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 Abstract— Vehicle counting systems detect, classify, and count 

vehicles with sensors or image processing, providing valuable 

information for road management. Image processing systems 

provide detailed information on vehicle flow with adequate 

lighting conditions and a higher computational cost compared to 

sensor systems. The image processing systems with higher 

accuracy require higher computational cost. This feature limits 

the number of application cases in cities with low technology level. 

This research analyzes urban vehicle counting using an automatic 

image processing system using YOLOv5 in the vehicle detection-

classification stage and the SORT algorithm in the tracking stage. 

The study used videos recorded from a pedestrian bridge in 

Popayan, Colombia, for an exploratory study of the influence of 

preprocessing operations on the performance of a low-tech vehicle 

counting system. The study performed a comparative statistical 

analysis to determine the impact of different settings on system 

performance. An ANOVA analysis evaluates the incidence of 

frame cut and reshape on YOLO processing. The results indicate 

that a 30% cut of the image area prior to YOLO processing 

produces the lowest weighted average error. In addition, the frame 

reshape only increases the processing time. The study proposes 

improvements in the performance of an offline automatic vehicle 

counting system from the video preprocessing stage. 

 

Link to graphical and video abstracts, and to code: 

https://latamt.ieeer9.org/index.php/transactions/article/view/8943 

 
Index Terms— Image processing, Object tracking, Traffic 

control, Vehicle detection.  

I. INTRODUCTION 

onstant urban growth generates many vehicles on the 

roads of a city at different hours of the day. 

Uncontrolled vehicular flow generates traffic 

congestion and increases urban travel time [1]. Road 

management regulates vehicular flow through the distribution 

of roads, the choice of the direction of vehicular travel, and the 

planning of new roads for the city [2]. Accurate monitoring of 

urban vehicular flow is essential to ensuring efficient road 

mobility management [1]. Vehicle counting determines the 

number, speed, and types of vehicles traveling on a road [2]. 

Urban road management should establish adequate use of roads 

to minimize traffic jam [3], and automated vehicle counting 

provides valuable information for road management [4]. 

Automatic vehicle counting uses magnetic induction 

sensors, radar, infrared, and image processing [5] [6]. These 
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systems detect vehicles, count their number, measure speed, 

and classify vehicle types [6]. As nonintrusive methods, they 

collect detailed information about traffic patterns and support 

the optimization of vehicular flow [7]. Sensor-based vehicle 

counting methods calculate the number and speed of vehicles 

but have difficulty distinguishing among distinct types of 

vehicles [8]. On the other hand, image processing under proper 

lighting conditions measures the number and types of vehicles, 

speed, flow patterns, and roadway trends [9]. 

Vehicle counting methods with image processing have 

different advantages and limitations for collecting detailed 

information on urban traffic flow. One of the advantages is their 

ability to capture detailed visual information on vehicle 

quantity and classification, movement pattern analysis, and 

speed. However, the main disadvantage is the computational 

cost of implementing image processing compared to the use of 

sensors [10], this limits the number of application cases in cities 

with low technology level. Vehicle counting by image 

processing has two stages: detection-classification and 

tracking. For the information it provides, the stage of greatest 

impact is detection-classification. Both static and dynamic 

methods can be used in this stage [11]. Static methods use 

techniques such as histograms of oriented gradients, 

background subtraction, or successive comparisons of frames 

to determine the presence, type, and speed of vehicles in a 

certain region of the analyzed video [12]. Dynamic methods use 

trained convolutional neural network (CNN) to identify, count, 

and classify vehicles with speed measurement [13]. The 

limitations of static methods are adverse weather conditions and 

lighting variations, depending on their calibration [14]. 

Dynamic methods are adaptive to different environmental 

scenarios, but they increase the computational cost compared to 

static methods [15]. A commonly used dynamic method is 

YOLO (You Only Look Once) because it is a CNN with high 

processing speed [16], [17]. In the vehicular tracking stage, 

there are methods such as least squares [18], particle filtering 

[19], color histogram tracking [20], feature tracking [21], and 

SORT (simple online real-time tracking) [22], [23]. Any 

vehicle tracking method relies on the information provided by 

the vehicle detection-classification method. 

Multiple projects have studied automatic vehicle counting 

using YOLO for vehicle detection-classification. Jiao and Wang 

proposed a system with vehicle tracking using a Kalman filter to 
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make vehicle inferences under occlusion conditions, reducing the 

computational cost by implementing masks in each frame of the 

videos [24]. Bisht et al. incorporated the detection-classification 

of high-priority vehicles such as ambulances, fire trucks, and 

police patrols under low, medium, and high vehicular traffic 

conditions. The mean average precision (mAP) of YOLO was 

62.2% with 35 frames per second (FPS) of processing [25]. Dave 

et al. analyzed different versions of YOLO for the vehicle 

detection-classification stage, evaluating accuracy and 

processing time with up to 50% object overlap in day and night 

illumination conditions, but found that shorter processing time 

causes lower accuracy independent of illumination type [26]. In 

general, in research related to automatic vehicle counting using 

YOLO, the higher the processing speed or the older the YOLO 

version for low computational cost, the less likely it is to achieve 

vehicle classification accuracy above 90%—and there is no 

information on the type of YOLO configuration prior to 

implementation [27]. 

Regarding vehicular image preprocessing, Jeong et al. [28] 

generate images by placing the objects of interest on real 

backgrounds to increase the size of the YOLOv2 training 

dataset. For license plate recognition with YOLOv3, Setiyono 

et al. [29] increased the brightness and reduced the noise of the 

training dataset images, achieving 98.2% accuracy. For the 

detection of various vehicles and pedestrians in cloudy weather 

conditions with YOLOv3, Liu et al. [30] varied the contrast and 

brightness of the images prior to YOLO processing, achieving 

a mAP of 72.03% with haze. These researches performed image 

preprocessing to increase YOLO accuracy without analyzing 

the impact of these techniques on processing time. 

The present research developed a vehicle counting system 

using YOLOv5 in the detection-classification stage and SORT 

in the tracking stage. The SORT algorithm relies exclusively on 

the information provided by YOLO. The goal of the developed 

system is to ensure adequate vehicle counting with low 

computational cost. The evaluation of the vehicle counting 

system used videos recorded from a pedestrian bridge in the city 

of Popayan, Colombia. To develop an exploratory study of the 

influence of preprocessing operations on the performance of the 

proposed system, its algorithm allows generating 10, 30, and 

50% vertical cuts and reshapes from 640 x 480 pixels to 640 x 

640 pixels of the video frames before YOLO processing. An 

ANOVA analysis evaluated the incidence of frame cuts and 

reshapes prior to YOLO processing. The performance metrics 

for this research are the weighted average relative counting 

error and the processing time increment. An ANOVA with 

Tukey HSD (honestly-significant-difference) test indicate that 

a 30% cut of the image area before YOLO processing provides 

the lowest weighted average error compared to all other cases. 

The reduction in processing time is proportional to the frame 

cut performed, with the best case being a 50% cut. Regarding 

the frame reshape, it only influences the increase in processing 

time, so its implementation is not advisable. 

II. MATERIALS AND METHODS   

This research evaluates the influence of image preprocessing 

for YOLO used in a vehicular counting system with low 

computational cost. This section analyzes the limitations of 

YOLO, such as input image size and object display resolution. 

Followed by the YOLO architecture selection according to the 

stablished conditions. As such, the study proposes to analyze 

the impact of two preprocessing operations on the performance 

of YOLO in an automatic vehicle counting system: cutting and 

reshaping images.  

 
Fig. 1. YOLO operating scheme [31]. 

 

The following two sections describe the vehicular flow 

videos used along with the dataset, training, and validation of 

the CNN YOLO used in the study. The next section explains 

the performance metrics proposed for the different tests with 

the levels of frame cut (0%, 10%, 30%, and 50%) and frame 

reshape (640x480 pixels and 640x640 pixels) evaluated in the 

vehicular counting videos. The last section describes the 

statistical analysis with ANOVA analysis and the Tukey HSD 

test. 

A. Image Preprocessing for YOLO 

YOLO is known for its ability to detect and classify objects 

in images and videos with a higher processing speed than other 

CNN algorithms, such as faster region-based convolutional 

neural network [31]. The visual processing starts by dividing 

the input image into a grid with SxS frames (where S is a 

predetermined number multiple of 32). For each frame and each 

possible associated anchor box, YOLO predicts the coordinates 

(x-center, y-center, width, height) of the bounding box, the 

probability that it contains an object, and the probability of a 

specific class. Thresholds on confidence and class predictions 

filter out irrelevant or unreliable detections. To reduce the 

redundancy of detections, non-maximum suppression 

eliminates duplicate detections based on the overlap and 

confidence of the detections. The final output is a list of 

bounding boxes along with the class labels and associated 

confidence probabilities (Fig. 1) [31]. 

Since its initial structure presented in 2016 [32], YOLO has 

performed object detection with image splitting with the SxS 

grid. Likewise, the prediction confidence depends on the input 

image resolution. Two limitations of YOLO are the size of the 

input image (the larger the image, the longer the processing 

time) and the display resolution of the objects. If there are too 

many small objects with respect to the SxS grid, there is a lower 

possibility of correctly detecting the object. Because of these 
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limitations, this research proposes to analyze the influence of 

two image preprocessing operations on the performance of 

YOLO in an offline automatic vehicle counting system, as 

follows: 

● Cut: In all vehicle counting systems [27], the counting 

region is close to the recording point; the information of 

interest is in a certain area. Therefore, the frame cut 

eliminates regions that do not influence the vehicle count 

and classification. This study analyzes a cut of 0 (C0), 10 

(C10), 30 (C30), and 50% (C50) of the background region 

of each of the video frames. 

● Reshape: In training, YOLO resizes images to a square 

shape for faster identification. If the object of interest has 

a low resolution with respect to the SxS grid, the 

predictive confidence of YOLO decreases. A reshape step 

before sending the video frames to YOLO generates the 

objects of interest to be as square as possible to increase 

the probability of a correct prediction. This study analyzes 

the influence of normal-sized frames (R0-640x480 pixels) 

and resized frames (R1-640x640 pixels). To ensure 

correct object detection, the study does not consider a 

resized frame of 480x480 pixels. 

B. YOLO Architecture Selection 

Initially, this research considered the evaluation of YOLO 

v3, v4, v5, v6, v7, v8 for vehicle detection and classification 

[27][31]. YOLOv3 is the first version of YOLO with backbone, 

but the newer versions are built with upgrades of its. The 

architectures of YOLOv4 and YOLOv5 are similar, and 

YOLOv5 has a continuous upgrade reached in the end of 2022 

the version 7.0. Therefore, the YOLO versions evaluated are 

v5, v6, v7, and v8. The selection process is based on the metrics 

of AP (average Precision) and FPS (frame per second) with an 

image size of 640 pixels described in the review by Terven et 

al. [32]: 

- YOLOv5-7.0: 50.7% AP and 200 FPS on a NVDIA 

V100. 

- YOLOv6: 52.8% AP and 98 FPS on a NVDIA Tesla T4. 

- YOLOv7: 53.1% AP and 114 FPS on a NVDIA V100. 

- YOLOv8: 53.9% AP and 280 FPS on a NVDIA A100 

and TensorRT 

YOLOv8 has the highest FPS for an image size of 640 pixels, 

followed by YOLOv5-7.0. The difference between the lowest 

(YOLOv5-7.0) and the highest (YOLOv8) AP is 3.2%. To 

achieve this difference, YOLOv8 requires a higher 

computational cost to implement the model with a complex 

backbone, neck and head structure (Fig. 2) [32]. According to 

the criterion of low computational cost, this study worked with 

YOLOv5-7.0 architecture. 

C. Traffic Flow Videos 

The investigation by Hurtado-Gomez et al. [33] provided the 

videos analyzed for vehicle counting for the present 

investigation. The location for the vehicle counting study was 

near a three-lane traffic signalized intersection in the city of 

Popayan, Colombia. The recording of the videos was from a 

4.5-m high pedestrian bridge with a 45° camera zenithal tilt, 

according to previous studies [27]. The videos are in mp4 

format with a resolution of 640x480 pixels and a duration 

between 3 and 4 minutes. 

 
a. COCO mAP vs Parameters in millions. 

 
b. COCO mAP vs Latency A100 Tensor RT. 

 
Fig. 2. Performance comparison of YOLO object detection models [32]. 

 

To ensure a constant vehicular flow and adequate 

illumination, the selected videos were recorded in the morning 

and afternoon hours, giving a total of six videos for vehicle 

counting analysis. A seventh video was used to extract frames 

and generate a specific training dataset (see Section 2.4.2), 

ensuring that in each selected video, objects of the classes of 

interest (bus-B, car-C, motorcycle-M, and truck-T) are present. 

Subsequently, as a point of comparison for the automatic 

vehicle counting system, the present study performed manual 

vehicle counting on the selected videos with total of vehicle 

count (VC) and video duration in seconds (VD) (Table I). 

 

TABLE I 

MANUAL VEHICLE COUNT OF THE VEHICULAR FLOW 

VIDEOS 

 

Count 

Video 

1 

Count 

Video 

2 

Count 

Video 

3 

Count 

Video 

4 

Count 

Video 5 

Count 

Video 6 

B 4 11 9 17 14 15 

C 65 104 103 94 82 69 

M 47 39 42 42 38 35 
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T 5 12 2 15 15 13 

VC 129 168 159 171 151 136 

VD 231 219 245 224 222 233 

 

 
Fig. 3. Diagram of the operation of the proposed system. 

D. Automatic Offline Vehicle Counting System 

The proposed system has two stages: the detection-

classification stage using YOLOv5-7.0 [32] and the tracking 

stage using SORT. The choice of YOLOv5-7.0 over other 

versions is because of its ease of use, adaptability to various 

requirements, performance, and speed. The tracking stage uses 

SORT because this algorithm works with bounding boxes. 

YOLO provides these components, allowing proper integration 

of the two stages of operation [22]. An Intel Core i7 12650H 

computer with an NVIDIA GeForce RTX 3060 graphics card 

(6 GB) and 16 GB of RAM developed all the tests of the vehicle 

counting system. 

The operating process of the developed system (Fig. 3) is as 

follows: 

1. Algorithm initialization: selection of the relevant 

YOLO (YOLO trained with the types of vehicles for detection 

in the videos) and configuration of the SORT tracking 

algorithm (maximum number of frames without receiving a 

tracking update, minimum number of tracks, and intersection 

over union threshold to generate tracking).  

2. Video load: loading of the study vehicle flow video.  

3. Preprocessing configuration: adjustment of the 

processing variables to generate a vertical cut of the frame (0, 

10, 30, or 50% of the final part of the frame) and a reshape of 

the frame (640x480 or 640x640 pixels).  

4. Video processing: playback of the video frame-by-

frame with preprocessing configured followed by vehicle 

detection, classification, and tracking. The algorithm counts 

vehicles as each one crosses a vertical threshold. 

5. Display of results: once the video processing is 

finished, the algorithm displays the vehicle counting 

information obtained (number of buses, cars, motorcycles, and 

trucks). 

E. YOLO for Vehicle Counting 

- YOLO training 

There are five standard versions of YOLOv5: nano (N), small 

(S), medium (M), large (L), and extra-large (X). The difference 

between each is the number of neural layers and 

interconnections between them that make up the CNN. The 

YOLOv5 X version has the highest confidence level in the 

classification of the object of interest and the longer the 

processing time.  

All versions of YOLOv5 have been pretrained with the 

common objects in context (COCO) image dataset. This dataset 

has more than 200,000 labeled and segmented images for 

training in the recognition of 80 classes of objects such as 

people, animals, cars, airplanes, and ships, among others. The 

use of a pretrained YOLOv5 in a specific case does not ensure 

high accuracy in the recognition of the objects of interest. In 

this research, the training of YOLOv5 presents a general phase 

for matching the CNN with the classes of interest and a specific 

phase for recognition in the operating environment of the 

vehicular counting system. 

- General training phase 

In the general phase, using the Python library “FiftyOne”, 

from the COCO images, the research created a dataset of 12,000 

images with the classes of interest called COCO-vehicles (Fig. 

4) to generate more detailed training.  

With the COCO-vehicle dataset, the training of the five 

versions of YOLOv5 with learning transfer froze the 10 layers 

of the backbone. All training was done with 600 epochs and an 

early patience stop of 300 epochs. The YOLOv5 X version 

obtained the best confusion matrix; however, in preliminary 

tests with the vehicular counting system, the processing time 

increased by over 400% compared to the video time. For this 

reason, the proposed vehicular counting system implemented 

the YOLOv5 L version with the second-best confusion matrix 

(Fig. 5), and higher latency than X version (see Fig. 2). 
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Fig. 4. Confusion matrix of YOLOv5 L with COCO-vehicle. 

 
Fig. 5. Confusion matrix of YOLOv5 L with COCO-vehicle. 

 

 
Fig. 6. Training image of the specific dataset. 

 

 
Fig. 7. Confusion matrix of YOLOv5 L with COCO-vehicle and specific 

dataset. 

 

 

 

 

 

- Specific training phase 

From the seventh vehicle flow video provided by Hurtado-

Gomez et al. [33] with road traffic and lighting conditions like 

the study videos, the specific training phase extracted frames in 

which it identified the classes of interest with their respective 

segmentation in Roboflow [34]. The data augmentation process 

with the distortion, exposure, saturation, brightness, vertical 

rotation, and Gaussian noise filters provided 212 images (Fig. 

6).   

The second YOLOv5 L training was with a specific dataset 

and transfer learning by freezing the 10 layers of the backbone. 

The training had 600 epochs, and an early patience stop of 300 

epochs. The confusion matrix associated with the specific 

training has a correct prediction percentage above 90% (Fig. 7). 

- Recognition of classes of interest 

After successful validation of YOLOv5 L, a video analysis 

verified the proper detection and classification of vehicles of 

interest in the vehicle counting videos for subsequent tracking 

with SORT (Fig. 8). 

 
a. Detection and identification by YOLO. 

 
b. Tracking by SORT 

 
Fig. 8. Developed automatic vehicle counting process. 
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F. Performance Metrics of the Proposed Vehicle Counting 

System 

Because the proposed system provides the count of vehicles 

of interest in each of the vehicular flow videos as performance 

metrics, the present study from (1) proposes a weighted average 

relative counting error (WARCE) of the classes (2) and a 

processing time increment (PTI) for each preprocessing 

configuration (3).  

 𝐸𝑅𝑖 =
|𝐶𝑠𝑖−𝐶𝑚𝑖|

𝐶𝑚𝑖
∗ 100% (1) 

Where: 

i: Is a particular class (B, C, M or T).  

𝐸𝑅𝑖: Is the relative error associated to the class i 

𝐶𝑠𝑖: System vehicle count associated to class i. 

𝐶𝑚𝑖: Manual vehicle count associated to the class i 

 𝐸𝑅
̅̅ ̅ =

∑ 𝐸𝑅𝑖∗ 𝐶𝑚𝑖

∑ 𝐶𝑚𝑖
∗ 100% (2) 

Where: 

𝐸𝑅
̅̅ ̅ : weighted average relative counting error (WARCE) 

∑ 𝐸𝑅𝑖 ∗  𝐶𝑚𝑖: Influence by the number of vehicles of the 

relative error associated with class i. 

∑ 𝐶𝑚𝑖 : Total number of vehicles counted manually. 

 𝑇𝐼 =
𝑇𝑝

𝑇𝑣
∗ 100%. (3) 

Where: 

𝑇𝐼  : Processing time increment (PTI) 

𝑇𝑝: Processing time 

𝑇𝑣: Video duration time 

Typically, automatic vehicle counting systems perform a 

global count of vehicles without detailing the counting error 

associated with each of the classes of vehicles studied, so they 

use accuracy according to the correct and erroneous detection 

of objects (4) [14].  

 𝐴𝐷 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100% (4) 

Where: 

𝐴𝐷: Detection Accuracy. 

𝑇𝑃: True Positives, value of correct identifications. 

𝐹𝑃: False Positives, value of false identifications. 

As a comparison metric with respect to other vehicle counting 

systems, the present research will use the count accuracy (AC) 

with respect to the counting error [36] according to WARCE 

(5). This type of accuracy is based on detailed information 

about the counting error associated with each vehicle class 

studied. 

 𝐴𝐶 = 100% − 𝐸𝑅
̅̅ ̅ (5) 

G. Performance Evaluation of the Proposed Vehicle Counting 

System 

According to the exploratory study of the influence of 

preprocessing operations on the performance of the proposed 

system, the analysis factors are the frame cut with levels of 0 

(C0), 10 (C10), 30 (C30), and 50% (C50) and the frame reshape 

of 640x480 (R0) and 640x640 pixels (R1). With the WARCE 

and PTI data for each of the videos in all combinations of the 

factors, an ANOVA analysis with an α of 0.05 evaluates the 

influence of these on the performance of the vehicle counting 

system. Subsequently, a Tukey HSD test determines the best 

possible preprocessing configuration according to the 

established factors.  

The present research proposes two hypotheses:  

● There is an influence of the frame cut in the video 

preprocessing stage on the performance of a vehicle 

counting system that uses YOLO for vehicle detection 

and classification. 

● There is an influence of the frame reshape in the video 

preprocessing stage on the performance of a vehicle 

counting system using YOLO for vehicle detection 

and classification. 

III. RESULTS AND DISCUSSION 

A. Measurement of Vehicle Capacity 

In all the selected videos, the developed system performed 

the vehicle counting with each of the eight possible 

combinations between the cut and reshape levels of the frame 

(C0-R0, C10-R0, C30-R0, C50-R0, C0-R1, C10-R1, C30-R1, 

and C50-R1; see Fig. 9).  

Regardless of the combination, the count threshold was the 

same reference region for the vehicles of interest (Table II).  

The information processing of all videos calculates WARCE 

and TPI metrics to statistically analyze the influence of the 

preprocessing performed on each frame (Table III). 

B. Statistical Analysis 

The data obtained satisfy with an adequate and statistically 

reliable distribution because the statistical residuals do not 

present normality, equality of covariance, or dependence 

among them. After corroborating the statistical validity of the 

experimental data, the ANOVA analysis and Tukey HSD test 

for both performance metrics evaluated the incidence of cut, 

reshape, and videos studied in the results obtained. Regarding 

this last parameter, for WARCE (Table IV) and TPI (Table VI), 

there is no influence of the processed vehicular flow video, i.e., 

there is homogeneity between the studied videos, and the videos 

do not affect the results of the performance metrics of the 

proposed vehicular counting system. 

 

 
a. C0-RO b. C0-R1 
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c. C10-R0 d. C10-R1 

 
 

e. C30-R0 f. C30-R1 

 
 

g. C50-R0 h. C50-R1 
 

Fig. 9. Preprocessing configurations for offline automatic vehicle counting 

system. 

 
TABLE II 

COUNTING AND PROCESSING TIME OF THE PROPOSED VEHICLE 

COUNTING SYSTEM 
 

C0-

R0 

C10-

R0 

C30-

R0 

C50-

R0 

C0-

R1 

C10-

R1 

C30-

R1 

C50-

R1 

Video 1 

B 1 6 3 1 2 5 3 1 

C 78 75 66 71 80 77 69 83 

M 40 38 50 46 42 42 49 42 

T 5 2 1 5 1 2 3 3 

VC 124 121 120 123 125 123 124 129 

VD 331.0

8 

345.0

5 

320.5

8 

322.1

7 

432.6

6 

432.1

3 

430.2

5 

317.9

1 

Video 2 

B 27 18 10 10 12 17 6 17 

C 89 93 94 108 101 98 104 109 
M 36 39 50 27 37 32 42 26 

T 15 13 7 13 14 16 8 13 

VC 167 163 161 158 164 163 160 165 
VD 313.2

2 

348.3

5 

298.4

7 

276.2

2 

363.0

5 

338.9

9 

313.0

4 

275.6

9 

Video 3 

B 6 6 12 13 8 7 8 15 
C 111 106 105 109 97 95 89 94 

M 24 28 29 19 21 20 29 20 

T 3 7 2 0 2 5 2 1 
VC 144 147 148 141 128 127 128 130 

VD 377.7

9 

293.9

9 

341.7

3 

342.5

7 

474.7

9 

457.2

4 

399.6

3 

349.7

5 

Video 4 

B 24 22 15 12 19 25 20 19 

C 105 111 97 106 102 101 96 118 

M 40 33 49 41 46 44 50 33 

T 14 9 14 14 17 13 13 10 

VC 183 175 175 173 184 183 179 180 

VD 331.7
9 

355.3
4 

307.4
8 

314.5
6 

391.6
7 

403.0
6 

318.6
5 

252.2
6 

Video 5 

B 6 10 8 5 3 8 11 9 

C 87 79 89 97 98 89 85 95 

M 45 40 41 35 40 40 39 32 

T 12 20 11 14 10 13 18 13 

VC 150 149 149 151 151 150 153 149 

VD 327.2
4 

360.8
8 

314.1
4 

268.8
6 

412.9
4 

413.0
9 

339.6
8 

290.3
1 

Video 6 

B 9 11 11 5 3 5 5 5 

C 81 75 69 75 86 92 75 74 

M 35 37 38 32 30 25 38 39 

T 9 8 12 15 13 10 13 9 

VC 134 131 130 127 132 132 131 127 

VD 380.2

8 

389.4

6 

327.0

6 

311.0

6 

448.6

4 

424.8

3 

364.4

9 

302.1

7 

 

TABLE III 

PERFORMANCE METRICS OF THE PROPOSED VEHICLE 

COUNTING SYSTEM 

Performa
nce 

metrics 

C0-

R0 

C10-

R0 

C30-

R0 

C50-

R0 

C0-

R1 

C10-

R1 

C30-

R1 

C50-

R1 

Video 1 

WARCE 

(%) 
19.01 19.83 7.44 8.26 

21.4

9 
17.36 7.44 

23.1

4 

TPI (%) 
143.3

2 
149.37 

138.7

8 

139.4

7 

187.

30 

187.0

7 

186.

26 

137.

62 

Video 2 

WARCE 

(%) 
22.29 11.45 16.27 10.84 4.82 13.86 7.23 

15.0

6 

TPI (%) 
143.0

2 
159.06 

136.2

9 

126.1

3 

165.

78 

154.7

9 

142.

94 

125.

89 

Video 3 

WARCE 

(%) 
19.23 16.03 11.54 22.44 

17.9

5 
22.44 

17.9

5 

24.3

6 

TPI (%) 
154.2

0 
120.00 

139.4

8 

139.8

3 

193.

79 

186.6

3 

163.

11 

142.

76 

Video 4 

WARCE 

(%) 
12.50 22.02 7.74 11.31 9.52 11.31 8.93 

23.8

1 

TPI (%) 
148.1

2 
158.63 

137.2

7 

140.4

3 

174.

85 

179.9

4 

142.

26 

112.

62 

Video 5 

WARCE 

(%) 
15.44 9.40 13.42 18.79 

22.8

2 
11.41 6.71 

17.4

5 

TPI (%) 
147.4

1 
162.56 

141.5

0 

121.1

1 

186.

01 

186.0

8 

153.

01 

130.

77 

Video 6 

WARCE 

(%) 
16.67 12.88 6.06 15.91 

25.7

6 
34.85 

14.3

9 

17.4

2 

TPI (%) 
163.2

1 
167.15 

140.3

7 

133.5

0 

192.

55 

182.3

3 

156.

43 

129.

69 

 

- Influence of Preprocessing on WARCE 

For the WARCE case, with an α of 0.05 and a p-value of 

0.009359, only the frame cut influences the results (Table IV), 

which shows that the variation of the processing area affects the 

accuracy of the proposed vehicle counting system.  

In comparing each of the cut levels using a Tukey HSD test 

with an α of 0.05, the 30% cut (C30) of the frame is different 

from all other cuts (Table V). Analyzing the thresholds in each 

case of the C30 is the lowest value, indicating that this cut 
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generates lower WARCE. 

TABLE IV 

ANOVA OF WARCE 

  
Degrees of 

freedom 

Sum of 

squares 

Mean 

squares 
F-Value P-Value 

Cut 3 414.2951 138.0984 4.460804 0.009359 

Reshape 1 53.57179 53.57179 1.730457 0.196905 

Video 5 253.4114 50.68228 1.637121 0.17598 

Residues 35 1083.536 30.95818     

TABLE V 

TUKEY HSD TEST OF WARCE FOR FRAME CUT 

  Difference 
Lower 

threshold 
Upper 

threshold 
P-Value 

C10-C0 -0.38901 -6.51501 5.736999 0.998179 

C30-C0 -6.86452 -12.9905 -0.73852 0.023091 

C50-C0 0.109214 -6.01679 6.235219 0.999959 

C30-C10 -6.47551 -12.6015 -0.34951 0.034944 

C50-C10 0.49822 -5.62779 6.624225 0.996204 

C50-C30 6.973734 0.847729 13.09974 0.020499 

TABLE VI 

ANOVA OF TPI 

  
Degrees of 

freedom 

Sum of 

squares 

Mean 

squares 
F-Value P-Value 

Cut 3  10051.71  3350.569  28.50876  1.64E-09  

Reshape 1  4223.493  4223.493  35.93615  7.85E-07  

Video 5  1226.361  245.2722  2.086931  0.090402  

Residues 35  4113.469  117.5277        

TABLE VII 

TUKEY HSD TEST OF TPI FOR FRAME CUT 

  Difference 
Lower 

threshold 

Upper 

threshold 
P-Value 

C10-C0 -0.4958 -12.4318 11.44023 0.999487 

C30-C0 -18.4889 -30.4249 -6.55288 0.001026 

C50-C0 -34.9801 -46.9161 -23.0441 1.6E-08 

C30-C10 -17.9931 -29.9291 -6.05708 0.001413 

C50-C10 -34.4843 -46.4203 -22.5483 2.21E-08 

C50-C30 -16.4912 -28.4272 -4.55515 0.003653 

 

- Influence of Preprocessing on TPI 

For the case of TPI, the ANOVA test with an α of 0.05 cut 

and reshape of the frame influences the results (Table VI). This 

shows that cuts and reshapes of the processing area affect the 

processing time of the proposed vehicle counting system.  

In a pairwise analysis of the different levels of the analysis 

factors using a Tukey HSD test, in the case of frame reshape, a 

comparison of R1–R0 with a difference of 18.7605372, a lower 

threshold of 12.40724811, an upper threshold of 25.11382628, 

and a p-value less than 0.0001 shows that a reshape of 640x640 

pixels on the frames increases the processing time. Regarding 

the frame cut (Table VII), the only case where there is no 

statistical difference is between C0 and C10. In all other cases, 

a higher cut level means a shorter processing time. 

C. Discussion 

The ANOVA analysis with an α of 0.05 responds to the two 

hypotheses posed. The frame cut influences both WARCE (p-

value 0.009359) and TPI (p-value less than 0.0001). However, 

the frame reshape influences only the TPI (p-value less than 

0.0001).  

Analyzing the Tukey HSD tests performed, a 30% frame cut 

generates the lowest WARCE. Regarding TPI, a frame cut of 

50% achieves the lowest TPI value; however, a reshape of 

640x640 pixels in the frames increases the TPI. With these 

results, considering that the best performance of the proposed 

offline automatic vehicle counting system is the lowest value of 

WARCE and TPI, it is advisable to perform in the 

preprocessing stage a frame cut of 30% without reshape 

(640x480 pixels). When averaging the performance metrics 

associated with these parameters (C30-R0) in each of the 

vehicle flow videos, there is an average WARCE of 10.42%—

a count accuracy of 89.58% and a TPI of 138.95%.  

The influence of cutting the frame on the weighted average 

error comes from dropping unnecessary information in the 

frames to perform the vehicle count, considering that excessive 

cutting makes it difficult to properly identify objects close to 

the vehicle count region. In addition, the frame cut generates a 

smaller image size so that YOLO will process and identify the 

possible objects of interest in less time. For the same reason, 

frame reshape generates a larger image, which implies a longer 

processing time.  

Regarding other automatic vehicle counting systems, the 

counting accuracy of the developed system has similar 

performance (Table VIII). All the systems analyzed perform 

offline processing with recorded videos of roads in different 

countries with daylight conditions, considering both detection 

accuracy and counting accuracy as performance metrics.  

All the research uses CNN-based methods; only Doménech-

Asensi et al. propose the use of a Bayesian network. In 

nighttime illumination conditions, this research obtained an 

accuracy of 69.75% [35]. The reported accuracies are between 

80% and 90%; Castelló et al. report the lowest accuracy as they 

analyze each of the classes (person, bicycle, car, motorcycle, 

bus, train, and truck) with different YOLO activation functions 

to reduce processing time [38]. In Gomaa et al., all the tests 

performed report an accuracy of 100% with no differences 

between the different classes of vehicles and a high processing 

time compared to YOLOv2 [37]. In this aspect, the 

investigations with the count analysis by the classes of interest 

report lower accuracy compared to the vehicle count analysis 

globally. Song et al. perform a video preprocessing step, 

placing a mask over the frames to remove regions that are not 

highways [36]. The present investigation obtained an average 

count accuracy of 89.58% considering each of the study classes 

by generating a 30% cut of the frames in the video 

preprocessing stage. 

IV. CONCLUSIONS 

This research developed an automatic offline vehicle 

counting system using YOLO in the vehicle identification and 

classification stage and SORT in the tracking stage. The 

validation of this system was done with videos of vehicle flow 

in the city of Popayan, Colombia, under morning and afternoon 

lighting conditions on sunny days with traffic associated with 

working days.  
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TABLE VIII 

COMPARISON OF AUTOMATIC VEHICLE COUNTING SYSTEMS 

Research 
Processing 

algorithm 
Accuracy 

Accuracy 

value (%) 

Count 

analysis 

Gomaa et Al. [35] CNN AC 96.30 Global 

Gomaa et Al.[36] 
Faster – 

RCNN 
AC 100.00 Global 

Castelló et Al.[37] YOLOv3/v4 AD 60.38 By class 

Wieczorek et Al. [38] CNN AC 82.50 By class 

Doménech-Asensi et 

Al. [39] 

Bayesian 

Network 
AD 86.50 Global 

Song et Al.[40] YOLOv3 AD 88.00 By class 

Own YOLOv5 AC 89.58 By class 

 

This research proposed an exploratory study of the influence 

of preprocessing operations on the performance of the proposed 

system to improve its operation, the study evaluated the 

influence of frame cut and reshape. The performance metrics 

are the WARCE of vehicles with respect to the manual count 

and TPI with respect to the video duration time. In all the trials 

performed, the frame cut positively influences the reduction of 

both performance metrics; however, the frame reshape has a 

negative influence, generating a higher TPI. With the tests 

performed and the results obtained, the best preprocessing 

configuration is a 30% cut frame without reshape, obtaining the 

lowest WARCE and the second lowest TPI. 

According to the result of this exploratory study, possible 

future works must evaluate the proposed vehicle counting 

system with a higher number of videos in different weather and 

lighting conditions, and even in different cities. Other works 

may focus on an exhaustive benchmarking of different YOLO 

architectures with the preprocessing operations before the stage 

of vehicle detection-classification. 
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