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Towards a Machine-Learning-Based Application for
Identification of Amorphous Drug Forms

Mateus C. Silva (o), Alcides Castro e Silva

Abstract—The amorphous drug structure represents an
important feature to be reached in the pharmaceutical field due
to its possibility of increasing drug solubility, considering that at
least 40% of commercially available crystalline drugs are poorly
soluble in water. However, it is known that the amorphous local
structure can vary depending on the amorphization technique
used. Therefore, recognizing such variations related to a specific
amorphization technique through the pair distribution function
(PDF) method, for example, is an important tool for drug
characterization concerns. This work presents a method to
classify amorphous drugs according to their amorphization
techniques and related to the local structure variations using
machine learning. We used experimental PDF patterns obtained
from low-energy X-rays scattering data to extract information
and expanded the data through the Monte Carlo method to
create a synthetic dataset. Then, we proposed the evaluation of
such a technique using a Deep Neural Network. Based on the
results obtained, it is suggested that the proposed technique is
suitable for the amorphization technique and local structure
recognition task.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8988

Index Terms—drug amorphization, monte-carlo method, deep
neural networks

I. INTRODUCTION

Active Pharmaceutical Ingredients (API) for drug formu-
lations production are usually used in their crystalline states
due to the physicochemical stability of these structures [1].
However, a frequently faced issue is the low solubility of
many crystalline drugs, which can impair their bioavailability
in the body [2]. Therefore, the approach that can be used to
overcome this problem is to turn the crystalline structures into
their amorphous phases, which have a higher internal energy
and can increase the solubility of drugs. The absence of a
long-range three-dimensional structural order characterizes the
amorphous structure. However, local organizations (short and
medium range) may exist [3], which generally results in global
structure disorder.

The complexity of such amorphous structures makes their
characterization challenging, primarily when the conventional
X-ray powder diffraction technique is used due to the broad-
ening peaks and the loss of information about the global
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molecular packing. Therefore, one way to deal with the
limitation of structural analysis related to the conventional
technique is to use the pair distribution function (PDF) method.
This analysis tool has been used, mainly in the last decade,
to describe local ordering in amorphous drug structures. This
method allows the identification of distances between atomic
pairs (atomic bonds), providing an intra- and intermolecular
"fingerprint" of the local structure and can be applied in the
characterization of amorphous, nano, and crystalline materials
[4]. In a typical PDF pattern, the x-axis represents the distance
between atomic pairs in the structure, and the peak integrated
intensity can provide information about the coordination of
that pair. Fig. 1 displays an example of a PDF for a crys-
talline drug, wherein correlation distances below 4.5 A usually
represent intramolecular distances, and above this value, the
distances represent intra plus inter and intermolecular atomic
pairs correlations.

There are several methods to reach the amorphous state
from a crystalline drug sample, such as solvent evaporation,
melt-cooling, spray drying, and milling, among others, leading
to different local structure ordering for the same chemical
compound. In a recent work, Martins et al. [5] demonstrated
the influence of spray drying, melt-cooling, and mechanical
milling processes in obtaining amorphous structures of the
drug hydrochlorothiazide. In that case, the authors, in addition
to demonstrating the occurrence of local amorphous structure
variation, also demonstrated the direct interconversion between
amorphous of the aforementioned drug, with different physical
and thermal stabilities, as well as their relaxation behaviors.
Therefore, advanced methods and features should be devel-
oped and applied in order to characterize amorphous drugs,
considering their impact on physical and chemical properties.

Herein, a machine-learning-based feature was developed to
identify, within a single chemical compound, those that exhibit
different structural conformations due to the amortization
process. After those processes, PDF patterns are obtained with
X-ray total scattering data. It is important to emphasize that the
goal of the present work is to use PDF patterns of crystalline
and amorphous samples that have already been characterized
elsewhere [6], [7], i.e., our focus is the validation of our
algorithm on PDF patterns recognition.

II. RELATED WORKS

The introductory section of this work highlighted that varia-
tions can be present in the local structure of amorphous drugs
depending on the amorphization technique used and also the
necessity of advanced methods to characterize and identify
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Fig. 1. Pair Distribution Function pattern for a crystalline drug.

such complex structures. In that regard, machine learning
features explored in several fields are stated as an important
tool that can be used, for example, to recognize the drug
amorphization method based on the local structure. In this
section, we explore the novel technologies created towards
this end. Given their objectives or methods, we explored the
literature that describes similar works.

In the work proposed by Jiang et al. [8] they experimented
with several machine learning techniques to predict the glass-
forming ability (GFA) from 171 drugs. These authors evalu-
ated Support Vector Machines (SVM), XGBoost, and Random
Forest (RF) in two different forms to attribute a GFA score
to these drugs. Furthermore, they explored which variables
contributed the most to this score.

In another work, Jiang et al. [9] used a similar methodology
to classify the amorphization and chemical stability of 760
formulations containing 49 APIs using hot-melt extrusion
(HME) as the amorphization method. The authors employed
models and data of different natures than this work to perform
their classification.

In a previous work, Alhalaweh et al. [10] performed the
predictions of the glass-forming ability and crystallization ten-
dency of drug molecules. Their approach uses a support vector
machine (SVM) to perform both classification methods. The
usage of classical machine learning methods differs from our
neural network approach, as does the nature of the evaluated
data.

Fink et al. [11] evaluated using several classic machine-
learning models to predict the formation of co-amorphous
systems. They used XGBoost, Random Forest, SVM, and
KNN classifiers to evaluate a set of descriptor variables. There-
fore, this work uses different methods and data concerning a
different nature to evaluate their desired outcome.

Nguyen et al. [12] proposed an arbitrary machine-learning
model to predict the solubility of amorphous drugs. They used
two variables obtained from their experiments to predict the
desired feature. The authors produced a regression model,
while this work approaches a classification model. Also, the
nature of the input data is very different from the one proposed
in this work.

Our work differs from their approach as we study the
usage of Neural Networks aiming to identify and classify the
amorphization method and the local structure of the amor-
phous phase among different PDF patterns provided, yielding
a type of search-and-match features for classification. This
approach displays some related works concerning the usage
of machine learning in the context of drug amorphization.
The preliminary analysis suggests that this work differs from
previously published material in several aspects. This overview
suggests the novelty of this work, given the possibility of
working with machine learning within the context of drug
amorphization and the novel approach herein presented.

III. MATERIALS AND METHODS

These experiments’ availability requires using several PDF
patterns for different samples. However, for initial test con-
cerns, we started by evaluating a synthetic dataset generated
from three different experimental PDF patterns obtained by us.
Initially, as a proof-of-concept, we evaluated the flubendazole
(FBZ) drug used to treat gastrointestinal nematode infections
[13]. For this purpose, we obtained three PDF patterns of this
drug, one for its crystalline form and the other patterns for
the amorphized FBZ obtained by ball-milling and evaporation
methods.

The ball-milling amorphous sample was characterized in the
work proposed by Bezzon and co-workers (2022) [7], wherein
PDF and Reverse Monte Carlo (RMC) methods were used
to describe the amorphized structure of FBZ fully. In that
work, the FBZ crystal structure for the crystalline sample was
also analyzed using the PDF method, including the adjustment
between the measured and calculated patterns indicating the
crystalline nature of the precursor sample.

In the evaporation sample, the FBZ was incorporated in
a polymeric matrix, both in the amorphous state, wherein
the final sample was obtained through the solvent-evaporation
technique. Thus, the PDF from the solvent-evaporation tech-
nique represents a more complex case for the identification by
our algorithm. This sample that comprises amorphous FBZ
in a hydroxypropyl methylcellulose matrix was analyzed in
the work proposed by Bezzon et al. (2021) [6] using X-ray
total scattering and derivative differential PDF, evidencing the
amorphous nature of the sample. The methodologies used to
obtain the sample, as well as the PDF patterns, are entirely
described in the above-mentioned works.

Fig. 2 shows the experimental PDF patterns for each sample.
The blue line is the PDF acquired for the crystalline form, the
green line displays the PDF obtained from the ball-milling
process (amorphous state), and the red line is the PDF achieved
from the evaporation process (amorphous state).

From these data, we created a synthetic dataset using these
patterns as baselines. We employed the Monte Carlo method
to produce 2000 samples for each class. According to Harrison
[14], the monte-carlo simulation has no unique shape but
requires a set of steps:

o Defining a probability function;

o Sampling the data;

o Compute the sampling data.
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Pair Distribution Functions

Fig. 2. Pair Distribution Functions patterns for crystalline (blue line),
amorphous through ball-milling (green line), and amorphous through
evaporation (red line) samples.

A. Synthetic Dataset using Monte-Carlo Method

We developed our work according to the perspective pro-
posed by Harrison [14], which is specified as follow.

o Defining a probability function: Our goal was to insert
white noise to each distribution, considering that the
result may be affected by several aspects during the
experimental stage. For this matter, the selected noise is
sampled by a uniform distribution.

« Sampling the data: In this stage, we intended to generate
a noised PDF pattern instance resembling the original
one. For this matter, each i-th instance of G(r;) value
on the original data, we sampled an uniform distributed
factor f; within the interval f € [0.6,1.4].

o Compute the sampling data: After sampling the data
from the uniform distribution, we employed the sampled
factor f; individually obtained for each i-th value of
G(r;). With this method, we generated a noised instance
G(r;) = fixG(r;),Vi € [0, iaz). This method describes
how to create a single G(r) noised distribution from the
original sample. We repeated this process 2000 times
for each class, generating a balanced synthetic dataset
with 6000 samples. Fig. 3 displays the noise distribution
obtained for each sample.

The produced dataset contains 6000 samples, where 2000
belong to each class. For training purposes, we separated our
dataset among three different sets: training, validation, and
test. The separation among the three classes initially shuffled
the samples from the dataset. Then, as this approach is novel,
we established an initial baseline for separation. Therefore, we
separated 70% of the produced samples for training, 15% for
validation, and 15% for testing. As the sampling is random,
this process was repeated after all testing to ensure the results
repeatability.

B. Deep Neural Network (DNN) model

In this approach, we suggested the use of a deep neural
network as the model for classifying the sample into three cate-

Noise range for crystalline FBZ

G(r)

rIAl

Noise range for amorphous FBZ (evaporation)

riAl

Noise range for amorphous FBZ (ball-milling)

G(r)

riAl

Fig. 3. Noise distribution obtained for each sample. The gray shadow
was obtained from the samples of the synthetic dataset. The solid
black line represents the original experimental samples. The first
subplot displays this data for the crystalline FBZ, the second for
the amorphized by evaporation, and the third for the amorphized by
ball-milling.

gories: crystalline, amorphized by the ball-milling method, and
amorphized by the solvent-evaporation method. We employed
the synthesized dataset created using the Monte-Carlo method,
according to the aforementioned rules. As stated in Section
II, this approach’s novelty also comes from the employed
techniques.

We tackled the issue with a straightforward DNN model,
consisting of three hidden layers. The input layer receives the
1081 values from the PDF pattern for each amorphization
technique. We then utilized three fully-connected (dense)
layers, each with 16 neurons, employing the ReLu. The
classification is performed using a three-neuron output layer
with the Softmax activation function. The final output predicts
the input sample’s category for each of the three presented
methods. Figure 4 provides a visual representation of the
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proposed architecture.
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Fig. 4. Illustration of the DNN Architecture.

This architecture was selected for its simplicity and ease of
implementation. We utilized the Tensorflow/Keras framework
to develop and train the proposed model. The optimizer
function employed in this case was ADAM, with a learning
rate of 1 x 107, The loss function used in this task is the
categorical cross entropy. The learning rate is dynamically
adjusted, reducing if the validation loss reaches a plateau for
ten epochs. Finally, the training runs for a maximum of 2000
epochs, with an early-stopping mechanism configured for a
plateau of 20 epochs, ensuring the model’s reliability and
accuracy.

C. Evaluation Metrics

The evaluation of a machine-learning model uses a set
of known metrics. One of these metrics is global accuracy,
which indicates the number of correctly predicted samples.
Nevertheless, this evaluation requires further metrics to study
the number of false positives and false negatives. Therefore,
we use Precision, Recall, and the FI-Score as evaluation
methods [15].

TP
Precision TP+ TP 1
TP
= — 2
Recall TP L FN )
Fl-Score — 9 x Precision x Recall 3)

Precision + Recall

In this context, the term “true positive” (1'P) refers to samples
successfully classified as belonging to the positive class by the
classifier. Similarly, “true negative” (T'/N) denotes the samples
correctly classified as belonging to the negative class. A “false
positive” (F'P) occurs when the classifier wrongly classifies
the model as belonging to the positive class. At the same time,
a “false negative” (F'N) occurs when the model is incorrectly
categorized as belonging to the negative class. Additionally,
we employed the confusion matrix as the ultimate evaluation
metric on the test dataset. This matrix presents the allocation
of accurate and inaccurate categorizations for each class.
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IV. RESULTS

The previous section presented the methods used in this
work and the evaluation methods produced. This section
discusses the obtained results. Initially, we evaluate the model
training. Then, we discuss the metrics regarding the classifi-
cation model.

A. Model Training

We separated our dataset into three different sets: Training,
validation, and test. We separated 70% of the produced sam-
ples for the training dataset, 15% for validation, and 15% for
the test set. Our training happened according to the parameters
established in Section III. Initially, we evaluate the evolution
of the training and validation loss and accuracy, presented in
Fig. 5.

Training and Validation Accuracy Training and Validation Loss

Accuracy

2.004 —— Training Loss

104 Validation Loss

0.9 +
0.8 1
0.7 +
1.00 1

0.6 1
0.5 1
0.50

0.4 1
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Validation Accuracy [ 0.004

T T T T T T T T T T
o] 50 100 150 200 o] 50 100 150 200
Epochs Epochs

Fig. 5. Training results. The blue line displays the values for training,
and the orange line represents the values for validation.

The results from this stage indicate that the solution did
not overfit towards the training set, as both the loss and the
accuracy evolution lines converge. Nonetheless, the quicker
convergence from the validation dataset indicates a slightly
biased dataset. This result is not surprising, given the usage
of scarce data to produce the given solution.

B. Model Evaluation

After starting with the training analysis, we also need to
validate the model according to the proposed metrics. We start
by overseeing the confusion matrix produced in evaluating the
test dataset. Fig. 6 displays the confusion matrix obtained in
this evaluation, presented in percentages. The confusion matrix
in untrained data corroborates with the results from the training
stage. This model generalized its solution in the context of the
given dataset.
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Fig. 6. Confusion Matrix obtained from the Classification Model.

Finally, we present the metrics of Precision, Recall, and
F1-Score for each class. The confusion matrix demonstrates
that neither false positive nor false negative was produced.
The test dataset contains 282 samples of data from crystalline
drugs, 322 samples of drug amorphized by ball-milling, and
296 samples of drug amorphized by evaporation. The model
was able to classify all samples correctly. Table I individually
displays the metrics for each class, the macro average, and the
average weighted by the number of samples of each class.

TABLE I
EVALUATION METRICS FOR THE CREATED MODEL
Precision  Recall F1-Score  Support

Crystalline 1.00 1.00 1.00 282
Ball-milling 1.00 1.00 1.00 322
Evaporation 1.00 1.00 1.00 296
Accuracy 100%

Macro Avg. 1.00 1.00 1.00 900
Weighted Avg.  1.00 1.00 1.00 900

The results obtained indicate the initial feasibility of the
proposed method. Using a simple deep-learning technique was
enough to produce a model that could differentiate all samples
from the untrained set. Nevertheless, there are some limitations
to this method. Real data is scarce, which favors the creation
of a biased dataset. This also limits the reach of this work,
as further testing is required to evaluate the generalization of
this technique.

V. CONCLUSIONS

In this work, we developed a machine-learning-based
method to classify the amorphization technique and, con-
sequently, the drug’s local structure using Pair Distribution
Function (PDF) patterns obtained from X-ray total scattering
diffraction data. We used the Monte Carlo method to produce
a synthetic dataset from real samples and trained a deep neural
network to perform the classification task.

Drug amorphization is a feature that can be used to solve the
issue of low solubility frequently faced in crystalline pharma-
ceutical formulations that often face low solubility problems.
The amorphization reduces the long-range structure ordering,
increasing the inner energy and its solubility. Some authors
present machine-learning-based methods to assess aspects of
amorphous drugs. Nevertheless, these authors employ different
approaches, techniques, data nature, and aims, which ensure
the novelty of the proposed work.

The available data is scarce. Therefore, we selected the
Monte Carlo method to generate a synthetic dataset with more
diversity. The data was noised using a uniform distribution
to reach a white noise condition. Then, we proposed the
architecture of a Deep Neural Network to differentiate the
samples between each class. The proposed method was able
to differentiate all samples among the three classes. Although
the results are promising, the limitations of the proposed
experiments require more data, tests, and results to ensure the
feasibility of this proposal.

Future works require creating more samples from the same
drug to evaluate its diversity. Also, the same technique can be
tested with different drugs to expand the comprehension of the
proposed technique. It is essential to highlight that our work
can also be considered as a promising application for quality
control of solid-state batches wherein automatic recognition is
desired.
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