–305. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/8451814

[8] L. Chen, J. Hu, X. Li, F. Quan, and H. Chen, “Onboard real-
time object detection for uav with embedded npu,” in 2021 IEEE
11th Annual International Conference on CYBER Technology in
Automation, Control, and Intelligent Systems (CYBER). IEEE,
2021. doi: https://doi.org/10.1109/CYBER53097.2021.9588193 pp.
192–197. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.
jsp?tp=&arnumber=9588193

[9] B. Kovács, A. D. Henriksen, J. D. Stets, and L. Nalpantidis,
“Object detection on tpu accelerated embedded devices,” in Computer
Vision Systems: 13th International Conference, ICVS 2021, Virtual
Event, September 22-24, 2021, Proceedings 13. Springer, 2021. doi:
https://doi.org/10.1007/978-3-030-87156-7-7 pp. 82–92. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-3-030-87156-7_7

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016. doi:
https://doi.org/10.1109/CVPR.2016.91 pp. 779–788. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780460

[11] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient
acceleration of deep learning inference on resource-constrained edge
devices: A review,” Proceedings of the IEEE, vol. 111, no. 1, pp. 42–
91, 2023. doi: 10.1109/JPROC.2022.3226481

[12] J. C. da Silva, M. C. Silva, E. J. Luz, S. Delabrida, and
R. A. Oliveira, “Using mobile edge ai to detect and map
diseases in citrus orchards,” Sensors, vol. 23, no. 4, p. 2165,
2023. doi: https://doi.org/10.3390/s23042165. [Online]. Available:
https://www.mdpi.com/1424-8220/23/4/2165

[13] L. Wenzheng and W. Jie, “A yolov7 forest fire detection system
with edge computing,” in 2023 IEEE 13th International Conference
on Electronics Information and Emergency Communication (ICEIEC).
IEEE, 2023. doi: https://doi.org/10.1109/ICEIEC58029.2023.10200044
pp. 223–227. [Online]. Available: https://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=10200044

[14] R. C. C. d. M. Santos, M. C. Silva, and R. A. R. Oliveira,
“Evaluating the effect of audio feedback on the behavior of automotive
fatigue and distraction detection system users,” in 2019 IX Brazilian
Symposium on Computing Systems Engineering (SBESC). IEEE,
2019. doi: https://doi.org/10.1109/SBESC49506.2019.9046047 pp. 1–
8. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=9046047

[15] F. L. M. de Sousa, M. J. da Silva, R. C. C. de Meira Santos,
M. C. Silva, and R. A. R. Oliveira, “Deep-learning-based
embedded adas system,” in 2021 XI Brazilian Symposium on
Computing Systems Engineering (SBESC). IEEE, 2021. doi:
https://doi.org/10.1109/SBESC53686.2021.9628316 pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
9628316

[16] G. Liu, Y. Hu, Z. Chen, J. Guo, and P. Ni, “Lightweight
object detection algorithm for robots with improved yolov5,”
Engineering Applications of Artificial Intelligence, vol. 123, p. 106217,
2023. doi: https://doi.org/10.1016/j.engappai.2023.106217. [Online].
Available: https://dl.acm.org/doi/abs/10.1016/j.engappai.2023.106217

[17] Z. Li, B. Xu, D. Wu, K. Zhao, S. Chen, M. Lu, and J. Cong, “A
yolo-ggcnn based grasping framework for mobile robots in unknown
environments,” Expert Systems with Applications, vol. 225, p. 119993,
2023. doi: https://doi.org/10.1016/j.eswa.2023.119993. [Online].
Available: https://dl.acm.org/doi/abs/10.1016/j.eswa.2023.119993

[18] G. Xu, A. S. Khan, A. J. Moshayedi, X. Zhang, and Y. Shuxin,
“The object detection, perspective and obstacles in robotic: a review,”
EAI Endorsed Transactions on AI and Robotics, vol. 1, no. 1,
2022. doi: http://dx.doi.org/10.4108/airo.v1i1.2709. [Online]. Available:
https://eudl.eu/doi/10.4108/airo.v1i1.2709

[19] J. Zhu, H. Feng, S. Zhong, and T. Yuan, “Performance analysis of
real-time object detection on jetson device,” in 2022 IEEE/ACIS 22nd
International Conference on Computer and Information Science (ICIS),
2022. doi: 10.1109/ICIS54925.2022.9882480 pp. 156–161. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9882480

[20] X. Long, K. Deng, G. Wang, Y. Zhang, Q. Dang, Y. Gao,
H. Shen, J. Ren, S. Han, E. Ding et al., “Pp-yolo: An effective
and efficient implementation of object detector,” arXiv preprint
arXiv:2007.12099, 2020. doi: https://ui.adsabs.harvard.edu/link-
gateway/2020arXiv200712099L/doi:10.48550/arXiv.2007.12099.
[Online]. Available: https://ui.adsabs.harvard.edu/abs/
2020arXiv200712099L/abstract

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014. doi: https://doi.org/10.1007/978-3-319-10602-1-48 pp.
740–755. [Online]. Available: https://home.ttic.edu/~mmaire/papers/pdf/
coco_eccv2014.pdf

[22] H. Feng, G. Mu, S. Zhong, P. Zhang, and T. Yuan, “Benchmark analysis
of yolo performance on edge intelligence devices,” Cryptography, vol. 6,
no. 2, p. 16, 2022. doi: https://doi.org/10.3390/cryptography6020016.
[Online]. Available: https://www.mdpi.com/2410-387X/6/2/16

[23] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20
years: A survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–
276, 2023. doi: https://doi.org/10.1109/JPROC.2023.3238524. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/10028728

https://www.mdpi.com/1999-4923/13/8/1318
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9525313
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10120944
https://link.springer.com/chapter/10.1007/978-981-19-0572-8_81
https://link.springer.com/chapter/10.1007/978-981-19-0572-8_81
https://sol.sbc.org.br/index.php/semish/article/view/25073/24894
https://sol.sbc.org.br/index.php/semish/article/view/25073/24894
https://www.scitepress.org/publishedPapers/2024/126229/pdf/index.html
https://ieeexplore.ieee.org/abstract/document/8451814
https://ieeexplore.ieee.org/abstract/document/8451814
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9588193
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9588193
https://link.springer.com/chapter/10.1007/978-3-030-87156-7_7
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7780460
https://www.mdpi.com/1424-8220/23/4/2165
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10200044
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10200044
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9046047
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9046047
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9628316
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9628316
https://dl.acm.org/doi/abs/10.1016/j.engappai.2023.106217
https://dl.acm.org/doi/abs/10.1016/j.eswa.2023.119993
https://eudl.eu/doi/10.4108/airo.v1i1.2709
https://ieeexplore.ieee.org/abstract/document/9882480
https://ui.adsabs.harvard.edu/abs/2020arXiv200712099L/abstract
https://ui.adsabs.harvard.edu/abs/2020arXiv200712099L/abstract
https://home.ttic.edu/~mmaire/papers/pdf/coco_eccv2014.pdf
https://home.ttic.edu/~mmaire/papers/pdf/coco_eccv2014.pdf
https://www.mdpi.com/2410-387X/6/2/16
https://ieeexplore.ieee.org/abstract/document/10028728


805 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 10, OCTOBER 2024

[24] J. Terven and D. Cordova-Esparza, “A comprehensive review of yolo:
From yolov1 to yolov8 and beyond,” arXiv preprint arXiv:2304.00501,
2023. doi: https://doi.org/10.3390/make5040083. [Online]. Available:
https://www.mdpi.com/2504-4990/5/4/83

[25] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7:
Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2023. doi:
https://doi.org/10.1109/CVPR52729.2023.00721 pp. 7464–7475. [On-
line]. Available: https://ieeexplore.ieee.org/abstract/document/10204762

Ricardo C. Câmara de M. Santos is MSc in
Computer Science from UFOP in 2020. Bachelor of
Computer Science from UFOP in 2014. He has ex-
perience in the field of Computer Science, with em-
phasis on embedded computing, embedded systems,
and computer vision. He has research experience,
conducting scientific initiation from 2012 to 2014 at
the Imobilis laboratory at UFOP, in addition to the
master’s degree completed in the same environment
from 2017 to 2020. As an IT professional, he has
experience in developing vehicular systems based on

computer vision, working in this area from 2015 to the present at Michelin
Connected Fleet. Today he’s a PhD candidate at Universidade Federal de Ouro
Preto. Contact him at ricardocamara03@gmail.com.

Mateus Coelho Silva is currently a Postdoctoral
Researcher in Robotics at the Vale Technological
Institute - Federal University of Ouro Preto. He
obtained his M.Sc. and Ph.D. in Computer Sci-
ences at the Federal University of Ouro Preto.
His current research interests include Machine and
Deep Learning, Cyber-Physical Systems, IoT, Wear-
able Devices, and Robotics. Contact him at ma-
teuscoelho.ccom@gmail.com.

Ricardo A. R. Oliveira received his Ph.D. degree
in Computer Science from the Federal University
of Minas Gerais in 2008. Nowadays he is an Asso-
ciate Professor in the Computing Department at the
Federal University of Ouro Preto. Has experience in
Computer Science, acting on the following subjects:
Wavelets, Neural Networks, 5G, VANT, and Wear-
ables. Contact him at rrabelo@gmail.com.

https://www.mdpi.com/2504-4990/5/4/83
https://ieeexplore.ieee.org/abstract/document/10204762

	Introduction
	Related Works
	Applications of Object Detection in Edge Devices
	Performance Analysis of Object Detection in Edge Devices

	Background and Methodology
	Object Detection and YOLOv7
	Hardware Platforms
	Methodology

	Results
	Conclusions
	References
	Biographies
	Ricardo C. Câmara de M. Santos
	Mateus Coelho Silva
	Ricardo A. R. Oliveira


