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Abstract—Sequential testing strategies commonly reduce
the time for automated detection of an auditory steady-state
response (ASSR). However, repeated tests application leads to an
increase of false positive rate. Monte Carlo-based strategies are
used to overcome this obstacle. Despite several published papers
could be found describing such strategies, no comprehensive
comparison is found in the literature. Our work selects strategies
based on Monte Carlo simulations to calculate critical values. To
optimize each strategy, test application parameters are varied,
and the Pareto frontier is discussed. The detection rate and/or
the detection speed improved for every strategy, except for
Stürzebecher’s 2013 method, which increased the false positive
rate to 15.3%. All other strategies kept the false positive rate
within the desired limit. Pareto curves reveal that modified
2015 strategy had performance achieving 5.6% higher than
the original parameters. The automated detection of ASSR
improved with each implemented strategy, but not all of them
kept a controlled false positive rate (2013 and 2015). Cebulla’s
2015 modified strategy had the highest detection rate in the
shortest time.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/9006

Index Terms—Encephalogram, sequential tests, critical value,
false positive, optimization, Monte Carlo.

I. INTRODUCTION

Auditory evaluation is a crucial step in diagnosing and treat-
ing hearing problems, especially in children. According to the
Joint Committee on Infant Hearing [1], electrophysiological
auditory evaluation through Otoacoustic Emissions (OAE) or
Auditory Brainstem Response (ABR) are recommended by
the third month of life, aiming to start treatment as soon as
possible in case of risk of hearing loss. However, the process
can be extended for several sessions due to challenges, such as
patient cooperation or sleep interruptions in infants. The need
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to expedite auditory evaluation is evident in order to optimize
the time of professionals and patients, minimizing costs and
preventing hearing difficulties [2], [3].

The auditory response evaluation is an audiological pro-
cedure that aims to evaluate the integrity of the auditory
pathway, covering from the auditory nerve to the brainstem.
For small children, babies and uncooperative individuals, it
is recommended to use objective audiometry based on OAE
or ABR [4]. OAE usually does not offer a comprehensive
evaluation of the entire auditory pathway, focusing mainly on
the cochlear hair cells. This means that injuries that occur in
the posterior parts of the auditory pathway, such as in the
brainstem, may not be detected by this test alone [5], [6].

The disadvantage of ABR is both the cost of implementation
and the test time, as both are higher when compared to OAE
[7]. There are some cases where ABR may also depend on
the subjective interpretation of specialized professionals to
evaluate the presence or absence of response to the stimulus
[8], therefore, the test may be influenced by the evaluator’s
experience [9]–[11]. Furthermore, more specific evaluations
are needed when frequency range hearing loss occurs.

Within the techniques used for objective audiometry, the
Auditory Steady-State Response (ASSR) emerges as a comple-
ment to the ABR and OAE [12]–[14]. ASSRs can be elicited
by different sounds, and the most used stimuli are: amplitude-
modulated (AM) tones, frequency-modulated (FM) tones, and
combined stimuli of AM and FM. ASSR-based audiometry can
estimate hearing at different frequencies simultaneously, which
makes it particularly useful for identifying hearing losses at
specific frequency ranges [15], [16].

The auditory brain response is described as an evoked
potential, generated in the nervous system and detected in the
electroencephalogram (EEG). The analysis of the EEG signals
involves examining the brain’s electrical activity to detect the
patient’s auditory response. This is achieved by presenting
auditory stimuli, such as tones or clicks, and recording the
corresponding brainwave patterns. By analyzing these patterns,
we can determine if the auditory stimuli elicit a response,
which is then used to construct the electrophysiological au-
diogram, a graph representing the patient’s hearing thresholds
across different frequencies. [17]. Electrophysiological audio-
gram is often used to estimate auditory thresholds, which are
the minimum levels of sound intensity at which a person can
detect and recognize sounds at different frequencies.

ASSR detection in EEG signals is conducted by statistical
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procedures in the time or frequency domain, as Objective
Response Detectors (ORD) [12], used to determine response
presence or absence. Single-shot strategies are methods where
ORDs are applied at the end of EEG recording [18]. The test
can also be performed sequentially, i.e., before the complete
collection of the signal trial-by-trial, and if an immediate
response is not observed, a new trial is carried out at defined
time intervals. In sequential testing, the process repeats until it
identifies a response or reaches a time limit. The application of
these sequential approaches allows for a reduction in detection
time [18]–[21].

As the number of detection trials increases, the significance
of the false positive (FP) rate in relation to the true positive
rate becomes increasingly critical. To enhance this analysis,
metrics such as the Receiver Operating Characteristic (ROC)
curve, which graphically depicts the true positive rate against
the FP rate, can be utilized.

To control FP rate, the Bonferroni correction can be applied,
which increases the critical value by dividing the significance
level of the test by the number of times the test will be
applied. However, using Bonferroni correction is considered
conservative, as the probability of falsely rejecting the null
hypothesis (finding a significant effect when there is none) is
reduced more than necessary. A possible alternative is to make
use of Monte Carlo simulations to better determine critical
values for multiple tests [22], [23].

The demand for efficient auditory assessments drives the
focus on automated methods for auditory response detec-
tion. This study aims at analyzing and comparing sequential
methods for auditory response detection based on Monte
Carlo simulations. Two approaches were conducted: a) the
sequential tests were applied as closely identical as possible
to how they were described in the original papers; b) a search
was performed for the optimal set of parameters in each
method. All methods were applied to EEG data during ASSR
stimulation protocol.

II. MATERIALS AND METHODS

In a sequential test, three important values must be con-
sidered: (i) the initial number of epochs for the first test
(Mmin); (ii) the number of additional epochs (Mstep) required
to reapply the test; and (iii) the maximum number of epochs
(Mmax) that will be recorded and will be used as non-detection
stopping criterion. The ORD methods were the same as those
used in the original papers, namely the Modified Rayleigh Test
[22], [24] and the Modified Q-sample [23], [25], which will be
presented in the subsections below, as well as the sequential
test strategies.

A. Strategy I — False Positive Control

A method for finding critical values that control FP rates
was described by Stürzebecher in 2005 [22]. Eight million
sets of simulated data were generated, each consisting of 100
epochs of random numbers. Each data set was tested using the
modified Rayleigh test, starting with a Mmin equal to 10. This
signal was gradually extended by one epoch (Mstep equal to
1) until all 100 epochs were included. In this way, 91 test

results (91 test values) were achieved for each data set. The
critical value is calculated based on the distribution of the final
test values.

To define the presence or absence of a signal response, the
Modified Rayleigh Test was used, which considers both the
spectral phase and the ranked amplitude of each epoch of
the signal during the detection strategy. The statistic of the
modified Rayleigh test is calculated by:
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and:
φ — Angle of the spectral component of the i-th epoch;

n — Number of epochs
r — Rank number of spectral amplitude

B. Strategy II — Higher Harmonics

It was shown that the ASSR spectrum also contains higher
harmonics with considerably high amplitudes. For this reason,
statistical tests that consider only the first harmonic ignore a
significant part of the available information. The use of a q-
sample test, which, in addition to the fundamental frequency,
also includes higher harmonics of the signal for better detec-
tion performance [23].

From this point on, another variable is also dealt with, the
higher harmonics present in the signal. In this way, the detector
was applied at the stimulation frequency and also at the
frequencies of the higher harmonics (considering two higher
harmonics), as proposed by Cebulla in 2006 and Stürzebecher
in 1999 [12], [23]. Cebulla suggests five detectors; in the
present study, it was implemented the detector that uses real
phase information and ranked amplitude, named MQSTV3
(Modified Q-Sample Test V3).

C. Strategy III – Critical Value Correction

Traditionally, a constant critical value is used to determine
the presence or absence of a response in the ASSR signal [22],
[23]. However, it is described in [26] that this is a conservative
method. At each stage of the test, the probability of mistakenly
detecting a response increases compared to the previous test
trial, thus the critical value of the test may also increase at
each stage.

The method is based on the idea that repeated testing
increases the probability of a false positive result, so the
critical test value should be increased with each test step
to compensate for this effect. The strategy also uses a table
of pre-calculated critical values for different test steps and
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signal-to-noise ratios, which are derived from Monte Carlo
simulations.

It was observed that with the increase in signal size, critical
values also progressively increase. One of the advantages of
this strategy is the possibility of increasing the detection rate,
but this can cause a consequent increase in FP.

D. Strategy IV - Mstep Variation

As observed by Cebulla in 2015, it is not necessary to keep
the Mstep (epoch interval between applications of sequential
tests) constant. Therefore, the Mstep was changed in each
test application as shown below. The method propose the
following step variation:

Epoch 21-60, Mstep = 4 (10 steps applied)
Epoch 61-108, Mstep = 6 (8 steps applied)
Epoch 109-180, Mstep = 8 (9 steps applied)

E. Strategy V – Modified Mstep Variation

Cebulla’s 2015 strategy uses the variation of Mstep during
sequential applications along with the variation of the critical
value in each of these applications. However, as done by
Cebulla in 2015 [20], a version of this strategy will also be
considered where the critical value will be constant, as de-
scribed in Stürzebecher’s 2005 and Cebulla’s 2006 strategies.

F. EEG Data

Eleven adult individuals participated in the study, consisting
of two women and nine men. The age range of the participants
varied between 20 and 35 years, with hearing considered
normal (threshold ≤ 20 dB Hearing Level - HL). All patients
remained awake during the recordings and were recommended
to keep their eyes closed. The carrier frequencies for both
ears were the same: 500, 1000, 2000, 4000 Hz, modulated
respectively at frequencies 81, 85, 89 and 93 Hz for the
right ear, and 83, 87, 91 and 95 Hz for the left ear. Thus,
eight AM2 tones were used to evoke the ASSR. The research
received approval from the local Ethics Committee (CEP/UFV
No. 2.105.334), and all volunteers signed an informed consent
form. Data collection took place in an acoustically isolated
booth, located at the Interdisciplinary Signal Analysis Center
(NIAS) at the Federal University of Viçosa (UFV). Participants
were invited to relax or sleep on a bed with their eyes closed.
EEG signal acquisition was performed using sixteen electrodes
(m Fz, F3, F4, F7, FCz, Cz, C3, C4, Pz, P3, P4, T3, T4,T5, T6
e Oz) with reference to the back of the head and the ground
in Fpz arranged on the scalp according to the International
System 10-20. Recording was performed by the NIASv1 sys-
tem, i.e., the RHA2216 front-end (Intan Technologies, USA)
and ADS127L01 analog-digital converter (Texas Instruments,
USA). A high-pass and low-pass Butterworth analog filter
with a cutoff frequency of 0.5 and 300 Hz respectively was
applied to each channel. The sampling frequency was 1000
Hz per channel for seven volunteers and 1750 Hz per channel
for four volunteers. Each volunteer underwent three signal
recording sessions with a stimulation intensity of 50dB SPL,

each session lasting 5, 8 and 8 minutes respectively. The EEG
signals were divided into one-second epochs and stored on
disk for offline analysis, performed in Matlab R16 software
(MathWorks, Natick, MA, USA). The collected database was
also used in [18].

G. Performance Measures

The detection rate, also known as sensitivity or true positive
rate, is calculated by dividing the number of correctly detected
detections by the total number of signals.

The FP rate represents the cases where the system erro-
neously identifies a positive result when it is actually negative.
This metric is calculated by dividing the number of detec-
tions erroneously classified as positive by the total number
of signals. In this particular study, the occurrence of false
detections was determined through the analysis of the response
present in the sidebands of the stimulation frequencies, using
25 neighboring frequencies.

In automated audiometry, false-negative (FN) cases indeed
have more severe implications than false-positive (FP) cases.
Nonetheless, the focus of this study is a step before screening
applications, since we are first developing and comparing
useful signal processing techniques for EEG signals. The FP
rate is significant not only within the clinical context but also
for verifying the correct implementation of tests, as we employ
objective response detectors known as Constant False Alarm
Rate (CFAR) [27]. Consequently, controlling the FP rate is
essential to ensure the proper implementation of these tools,
as demonstrated in the cited studies within this work. We will
study FN and other metrics in a continuous work targeting
clinical applications.

The average detection time is a measure of how long it takes
to determine whether an auditory-evoked potential is present
or not in a given recording. It is calculated by applying a ORD
to the frequency spectrum of the evoked potential and finding
the point at which the test reaches a certain level of confidence
that the response is real and not due to noise.

In order to compare the optimizations of the proposed
parameters, Pareto curves were calculated for each of the
strategies. In this curve, each point represents a combination
of parameters analyzed, and the position of the points on the
curve indicates how favorable this combination is in relation
to the others. In other words, the Pareto curve shows which
combinations of parameters are the most efficient or relevant
for a given problem, allowing for prioritization of actions and
resources.

In order to compare whether the results of the sequential
test strategies differ from each other, two different statistical
methods were used. The McNemar test was used in order
to compare the statistical difference of the detection rates of
each strategy. The tests were performed in pairs, verifying if
there is a difference in each subsequent strategy. It should
be emphasized that this verification was carried out only in
strategies that presented a controlled FP rate. Following the
same methodology, Student’s t-test was used for a comparison
about the detection times of each method.
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H. Parameter Optimization

The strategies mentioned before were submitted to an ex-
haustive search for parameters (Mmin, Mstep, Mmax) in order
to improve detection rate and detection time in our database.

For Stürzebecher’s 2005, Cebulla’s 2006 and Stürzebecher’s
2013 strategies, an algorithm was developed to generate a
matrix encompassing all possible variations of parameters
(Mmin and Mstep). This resulted in 1342 different sequential
application possibilities, covering all possible configuration
sets between Mstep and Mmin, both parameters were varied
from 1 to 240 epochs. This procedure was also implemented
in Cebulla’s 2015 strategy. However, as this strategy has a
variable Mstep parameter, the number of possible parameters
grew exponentially. In order to make the process computation-
ally feasible, the procedure was developed capable of analyze
70210 distinct parameter sets.

In order to make the process computationally feasible,
an algorithm was developed capable of simulating 70210
sets of distinct parameters, varying the Mmin frIom 0 to
240 epochs, and the values of Mstep varied only between
even numbers (2, 4, and 6) as shown in the following example:

Set 1 (Mmin = 2):
• Epoch 2-230, Mstep = 2 (115 steps applied)
• Epoch 230-234, Mstep = 4 (1 step applied)
• Epoch 234-240, Mstep = 6 (1 step applied)

Set 2 (Mmin = 2):
• Epoch 2-226, Mstep = 2 (113 steps applied)
• Epoch 226-234, Mstep = 4 (2 steps applied)
• Epoch 234-240, Mstep = 6 (1 step applied)

Set 3 (Mmin = 2):
• Epoch 2-224, Mstep = 2 (112 steps applied)
• Epoch 224-228, Mstep = 4 (1 step applied)
• Epoch 228-240, Mstep = 6 (2 steps applied)

Defining the method, continue using all step variations with
these Mstep values. When all sets have been used, the values
of Mstep vary to (4, 6, and 8), and in this way, until reaching
the maximum value being this (78, 80, and 82).

III. RESULTS AND DISCUSSION

A. Comparison using Original Papers’ Guidelines

Initially, it is important to emphasize that the size of the
signals used in the original papers may differ in the number of
epochs to our database. Stürzebecher et al. (2005) and Cebulla
et al. (2006) have 100 epochs, while the others have 180. So,
the same Mmin and Mstep parameters from the original papers
were adopted, only changing the number of test applications
on each signal. For example, in Cebulla’s 2005 strategy, the
authors propose an application with Mmin = 10 and Mstep =
1 on a signal of 100 epochs, resulting in 91 applications. In
this study, although the values of Mmin and Mstep have been
kept the same, since our database has 240 epochs, 231 test
applications were performed.

The detection rates, FP rates, and detection time were
calculated in order to evaluate the strategies employed. These
results are presented in Table I.

The strategies were compared in pairs with the strategy
developed later (2005 was compared with 2006, then
2006 was compared with 2013) to check if there is a
significant difference in detection times, and all of them
showed a significant difference between them. However, in
Stürzebecher‘s 2013 strategy, there was a showed a critical
increase in the false positive rate. It is worth noting that this
increase persisted in Cebulla’s 2015 strategy, as the strategies
were incorporated cumulatively. To correct the increase in
the number of false positives, Cebulla’s 2015 strategy was
applied without the progressive increase of the critical value,
as shown in Cebulla et al. (2015) resulting in the so-called
‘Cebulla’s 2015 Modified’. With this modification, there was
a 6.9% increase in the detection rate in relation to Cebulla’s
2006 strategy, being the second-best strategy that presented
controlled rates of false positives.

B. Pareto Frontier Comparison from Exhaustive Search
After analyzing the methods that were replicated, opti-

mizations were carried out to find the best possible set of
parameters for each of strategy. It was found that it was
possible to control the FP rate of nearly 100% of tests with
the parameters of Strategies I, II and V in the confidence
interval used (FP equal to 5%). However, it was not possible to
control the FP rate for Stürzebecher’s 2013 and Cebulla’s 2015
strategies, as they presented an uncontrolled FP rate (greater
than 10%) in 57% and 99% of the parameter sets, respectively.
In the 2006 Cebulla strategy, the FP rate was under control.
However, when implementing the progressive increase of the
critical value (referring to Stürzebecher’s 2013 strategy), the
parameter sets that use many test applications, caused the FP
to increase more than expected.

In order to perform a direct comparison of the optimization
of the parameters of each of the strategies, Pareto curves
were calculated in Fig. 1. In this sense, it is seen that each
point on the curve represents a set of parameters, while
the axes represent the detection rate and the detection time.
Stürzebecher‘s 2013 and Cebulla’s 2015 strategies were not
shown since their FP rate were mainly out of control amongst
the sets of parameters.

It is notable that the curve corresponding to Stürzebecher’s
2005 strategy is above the others, indicating a longer detection
time for equivalent detection rate values compared to other
strategies. This strategy reaches a maximum detection rate of
65.9%, while subsequent strategies reach this value 70 seconds
earlier.

Additionally, it is important to note that the curves related to
Cebulla’s 2006 and Cebulla’s 2015 Modified strategies display
a notable proximity, suggesting a similarity in the detection
rate and detection time. This consistency can be attributed to
the fact that both strategies use the same response objective
detector. In contrast, Stürzebecher’s 2005 strategy employed
another detector, which may explain its distinct differences
compared to the others.
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TABLE I
STRATEGY PERFORMANCE MEASURES USING ORIGINAL PAPERS GUIDELINES. ASTERISKS SHOW THAT THERE WERE

SIGNIFICANT DIFFERENCES BETWEEN A STRATEGY COMPARED TO THE PREVIOUS ONE

Strategies Single Shot Detection Rate False Positives Average Detection Time
2005 (I) 64.7%% 51.1% 3.6% 166s
2006 (II) 63.6% 54.5% 6.2% 158s*
2013 (III) 63.6% 61.4% 15.3% 139s*
2015 (IV) 63.6% 65.9% 11% 139s*

2015 (V) Modified 63.6% 61.4% 3.3% 164.5s*

Through a comparison between the values in Table I and
Fig. 1, an improvement is noted in both the detection time
and the detection rate of the strategies implemented with
optimized parameters. The test results faithful to the guidelines
of the papers show a performance progression between the
implementations of the strategies, but this progression is better
observed during the search for better parameters, where it is
possible to see the strategies improving.
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Fig. 1. Pareto curve of the parameter optimizations of the strategies.
The points on the curves represent a parameter set which presents
a detection rate (represented on the horizontal axis) and a detection
time in seconds (represented on the vertical axis). The dotted lines
represent the Single-Shot performance measures of the detectors.
Only strategies that maintained controlled levels of false positives
were plotted.

IV. CONCLUSIONS

Based on the analysis of the results presented in Fig 1, it is
possible to establish a direct relationship between an increase
in the detection rate and the detection time, as the strategies
progress. However, the application of Stürzebecher’s 2013
and Cebulla’s 2015 strategies showed significant limitations.
Stürzebecher’s 2013 strategy demonstrated little reliability, as
less than half of the optimized parameter sets fell within
the established confidence interval. This limitation was also
observed with Cebulla’s 2015.

Among all the strategies evaluated, the implementation
modified Cebulla et al., (2015) stood out as the most ad-
vantageous in terms of cost-benefit ratio. The optimization
of this strategy resulted in a higher detection rate relative

to the detection time, with its parameters remaining within
the established confidence interval. Cebulla’s 2015 Modified
strategy surpassed other approaches, including Cebulla’s 2006
strategy in some scenarios, having a significant standout in
mean detection time.

The results of this study demonstrate that Cebulla’s 2015
Modified stands out as the most reliable and effective, offering
a combination of high detection rate and parameter control
within the confidence interval. This suggests that’s strategy is
the most recommended option for the analysis of sequential
tests in objective audiometry.

This study aimed to validate the theory of sequential tests in
computerized audiometry for enhanced clinical performance,
including the potential application to infant EEG capture. Fu-
ture studies will consider separate investigations for comparing
EEG data, particularly given the challenges associated with
obtaining EEG data from children.
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