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Abstract—Distribution systems are increasingly experiencing
the penetration of photovoltaic (PV) systems. Although PV
penetration is beneficial up to a point, beyond that point, it
begins to generate issues related to voltage levels and grid
stability. In modern distribution system planning, it is essential
to identify an optimal operational point where the integration of
PV supports the voltage profile rather than causing any adverse
effects. The purpose of this paper is to explore and evaluate
strategies to enhance Hosting Capacity and reduce Power Losses
in distribution systems through an optimization algorithm that
iteratively uses power-flow simulations and a Multi-Objective
Genetic Algorithm. Different strategies taking advantage of
conventional distribution system assets are formulated to avoid
new system reinforcement. The strategies include Network
Reconfiguration, Capacitor Switching, On-Load Tap Changer
Switching, Volt-VAR Control Settings and the Combination of
all strategies. To evaluate the efficiency of each approach, a
comprehensive simulation study is conducted on the IEEE 123
bus distribution system modeled in OpenDSS, with an algorithm
created in Python to control the optimization process.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8853

Index Terms—PV system, Power Losses, Hosting Capacity,
Multi-Objective Optimization.

I. INTRODUCTION

Modern electric distribution systems are undergoing a
major restructuring in order to accommodate the in-

tegration of Photovoltaic (PV) systems and meet increasing
customer demands. Home PV systems are often installed on
rooftops, exploiting the sun’s vast energy to produce power
locally. Investing in and owning PV systems seams very
compelling to the utility customers since they can significantly
reduce their reliance on the traditional power grid and achieve
long-term savings. Due to these benefits, the number of PV
owners is steadily increasing, creating distribution system
operational and management challenges.

The challenges associated with PV penetration arise due
to the traditional way that distribution systems were designed
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to handle only one-way power-flow. However, integrating PVs
can feed power back into the grid; this can lead to issues such
as overvoltage. There are strategies to increase the amount of
PV that a system can safely accommodate. Hosting Capacity
(HC) is the measure that refers to the maximum amount of
PV systems that a power grid can house before compromising
its safety.

Another major concern in power distribution is related to
the losses that occur when electricity is distributed from sub-
stations to utility clients. Power distribution incurs unavoidable
losses due to line resistance. Nevertheless, there are technical
opportunities to minimize Power Losses and maximize energy
utilization. Therefore, this paper aims to explore strategies that
can significantly increase the HC and simultaneously reduce
Power Losses.

Over the course of years, research works have been using
the process of distribution system reconfiguration to reduce
Power Losses [1]–[5]. In recent years, the reconfiguration
has been also applied as a strategy for enhancing HC within
modern power networks. In [6], an optimal power-flow method
is used to explore the potential benefits from adopting static
and dynamic network reconfiguration as options to increase the
ability of distribution systems to host Distributed Generation
(DG). The authors in [7] present a mathematical model to
find the optimal network topology and detect the optimal DG
allocation while considering network technical limits related
to line capacity and voltage range. A stochastic approach was
used in [8] to analyze the impact of network reconfiguration
on improving photovoltaic Hosting Capacity.

Alternatively, smart inverter functions, like Volt-VAR can
improve distribution voltage regulation and increase PV HC
[9]. In [10]–[12], the efficiency of using Volt-VAR control to
increase HC is evaluated. The studies presented in [13], [14]
explore an additional advantage offered by smart inverters;
these studies investigate the potential of employing Volt-VAR
control strategies to mitigate Power Losses.

There are several ways to reduce Power Losses in distribu-
tion systems; one of the most commonly used is the installation
of capacitor banks [15]. In [16], a strategy was developed
for determining optimal set points for capacitor controls to
minimize line losses at all load levels. The study outlined in
[17] compares the results of simulation studies on selected
criteria capacitor bank control to reduce the network losses
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and variability of voltage in Medium Voltage (MV) network.
In [18], [19], the capacitor bank operation has been studied
as a strategy to increase Hosting Capacity, where various HC
enhancement techniques are examined.

An alternative strategy of increasing Hosting Capacity is
using On-Load Tap Changer (OLTC). The effectiveness of
this strategy was demonstrated in [20], and an investment
analysis was performed comparing the cost of the OLTC-
fitted transformer with the network reinforcement cost. In [21],
the use of PV VAR absorption and OLTC transformers were
assessed as techniques to increase the HC. The interactions
of Low Voltage (LV) and Medium Voltage (MV) networks
were assessed using Monte Carlo simulation. In addition to
increasing HC, OLTC also proves valuable in minimizing
Power Losses, as shown in [22], where an Artificial Neural
Network technique was proposed for predicting optimum tap
changing transformer ratio, which in turn minimize real Power
Losses in an electrical power system. While reference [23]
introduces an Ant Colony Optimization approach designed to
determine the optimal settings of OLTC and Reactive Power
Compensation Equipment. The goal is to enhance voltage
stability within the system while concurrently minimizing
Power Losses.

The studies mentioned above addressed the problems of
enhancing HC and minimizing Power Losses individually,
treating them as single-objective problems. Although our lit-
erature review identified research works in a multi-objective
context, their approaches differ from those of the present study.
For example, the research work by [24] also considers HC
and Power Losses as a multi-objective problem, including
a third objective function aimed at enhancing the system’s
base resilience. However, this study focuses on optimizing the
placement and sizing of PV systems without incorporating the
strategies used in the present study. Additionally, the research
suggests future exploration of appropriate smart inverters
functionalities of PV, which aligns with one of the strategies in
our study—specifically, the use of Volt-VAR control settings.

In contrast, the research work presented in [25] considered
strategies to adjust the voltage profile within a multi-objective
framework to support HC, but it did not address the reduction
of Power Losses in the system. This research suggested that
future studies should compare the performance of various HC
enhancement techniques and develop combinations of technics
to achieve higher HC. This is precisely the focus of the present
study, which uses four different strategies to improve HC,
combines them to form a fifth strategy, and evaluates the
performance of each one. Our study not only improves HC
but also reduces Power Losses.

As far as the authors are aware, until date no existing
paper has proposed an algorithm that employs all the strategies
discussed in this work for multi-objective optimization to en-
hance HC and reduce Power Losses. Furthermore, no previous
research has compared the performance of these strategies
through several simulations.

All strategies proposed in this research tries to use pre-

existing facilities within the power distribution system in order
to mitigate costly network reinforcements. Initially, the Capac-
itor Switching, OLTC Switching, Volt-VAR Control Settings
and Network Reconfiguration strategies are independently
implemented on the IEEE 123-bus Feeder [26]. Subsequently,
the Combination of all strategies is employed to assess the
performance of each approach.

Addressing the optimization problem to increase HC and
simultaneously reduce Power Losses requires the use of some
multi-objective algorithm to optimize the referred objective
functions. The literature demonstrates that Genetic Algorithms
(GAs) are a promising tool for this kind of problem. Although
GAs do not always guarantee a globally optimal solution, they
are designed to find good, often near-optimal solutions [27].
The Non-Dominated Sorting Genetic Algorithm II (NSGA-
II), which is based on Genetic Algorithms (GAs), has been
successfully applied to a variety of multi-objective power
system problems, such as those in [28], where NSGA-II has
been implemented to optimal integration and sizing of DG in
power network in order to maximize system loadability and
minimize real Power Losses. In [29], NSGA-II was used in a
management method of energy storage system in PV-integrated
Electric Vehicle charging station to minimize the power pur-
chase cost of charging stations and the power variance of the
load. The work documented in [30] highlights the utilization
of NSGA-II for addressing the optimal placement of additional
switches for enhancing reliability with the objective functions
of minimizing the number of switches and maximizing system
reliability.

In [31], the NSGA-II was shown to achieve better results
in a multi-objective optimization problem compared to other
widely reported algorithms in the scientific literature, specifi-
cally the Pareto Archived Evolution Strategy (PAES) [32] and
the Strength Pareto Evolutionary Algorithm (SPEA-II) [33].

Given the well-known effectiveness of NSGA-II, the op-
timization proposed in this paper is based on NSGA-II with
two objective functions, HC maximization and Power Losses
minimization, satisfying a set of constraints described further.
The decision variables of each approach are: I) the line
switching operations during each step of the Reconfiguration
Strategy, II) the capacitor dispatch during each step of the
Capacitor Switching Strategy, III) the OLTC operation during
each step of the OLTC Switching Strategy, IV) the reactive
power control of smart inverters during each step of the Volt-
VAR Control Settings Strategy, and V) all mentioned decision
variables are integrated for the Combination of all strategies.
The NSGA-II algorithm manipulates these decision variables
to improve the objective functions preventing the system from
violating the constraints, particularly through managing active
and reactive power, and controlling voltages and currents
throughout the distribution system.

This research aims to provide a collaborative environment
using open-source software platforms to facilitate its repro-
ducibility and accessibility. Python [34] was used as the script-
ing language for implementing the optimization algorithm,
while the Open Distribution System Simulator (OpenDSS)
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[35] was employed to perform consecutive power-flow sim-
ulations during each optimization algorithm iteration. Python
and OpenDSS were implemented working together through
an interactive connection between the two platforms using
a COM (Component Object Model) interface. This interface
allows Python and OpenDSS to communicate and exchange
information in a synchronized way. The simulations were
conducted on a personal laptop equipped with an Intel Core
i7-11390H CPU (3.40 GHz, 8 cores), 16 GB of RAM, and a
952 GB SSD.

The power-flow simulations were conducted in snapshot
mode, representing a specific moment in time [36]. In other
words, this is a steady-state study. The objective of the
study is to test the performance of all strategies during the
most challenging conditions, when PVs reach the maximum
production, and the loads are at their lowest levels of the day.

II. PROBLEM FORMULATION

A. Multi-Objective Optimization

Multi-objective optimization is used in different real-world
problems, aiming to find a set of solutions when contradictory
or conflicting objective functions are being optimized. In other
words, improving one objective leads to a degradation of
another objective. The authors evaluated the conflicting nature
of the objective functions proposed in this work.

1) Contradictoriness of the objective functions: Generally,
power system multi-objective optimization problems request
to maximize the performance of the system while minimizing
the facility cost investments. This generates contradictory ob-
jective functions, since the enhancement of the power system
comes with a price, while leading to gradual system improve-
ment. In other words, the system becomes more efficient as
the investment grows.

Nevertheless, the two objective functions presented in this
paper are not evidently contradictory to each other as the
aforementioned example. For this reason, before chosen this
objective function as the main subject of this research, the
authors tested the conflicting degree of this objective functions
performing some power-flow simulations, integrating solar PV
systems progressively into a distribution grid (detailed further
in this document) to evaluate Power Losses associated with the
specific quantities of PV introduced into the power system.

Fig. 1 provides a summarized illustration of several power-
flow simulations performed on a power system with distributed
PVs. The simulations were performed by successively in-
creasing PV capacities from a low capacity (Initial Point)
to a larger capacity until the power system operation limits
were reached. Then, the same process was performed but
the PVs positions were randomly altered. Throughout the
simulations, it was found that the system displays two distinct
patterns of response. In the first pattern, when locating the
PVs in certain sites, the power system loss decreases as
more PVs are installed on the system, this clearly indicates
that the objective functions are not contradictory for some
PVs positions, given that incorporating more PV generation

capacity prior to exceeding the operation limit effectively
decreases Power Losses, as depicted in the curve of Fig. 1a.

In contrast, when positioning the PVs in other sites, the
curve behaves different as shown in Fig. 1b. The second
pattern performs like the first one until an inflection point is
reached. Beyond this point, the Power Losses initiate a rise in
correlation with the increase in PV generation capacity. Hence,
from the inflection point on, the second pattern shifts into a
multi-objective optimization, since the Power Losses increase
as more PV generation capacity is incorporated.
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Fig. 1. Test results for different PV positions.

The outcomes of the simulations have produced interesting
findings illustrating the complexity of the optimization prob-
lem. The PV locations influence the nature of the optimization
problem, since the problem can manifest as either a purely
mono-objective optimization or a fusion of mono-objective
and multi-objective problem. Therefore, this compelling result
has motivated the authors to delve deeper into these objective
functions.

2) NSGA-II Algorithm: As mentioned earlier, the NSGA-
II algorithm has been chosen as the optimization approach to
enhance Hosting Capacity and mitigate Power Losses. NSGA-
II algorithm is designed to find a set of optimal solutions
known as Pareto set [37]. It is one of the most efficient multi-
objective evolutionary algorithms using elitist approach which
has great advantages in comparison to other evolutionary
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algorithms [38]. Fig. 2 shows two flowcharts, the one on the
left provides a broad overview of the algorithm developed,
while the flowchart on the right illustrates the HC & Loss step.
It provides information about the iterative process to increase
PV capacities of each individual (candidate solution) until the
HC and Power Losses of the power system are determined.

Basically, the algorithm was developed in Python using the
COM interface to communicate with OpenDSS whenever is
necessary to perform power-flow simulations. All steps from
the flowchart are detailed below.

Initialize: The user can initiate the algorithm once all
NSGA-II parameters are configured in Python and the power
system is modeled using OpenDSS.

Generate initial population: The algorithm randomly
generates an initial population of 100 candidate solutions,
referred to as individuals. The diverse set of potential solutions
ensures that they represent viable solutions within the defined
solution space. This randomness helps to explore a broad
range of possibilities and avoid premature convergence on
suboptimal solutions.

HC & Loss: As shown on the right flowchart, the HC
& Loss step starts creating Random PV locations. To ensure
a consistent evaluation of all individuals, all members of the
population will have PVs installed at identical locations.

Two kinds of PV locations are randomly generated, Small-
Scale PV and Large-Scale PV. Buses serving residential or
commercial customers are eligible for random Small-Scale
PV site selection; while three-phase buses are candidates to
randomly generate Large-Scale PV locations. Similar to the
approach in reference [39], the maximum allowable Small-
Scale PV size installed on a bus is restricted by the total
customers peak load at that bus. On the other hand, the
maximum size for Large-Scale PV installations is fixed at
1 MW. Initially, only 10 Small-Scale PV sites are randomly
generated for all individuals of the population.

The evaluation is performed sequentially for each member
of the population. The initial value of each PV is 10 kVA.
Each individual is evaluated according to the results of the
power-flow calculation. The power-flow is performed as many
times as needed, increasing each PV system in 10 kVA until
the Power System Limit (PSL) is reached. New Small-Scale
PVs locations are created when PVs achieve their maximum
allowable PV size. Large-Scale PV sites are created only after
10 Small-Scale PV have collectively reached the allowable PV
size.

Once the PSL is achieved, the individual HC has been
found, and the value from the preceding stage (

∑
(PV −

10kV A)), before any power system limits were breached,
is established as the individual HC. Additionally, the Power
Losses associated with this stage is stored.

Fitness Evaluation: The individuals are ranked based on
their dominance relationship [37] and the ones that are not
dominated by any other individual are assigned to the first
Pareto front (non-dominated front). In addition, the individuals

are also ranked using the Crowding Distance (measures how
close an individual is to its neighbors) parameter.

Genetic Algorithm Operators: Genetic Algorithm (GA)
Operators are applied; parents are selected using binary tour-
nament. Then, parents generate offspring from crossover and
mutation operators.

HC & Loss: Again, the HC & Loss step is implemented,
this time, to find offspring’s HC and Power Losses.

Offspring Fitness Evaluation: The offspring are evaluated
according to the objective functions and a new rank with
parents and offspring is calculated [37].

Survival Selection: The best 100 individuals are selected
for the next generation.

Stopping Condition: This paper proposes a stopping
criterion based on a maximum number of 100 iterations. If
the Stopping Condition is not met, the loop keeps going as
indicated in Fig. 2.
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Fig. 2. Implemented NSGA-II flowchart.

3) Objective Functions: The first objective function aims
to find the maximum amount of PVs that can be connected
to a distribution system without compromising its safety or
reliability. The HC is computed as the sum of all PV capacities
in the system before constrains are violated. The mathematical
formulation for the HC maximization is presented as

Max {HCTOTAL} = Max

{
npv∑
i=1

HCi

}
(1)

where

HCTOTAL = total HC of the system
npv = number of system PVs
HCi = power capacity of PVi
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The other objective function to address is the minimization
of the real Power Losses. Eq. (2) shows the objective function
and provides an illustrative representation of the Power Losses
calculated by OpenDSS during the power-flow simulations.
Loss calculations are performed individually for every phase
and branch within the distribution network. The accumulation
of these branch losses corresponds to the overall power system
loss. The mathematical expression of the minimization of real
Power Losses is introduced as follows.

Min {PTOTAL} = Min


nb∑
j=1

Rj .I
2
j

︸ ︷︷ ︸
OpenDSS

(2)

where

PTOTAL = total real Power Losses of the system
nb = number of system branches
Rj = resistance of branch j
Ij = current of branch j

4) Constraints: The optimization problem is formulated
considering different constraints that are described in the
following equations.

Voltage limit constraint: The ANSI voltage limits must
be satisfied for all steady-state bus voltages of the distribution
system, as:

0.95 ⩽ VBUS ⩽ 1.05, BUS = 1, 2, ..., N (3)

where VBUS is the per-unit voltage at the BUS-th.

Flow constraint: During the steady state condition, the
maximum current through each line is restricted by the thermal
limit of the feeder. Therefore, the following restriction must
be addressed:

Ibranch ⩽ Imax, branch = 1, 2, ..., N (4)

where Ibranch is the current that flows through the branch-th,
and Imax is the thermal limit of that branch.

Voltage unbalance constraint: As detailed in [40], voltage
unbalance is a power quality concern in distribution networks
and the problems caused by voltage unbalance need to be
prevented. To keep power quality within acceptable limits, this
work proposes to restrict the voltage of each bus using the
Voltage Unbalance Factor (VUF), which is the ratio between
negative-sequence and positive-sequence voltages. The limits
are set according to [41] as follows

V UFBUS ⩽ 2%, BUS = 1, 2, ..., N (5)

where V UFBUS is the Voltage Unbalance Factor at the BUS-
th.

Voltage Deviation constraint: Besides overvoltage limits
and voltage unbalance, the HC may also face limitations due
to the impact of how much the PVs change the distribu-
tion system voltages. Voltage Deviation has the potential to
cause voltages to suddenly swing above/below operating limits

[42]. Furthermore, this can cause additional control (regula-
tor/capacitor) operations or tripping of sensitive equipment.
The Voltage Deviation constraint consists of comparing the
percentage of voltage variation at each system bus before
and after full PV comes online [39]. The following equation
illustrates the Voltage Deviation limit at each bus:

V devBUS ⩽ 3%, BUS = 1, 2, ..., N (6)

where V devBUS is the Voltage Deviation at the BUS-th.

Topology constraint: Most Distribution Systems operate
with radial topology to facilitate the coordination and pro-
tection and to reduce the short-circuit current [43]. Hence,
when the network reconfiguration is performed, a topology
restriction is implemented to allow only the generation of
radial solutions.

B. Encoding

Binary encoding, using “0” and “1” as the encoding symbol
set, is most used in genetic algorithms. The encoding, decod-
ing, replication, crossover and mutation of a binary encoded
genetic algorithm can be easily implemented, and it has a
strong global search capability [44]. Given its simplicity, the
benefits it offers, and its seamless alignment with all decision
variables proposed in this research, the binary encoding is
chosen as the encoding method.

In this kind of encoding, a chromosome is the represen-
tation of an individual (candidate solution) in the population,
while a gene constitutes an individual component within the
decision variable. Fig. 3 shows the representation of the
encoding structure implemented in this work.
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Fig. 3. Encoding structure.

1) Network Reconfiguration: Network Reconfiguration in
distribution systems involves altering the status of sectional-
izing switches, typically to enhance system performance [2].
Studies, such as [45], have demonstrated that binary encoding
is a well-suited technique for network reconfiguration GA
optimization due to its compatibility with the discrete nature of
breaker states. Hence, the representation of each system topol-
ogy in this research is carried out using a binary encoding,
where the chromosomes have fixed length equal to the number
of system breakers. Each gene is represented by a binary value
that indicates the status of each breaker, a number "1" indicates
a closed breaker while the number "0" represents an open
breaker. Considering that most distribution systems follow a
radial structure, only radial arrangements are studied in this
research. Hence, all individuals are restricted to produce radial
topology structures. In OpenDSS, the opening and closing of
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switches are controlled by adjusting the "State" property of
each "SwtControl" element in the model.

2) Capacitor Switching: The dispatch of capacitors is
widely used in distribution systems to inject reactive power,
create voltage support and enhance the power factor. Ca-
pacitors are energized or de-energized regularly according to
the changes in voltage and reactive power, which is one of
the most common operation events in distribution systems
[46]. The binary encoding for capacitor switching involves
representing the on/off states of capacitors as binary values.
Like the network reconfiguration encoding, each capacitor
is associated with a binary digit (0 or 1) that indicates its
switching state, where "0" indicates off-state, and "1" denotes
on-state. The capacitor bank switching on OpenDSS is made
manipulating the "States" property of each capacitor of the
model.

3) OLTC Switching: Electric utilities use OLTC attached
to Medium Voltage (MV) transformer to regulate voltage levels
[47]. An OLTC comprises an autotransformer and a load tap
changer mechanism. The voltage change is achieved through
switching the taps of the series winding on the autotransformer
[48]. OLTC has a limited number of tap positions; standard
regulator contains usually 32 switching states, each step is
typically designed to change 0.625% of voltage [49].

In this research, a binary representation of the 32 OLTC
switching positions is proposed, where the position is nu-
merically represented by its conversion from decimal to bi-
nary. For instance, a switching position represented by the
decimal value “14” is converted into the binary sequence
(14DEC = 001110BIN ). Each OLTC will be represented by a
binary number indicating its particular position. In OpenDSS,
the adjustment of voltage regulators is done by modifying the
"Tap" property of each voltage regulator in the model.

4) Volt-VAR Control Settings: The smart PV inverter can
absorb and generate reactive power using the Volt-VAR Con-
trol Strategy to regulate voltage [50]. The use of inverter
control systems may represent a solution for mitigating the
problems associated with the penetration of PVs in distribution
systems. Nevertheless, incorrect settings may lead to increase
voltage issues and adverse influence on thermal conductor
constraints. In [51], it was demonstrated that the best settings
of smart inverter Volt-VAR Control differ by location and
objective considered. In this paper, the objectives of smart
inverter control settings were already discussed. However, the
location where PVs are going to be connected to the system
and the control settings may vary for each simulation.

Without implementing any voltage support method, the
farther a user is from the main substation, the greater the
voltage drop the user may experience. Hence, it is proposed to
establish four different location ranges, enabling neighboring
PVs to create clusters that contribute to voltage stability in
their respective areas. This implies that each of the four
regions will have a unique encoding that defines the Volt-
VAR settings of the PVs that fall within that specific range.
The classification of these ranges will be based on how far
each PV system is from a substation. PV systems that are
nearest to the substation will be grouped together, and those

more distant will be categorized into subsequent groups. Fig. 4
offers an example of a distribution system showing how the
four regions are defined by their distance from a substation.

Simultaneously, the Volt-VAR control settings of each PV
group will be associated with an encoding that represents
the Volt-VAR curve of the group. The proposal involves two
curves defined by the IEEE Std 1547-2018 [52] (Category A
and B setting curves), alongside two custom curves—one with
no reactive power setting and the other exhibiting an aggres-
sive setting. Fig. 5 illustrates these curves. These curves are
represented in OpenDSS by setting the "XYCurve" elements
for each "InvControl" object in the model.
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5) Combination Approach: In the previous sections, differ-
ent binary representations were employed. In the combination
approach, the binary representations introduced earlier come
together to form a unified solution. This process involves
the integration of all strategies to create a single string that
represents the entire solution.
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III. SIMULATION AND RESULTS

The IEEE 123 Node Test Feeder is widely used in power
system studies. Nevertheless, this paper considers the radial
network reconfiguration as one of the strategies to improve
HC and reduce Power Losses. The IEEE 123 system, in its
original form, is not able to perform system reconfiguration.
Therefore, modifications have been made to enable topology
changes using switching devices while preserving the system’s
radial structure and ensuring feeding all loads.

Fig. 6 shows the modified version of the IEEE 123 sys-
tem. In contrast to the initial configuration featuring only 11
breakers, 8 new breakers were strategically located to allow
the system reconfiguration. In addition, 12 new three-phase
distribution lines were added. The new switching devices are
represented by square black boxes, while the new lines are
described by black dotted lines. All modifications made to the
system are detailed in Table I.
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Fig. 6. Modified IEEE 123 Node Test Feeder.

The algorithm proposed was applied to the IEEE 123 bus
system. All five strategies were simulated: Network Recon-
figuration, Capacitor Switching, OLTC Switching, Volt-VAR
Control Settings, and a Combination of all these strategies.

TABLE I
MODIFICATIONS MADE TO THE IEEE 123 SYSTEM

Bus A Bus B Line (m) Switch
2 11 250 Yes
11 20 300 -
20 22 250 Yes
22 24 250 -
47 251 250 -
16 195 320 -
57 38 310 Yes
66 39 250 Yes
64 151 300 -
62 101 300 Yes
350 110 350 -
114 451 320 -
22 21 - Yes
13 18 - Yes
67 97 - Yes

To ensure a fair comparison among the strategies, the
PVs were placed in different positions for each simulation,
but the positions remained consistent across all strategies.
This was achieved using Python’s “random.seed(number)”
function, which initializes a random number generator to
produce reproducible results. By using the same seed number,
the same set of random PV positions was generated for all
strategies. Different seeds were tested, gradually increasing
the number from 0 to 100, resulting in 101 distinct sets of PV
positions and, consequently, 101 simulations for each strategy.
During this process, a clear trend emerged when comparing
the strategies. It was concluded that further simulations were
unnecessary, as the results had stabilized and additional seeds
were unlikely to change the outcomes. To visualize the range
and other characteristics of the responses, the results are
represented using the box plots of Fig. 7.
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Fig. 7. Box plot representing the performance results of the five
strategies.

From box plots of Fig. 7a, it is noted that the Combination
Strategy exhibits higher values of HC results. On the other
hand, box plots of Fig. 7b shows that the Combination Strategy
has lower values in all parameters of Power Losses. This
clearly suggests a better performance of the Combination
Strategy in comparison to the other strategies.

As previously discussed, two different patterns of response
were found (see Fig. 1), one exhibiting a mono-objective
behavior and the other a multi-objective behavior. To evaluate
how many times each strategy makes the transitions into a
multi-objective problem, Table II displays the occurrences of
responses exhibiting Pattern-1 and Pattern-2 of each strategy.
The total solutions obtained in 101 simulations of each strategy
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are logically equal to the sum of Pattern-1 and Pattern-2.
It can be noted that the Reconfiguration Strategy exhibits
more outcomes among all strategies with 266 solutions. In
addition, this strategy is the one that presents more multi-
objective solutions, with 255 Pattern-2 solutions, followed by
the Combination Strategy that has 137 Pattern-2 solutions. On
the other hand, the Volt-VAR approach displays the fewest
number of solutions, a total of 104, and only 6 of them meet
the criteria for multi-objective solutions.

For a more detailed analysis of the presented results, the
box plots have been quantified and presented numerically in
Table III. This representation allows a precise examination
and comparison of the data, enabling further examination
of each strategy outcomes. The table shows each strategy
smallest result (Min), the first quartile (Q1) that represents
the value below which 25% of the strategy results fall, the
second quartile (Q2) known as the median, the third quartile
(Q3) that indicates the value below which 75% of the strategy
results fall, the largest result (Max) and the number of outliers
(Out) that are those results that deviate significantly from other
results.

TABLE II
RESULT PATTERNS OF STRATEGIES

Strategy Pattern-1 Pattern-2 Total
Capacitor 76 57 133
V olt/V ar 98 6 104
Reconfig. 11 255 266
OLTC 82 29 111

Combinat. 46 137 183

Analyzing the median, first quartile, and third quartile
results depicted in the boxplots, the Combination Strategy
has the largest HC and the lowest Loss in all metrics. This
proves that the Combination Strategy performs better than the
other strategies. The Reconfiguration Strategy comes in second
place, followed by OLTC Strategy. While the Volt-VAR and
Capacitor strategies share the last position, with Volt-VAR
displaying better performance in some metrics but poorer in
others.

TABLE III
NUMERICAL RESULTS OF BOXPLOTS

Strategy Objective F. Min Q1 Q2 Q3 Max Out

Capacitor
HC (kVA) 1190 2740 4020 5320 8610 0
Loss (W) 13125 14153 14507 14902 15757 2

V olt/V AR
HC (kVA) 1230 2852 4070 5232 8400 0
Loss (W) 14933 15805 16194 16515 17012 0

Reconfig.
HC (kVA) 1420 4240 6050 7600 9860 0
Loss (W) 12166 12802 13189 13584 14695 4

OLTC
HC (kVA) 1620 3625 4970 6800 8900 0
Loss (W) 12728 13300 13734 14015 14849 0

Combinat.
HC (kVA) 1620 4770 6910 8110 10290 0
Loss (W) 8186 9030 9317 9780 10828 10

The interquartile range (IQR) gives a measurement of
how spread out the results are. It is computed by taking the
difference between the third quartile (Q3) and the first quartile
(Q1). Table IV summarize all boxplot IQR, it can be observed
that in terms of numerical results and electric units, the IQR
results express that Loss outcomes are irrelevant comparing
to the HC outcomes, given that HC IQRs are expressed in

thousands of kilovolt-amperes and Loss IQRs are around 7
hundred Watts.

The analysis made on IQRs reveals that there are no
substantial distinctions among the Power Losses outcomes.
This leads to the supposition that using Power Losses as an
objective function may not be meaningful. Nevertheless, it
should be noted that Table III implies that there are outliers
in some Power Losses boxplots, indicating that some results
significantly differ from the rest of the outcomes. Considering
that IQR calculation ignores outliers, analyzing at least one
of the results containing outliers might be interesting before
discarding Power Losses as an objective function.

TABLE IV
BOXPLOT IQRS

Strategy HCIQR(kV A) LOSSIQR(W )
Capacitor 2580 749
V olt/V AR 2380 710
Reconfig. 3360 782
OLTC 3175 715

Combinat. 3340 750

Fig. 8 shows the Pareto Front generated from one of the
101 simulations executed using the Combination Strategy. It
can be observed that there are 3 solutions with lower Power
Losses and 2 solutions (outliers) with higher Power Losses.
The figure highlights the most substantial difference in Power
Losses values between Solution 1 and Solution 5 (Outlier),
with a gap of 3688 [W]. The Pareto Front reveals the potential
merit of treating Power Losses as an objective function.
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Fig. 8. Pareto Front containing outliers.

IV. CONCLUSION

This study explored various approaches aimed at enhancing
Hosting Capacity and reducing Power Losses using con-
ventional distribution system assets and avoiding extensive
system reinforcements. The strategies under test were Net-
work Reconfiguration, Capacitor Switching, OLTC Switch-
ing, Volt-VAR Control Settings and the Combination of all
strategies. Through rigorous simulation and evaluation of the
proposed strategies, it was concluded that the Combination
of all strategies is the most effective, excelling in optimizing
both objective functions. In this context, the Reconfiguration
Strategy demonstrated substantial efficacy, securing the second
position in performance. OLTC Switching followed as the
next viable option; meanwhile, Volt-VAR Control Settings
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and Capacitor Switching exhibited similar performances and
occupied the last position in terms of efficacy. When it comes
to diversification, the Reconfiguration Strategy demonstrated
to have more solutions after 101 simulations, presenting more
multi-objective solutions.

In addition, the studies assessed managing Hosting Ca-
pacity and minimizing Power Losses within a multi-objective
framework. The analysis revealed that dedicating considerable
computational resources to address the problem in a multi-
objective context may not always yield substantial benefits, as
evidenced by the lack of significant improvement in Power
Losses results in most of the cases. However, in some specific
cases Power Losses reduction as an objective function can
yield important improvements.

To evaluate the performance of the strategies proposed
under a time-domain load flow analysis, the authors encourage
future research that includes quasi-dynamic study to analyze
further the behavior of the problem in a pure multi-objective
context.
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