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Disease-IncRNA Associations Prediction based on
Fast Random Walk with Restart in Heterogeneous

Networks
Jinlong Ma , and Tian Qin

Abstract—Long non-coding RNAs (lncRNAs) represent a
fundamental category of epigenetic modulators. Recent research
has revealed that lncRNAs play critical roles in gene regulatory
mechanisms, substantially influencing the pathogenesis of various
human diseases. In this study, a multilayer heterogeneous
network was created and we introduced the fast random
walk with restart (FRWR) for predicting connections between
lncRNAs and diseases. By combining the similarity network
of lncRNA, similarity network of disease, and association
network of existing lncRNA-disease, a multilayer heterogeneous
network was constructed, and the fast random walk with
restart method (FRWR) was applied on this network to predict
additional potential lncRNA-disease associations. The AUROC
value of 0.9034, achieved through leave-one-out cross-validation,
underscored the predictive precision of the FRWR technique.
Furthermore, a case study of three different diseases provided
further validation of the reliability of prediction results. Overall,
the multilayer network FRWR method proposed in this work
could effectively forecast the connections between lncRNAs
and diseases, offering valuable insights into understanding
the functions of lncRNAs in the context of human health and
disease. The source code for the FRWR method can be accessed
at: https://github.com/TianTianTian14/FRWR.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8836

Index Terms—IncRNA; Disease; Heterogeneous networks; Net-
work propagation algorithm.

I. INTRODUCTION

The role of epigenetics in regulating gene expression has
increasingly attracted attention [1]. There is a growing of
evidences that regulatory non-coding RNAs play an important
role in epigenetic control. lncRNAs refer to a class of RNA
molecules that do not undergo translation into proteins, they
regulate gene expression by interacting with DNA and pro-
teins [2]- [3]. lncRNAs exert their influence through multiple
mechanisms, including binding to proteins to modulate their
functions, directly regulating gene transcription, recruiting
epigenetic modifiers to alter chromatin states, and affect-
ing mRNA stability and translation [4]− [6]. These diverse
functions position lncRNAs as pivotal players in cellular
development, differentiation, and disease pathogenesis. With
advancing understanding of their roles, lncRNAs are emerging
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as potential tools in disease diagnostics and therapeutics [7]−

[8]. Many studies have revealed that only 2% of mammals’
transcriptional level consists of ribosomal RNA and is trans-
lated into proteins. Approximately 98% of the genome consists
of non-coding RNA sequences [9]− [12]. Long non-coding
RNAs (lncRNAs) are defined as RNA molecules within this
non-coding segment that exceed 200 nucleotides. accounting
for the majority of human total genes [13]− [15]. In re-
cent years, increasing research has found that lncRNAs play
important regulatory roles in physiological and pathological
processes. For example, MEG3 was a tumor suppressor gene
with reduced expression. It can induce apoptosis by down-
regulating the expression of BCL-2 [16]. Another common
type of lncRNA is the ‘pseudogenes’ of small RNAs that
completed gene regulatory functions by competing with the
antisense binding sites of small RNAs [17]− [18]. BC200
RNA also plays a role in the occurrence and repair of
stimulated neuronal injury [19]. Brain cytoplasmic RNA 1
antisense (BACE1-AS) increase Alzheimer’s disease-related
protein levels by promoting BACE1 demethylation [20]. In
summary, lncRNAs are an important component of epigenetic
regulatory mechanisms [21]. Further study of lncRNAs will
help reveal their key roles in human health and disease [22].

To tackle these challenges, we have introduced a novel
computational method that leverages up-to-date data from
the LncRNADisease V2.0 database [28] to forecast potential
links between lncRNA-diseases. Three networks were de-
signed and integrated into a multilayer network, including the
similarity network of lncRNA, similarity network of disease,
and known association network of lncRNA-disease. Subse-
quently, we utilized the fast random walk with restart method
(FRWR) to predict potential associations between lncRNAs
and diseases. By incorporating disease similarity and known
lncRNA-disease relevance, we updated the lncRNA-disease
interaction weight matrix for newly identified diseases. FRWR
achieved a robust area under the receiver operating charac-
teristic curve (AUROC) value of 0.9034, indicating reliable
predictive performance. Additionally, case studies on liver,
gallbladder, and pancreatic cancers were performed, leading
to the discovery of the top 15 potential lncRNA-disease
relationships for each condition. The primary contribution of
this study is the development of a novel computational method
that integrates the similarity networks of lncRNAs and diseases
along with known lncRNA-disease associations to predict
potential lncRNA-disease associations through a multilayer
heterogeneous network. Additionally, this paper employs the
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fast random walk with restart method (FRWR), which effec-
tively combines disease similarity and known lncRNA-disease
associations to update the interaction weight matrix for newly
discovered diseases, significantly enhancing the accuracy and
reliability of predictions.

II. RELATED WORK

In recent years, the prediction of associations between
lncRNAs and diseases has received considerable attention,
leading to the development of various computational methods
to explore potential links. Sun et al. proposed the RWRlncD
method, employing a random walk strategy on an lncRNA
functional network to uncover new associations [24]. How-
ever, this method relies on network construction, which may
overlook some connections due to feature selection limitations.
Yu et al. introduced the BRWLDA method, utilizing a bidirec-
tional random walk to predict potential links between lncRNAs
and diseases, but this method’s effectiveness is constrained
by the dependency on extensive existing association data
[25]. Wang et al. suggested the LDGRNMF approach, which
uses graph-regularized non-negative matrix factorization to
maintain network structure [26], yet it depends on the quality
of known models for predicting new associations. Zeng et al.
offered the SDLDA method, which combines singular value
decomposition with deep learning to capture complex rela-
tionships [27], though it doesn’t consider network topologies.
Lastly, Lu and colleagues developed the SIMCLDA method,
which focuses on similarity-based inductive matrix completion
that relies on existing sample quality without needing ma-
trix decomposition [28]. Despite the capabilities of methods
like RWRlncD and BRWLDA, their dependency on precise
feature selection and data completeness limits their broader
application. To facilitate clearer expression, we have created
the following table:

TABLE I
COMPARISON OF THE METHODS FOR PREDICTING

LNCRNA-DISEASE ASSOCIATIONS

Method Key Feature Strength Limitation
RWRlncD Stochastic naviga-

tion in lncRNA
networks.

Mines
network
signals
effectively.

Relies on
precise
feature
selection.

BRWLDABidirectional
random walk in
heterogeneous
networks.

Enhances
signal
propagation.

Needs
extensive
association
data.

LDGRNMFNon-negative ma-
trix factorization
with graph regu-
larization.

Maintains
network
structure.

Dependent
on model
quality.

SDLDA Deep learning and
SVD integration.

Captures
complex re-
lationships.

Ignores net-
work struc-
ture.

SIMCLDASimilarity-based
inductive matrix
completion.

Fits high
nonlinearity.

Relies on
sample
quality and
coverage.

III. MATERIALS AND METHOD

A. Dataset

By filtering out duplicate and invalid information from
the most recent 2019 release of the LncRNADisease V2.0
database, we curated a standard dataset consisting of 12,865
experimentally verified lncRNA-disease associations between
3,701 lncRNAs and 486 medical conditions. The lncRNA-
disease association network and the corresponding adja-
cency matrix (LD) were developed. In matrix LD, an entry
LD(lu, dv) is set to 1 to indicate a recorded association
between lncRNA lu and disease dv , and to 0 when no such
association exists.

B. Disease Similarity Network

1) Disease Semantic Similarity: Disease semantic similar-
ity is calculated using Medical Subject Headings (MeSH)
descriptors, which are divided into 16 categories. Cat-
egory C focuses on disease relationships in a directed
acyclic graph (DAG) (supplementary material available at
https://github.com/TianTianTian14/FRWR), covering a broad
range of classifications and more specific conditions to ensure
a comprehensive analysis of disease relationships [29]− [30].

Let N denote a node of disease. DAG(N) =
(N,T (N), E(N)) can be constructed, where T (N) represents
the set comprising the disease in question and its ancestral
diseases, E(N) refers to the set of all direct edges that are
associated with the specific disease. Two respective equations
are defined as follows to calculate the semantic contribution
of disease d to disease node N , denoted as DN (d), which
represents the measure of how much disease d contributes
to the semantic information of disease node N . Similarly,
the semantic contribution of disease node N itself, denoted
as DN (N), quantifies the extent to which disease node N
contributes to its own semantic information.{

DN (N) = 1
DN (d) = max {∆ ∗DN (d′) | d′ ∈ d} , if d ̸= N

(1)

The semantic contribution factor ∆ denotes the edge E(N)
connecting disease d with its offspring disease d′ in the Dis-
ease Directed Acyclic Graph (DAG) associated with disease
node N . Within the DAG of disease node N , the disease node
N itself is considered the most specific disease. The semantic
contribution of disease node N is defined as 1, indicating
its highest level of relevance and specificity within the DAG.
Here, we assume that ancestor nodes farther away from disease
node N have lower degrees of association, which means the
semantic contribution factor ∆ for ancestor nodes is less than
1 but greater than 0. In this study, we set it to 0.5 [37], [39]−

[40]. According to equation (1), the semantic value DV (N)
of disease node N is determined as:

DV (N) = Σd∈TN
DN (d) (2)

Disease semantic similarity is measured based on the relative
positional relationships between diseases in the MeSH descrip-
tor DAG. [31]− [33] When two diseases exhibit a greater
degree of similarity in their Disease DAG, they are considered
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to be more semantically similar. The semantic similarity S for
a pair of diseases di and dj is delineated as:

S (N1, N2) =

∑
d∈TN1

∩TN2
(DN1(d) +DN2(d))

DV (N1) +DV (N2)
(3)

In Equation (3), DN1
(d) represents the semantic value of the

relationship between disease d and disease node N1 in the
DAG. DN2(d) represents the semantic value of the relationship
between disease d and disease node N2. Equation (3) assesses
the similarity in meaning between a pair of disease entities by
taking into account their locations within the DAG and their
connections to preceding diseases in terms of semantics.

2) Disease Gaussian interaction profile kernel similarity:
The Gaussian interaction profile kernel operates on the premise
that lncRNAs exhibiting greater functional resemblances tend
to have associations with analogous diseases. To assess net-
work topological similarity between diseases, the kernel in-
tegrates topological data obtained from the established net-
work of lncRNA-disease associations [33]− [34]. Within this
context, the binary vector IP (d(i)), corresponding to the i-th
column in the matrix LD, serves to depict the relationship
between the disease d(i) and every lncRNA. Equation (4) de-
notes the Gaussian kernel similarity KD for diseases d(i) and
d(j), determined through the interaction profiles of diseases
d(i) and d(j).

KD (di, dj) = exp
(
−γd ∥IP (di)− IP (dj)∥2

)
, (4)

where the parameter γd serves as the tuning parameter for the
bandwidth of the kernel. The KD matrix illustrates the sim-
ilarity through the Gaussian interaction profile kernel among
all diseases. An updated bandwidth parameter, γ′

d, calculated
by dividing it by the average number of associations between
diseases and lncRNAs, is required for adjusting γd. Informed
by prior studies on lncRNA-disease association predictions,
the value of γ′

d is established at 1 to regulate the bandwidth
of the kernel. [33], [35]− [36] Therefore, γd can be expressed
as:

γd = γ′
d/

(
1

nd

nd∑
i=1

∥LP (di)∥2
)

(5)

3) Disease Integrated Similarity: Integrating disease se-
mantic similarity with Gaussian interaction profile kernel
similarity for diseases yielded the aggregated disease similarity
matrix, denoted as DD. Here, DS represents the collection of
diseases associated with disease semantic similarity. Therefore,
DD(di, dj) is defined as:

DD (di, dj)

{
S(di,dj)+KD(di,dj)

2 , i, j ∈ DS
KD (di, dj) , i, j /∈ DS

(6)

C. LncRNA Similarity Measurement
1) LncRNA Functional Similarity: The functional similarity

of lncRNAs is evaluated using the LNCSIM model [37], which
measures the semantic similarity among disease categories
associated with two different lncRNAs. The disease categories
connected to lncRNA Ru and lncRNA Rv are specified as
D(Ru) and D(Rv), respectively. This functional similarity
between lncRNAs is derived from the semantic comparison

between D(Ru) and D(Rv). For instance, the similarity Sim
for a disease dR within the group D(Ru) relative to the group
D(Rv) is calculated in the following manner:

Sim (dR, D(Rv)) = max
d∈D(Ru)

(S (dk, d)) (7)

Rooted in the principle that lncRNAs with a greater extent of
functional resemblance are likely to correlate with comparable
diseases, this sentence aims to convey the same meaning by
rearranging the structural elements to reduce repetitiveness.
The functional similarity matrix F between Ru and Rv is
calculated as follows:

F =

∑
d∈D(Rw) Sim (d,D (Ru)) +

∑
d∈D(Rv) Sim (d · D (Rv))

|D (Ru)| + |D (Rv)|
, (8)

where |D(Ru)| indicates the quantity of diseases linked to
lncRNA Ru, and |D(Rv)| signifies the quantity of diseases
connected with lncRNA Rv . The functional similarity between
lncRNA Ru and Rv is denoted by F (Ru, Rv).

2) LncRNA Gaussian Interaction Profile Kernel Similarity:
Reflecting the previously described approach for calculating
disease similarity using a Gaussian interaction profile kernel,
lncRNA similarity is similarly determined via a Gaussian
interaction profile kernel as follows:

KL (Ru, Rv) = exp
(
−YR ∥IP (Ru)− IP (Rv)∥2

)
, (9)

yR = y′R/

(
1

nR

nR∑
i=1

∥IP (Ru)∥2
)

(10)

The binary vector IP (Ru), the u-th row in matrix LD, marks
the connection between Ru and all diseases, and is captured
as the engagement of Ru.

3) LncRNA Integrated Similarity: By combining the func-
tional similarity of lncRNAs with their Gaussian interaction
profile kernel similarity, we generated the lncRNA similar-
ity matrix, denoted as LL. The set of lncRNAs linked by
functional similarity is represented by RF . Therefore, the
measurement of LL(Ru, Rv) is as follows:

LL (Ru, Rv) =

{
F (Ru,Rv)+KL(Ru,Rv)

2 , u, v ∈ RF
KL (Ru, Rv) , u, v /∈ RF

(11)

IV. RESULTS

A. FRWR

1) Heterogeneous Network Construction: Three primary
networks are designed: an lncRNA similarity network con-
structed based on functional and expression pattern similarities
among lncRNAs; a disease similarity network established
according to the common clinical manifestations and genetic
expressions of diseases; and an lncRNA-disease association
network directly utilizing known association data between
lncRNAs and diseases. By integrating these three networks, we
constructed a multilayer heterogeneous network that not only
reflects the attributes of individual elements but also illustrates
the interrelationships among them. Let R = r1, r2, . . . , rp
and D = d1, d2, . . . , dq denote the sets of p lncRNA nodes
and q disease nodes, respectively. The integrated similarity
described in Sections 2.2.3 and 2.3.3 is used to assign the
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Fig. 1. Workflow diagram. The similarity network of lncRNA, simi-
larity network of disease, and known association network of lncRNA-
disease were calculated and integrated into a heterogeneous network.
Then, the potential lncRNA-disease associations were predicted by
applying the fast random walk with restart method on the heteroge-
neous network.

weights of edges between ru and rv , and di and dj . The
association network of lncRNA-disease contains p lncRNAs
and q diseases, where the edge weight between lncRNA ru and
disease di is set to 1 if they are associated, and 0 otherwise.
If the weight is 0, that is, ru has no recorded association
with a new disease dunexp, a novel measure incorporating
similarity of disease and association of lncRNA-disease is
utilized to recalculate the matrix of lncRNA-disease. The
conclusive weights are characterized by the following:

LD (ru, dunexp ) = DD( dunexp, dj ) ∗ LD⊤,
if LD (ru, dunexp ) = 0

(12)

Then, a multiple heterogeneous network H is constructed
and defined as:

H =

[
L LD

LDT D

]
, (13)

where L represents the lncRNA similarity network adjacency
matrix, D denotes the disease similarity network adjacency
matrix, and LD, the lncRNA-disease association matrix, yields
LDT when transposed.

2) Random Walk with Restart on the Heterogeneous net-
work: For the calculation of evaluation scores for po-
tential lncRNAs linked to diseases, the described multi-
heterogeneous network undergoes analysis through the use
of a network diffusion algorithm [38]. Given the dis-
ease network DD, lncRNA network LL, and lncRNA-
disease network LD, the following diagonal matrices DD,
DL, and DLD are defined, where the diagonal elements
are defined as (DD) i, i = Σ̄j(DD)j, i; (DL) i, i =
Σj(LL)j, i; (DLD) i, i = Σj(LD)j,i. Therefore, the normal-

ized matrices of DD, LL, and LD can be written as:
D̂D = DD ·D−1

D

L̂L = LLD−1
L

L̂D = LD D−1
LD

(14)

Based on these normalized matrices, a new matrix is con-
structed as:

Ĥ =

(
(1− β)L̂L βL̂D

βL̂D
⊤

(1− β)D̂D

)
, (15)

in which the parameter β signifies the transition likelihood
between the disease and lncRNA networks. When conducting
a random walk, there is a probability denoted by β that the
walker will jump from the disease network to the lncRNA
network. Alternatively, with a probability of 1−β, the walker
will remain within the original network it occupied.

The random walker is only capable of performing inter-layer
jumps to nodes in the adjacent network when those connecting
nodes exist. Otherwise, if no inter-layer links are present, the
walker can only transition to intra-layer neighboring nodes
within its current network or return to the originating node.
Therefore, a diagonal matrix M is defined such that the
elements (M)i,i are equal to the sum of each row j of
the normalized association matrix Ĥ , which yields the final
transfer matrix MT = Ĥ·M−1 characterizing the random walk
process throughout the dual-layer heterogeneous network.

The process of network propagation via restarting random
walks can be characterized as: Pi+1 = (1−α)MT ·Pi+αP0,
where pt+1 is the probability vector of the random walker
reaching the network nodes, p0 = (pT0D, pT0L)

T is the initial
probability of the random walk, pT0D is the initial probability
vector in the disease subnetwork, pT0L is the initial probability
vector in the IncRNA subnetwork. The restarting random walk
process is characterized by the parameter α, where α ∈ (0, 1)
represents the probability of returning to the initial node after
several steps. Once the probability pt+1 reaches a stable state,
genes can be ranked based on this steady probability to predict
disease-associated genes using a stable probability approach.
According to the original report, α and β were set at 0.7 and
0.8 respectively for purposes of network propagation [39]−

[40].

B. Comparison with other Methods

1) Evaluation Metrics: To comprehensively assess the pre-
dictive performance of the FRWR method, this study employs
three key performance metrics: the Area Under the Receiver
Operating Characteristic Curve (AUROC), the Area Under
the Precision-Recall Curve (AUPRC). These metrics not only
quantify the model’s classification ability across different
threshold settings but also evaluate the model’s precision in
high recall areas, providing a standardized framework for
comparing different methods [41].

We incorporated the Top-k Recall metric. Top-k Recall
refers to the proportion of actual positives among the top k pre-
dicted positives, where k varies. This metric is widely utilized
in the fields of medicine and bioinformatics to gauge model
accuracy in critical predictive tasks. Specifically, different k
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values such as 10, 50, 100, and 200 were set to correspond
to varying levels of prediction granularity. For each k, the
top k predictions with the highest scores were selected, and
the proportion that were correctly identified as positives was
calculated. Moreover, the results of the Top-k Recall were used
to directly compare the performance of the FRWR method
against existing methods. Through this comparison, we could
demonstrate the advantages of FRWR in practical applications.

2) Comparison with other Methods: The FRWR method
proposed in this article demonstrated exceptional predictive
performance in several disease instances. Compared with the
following four methods: SIMCLDA, SDLDA, RWRlncD, and
BRWLDA, FRWR performed superiorly in both AUROC
and AUPRC metrics. Particularly in case studies of liver,
gallbladder, and pancreatic cancers, the predicted potential
lncRNA-disease associations were validated by two indepen-
dent databases, further proving the reliability and practicality
of the FRWR method. Based on the standard dataset, the AU-
ROC values of our FRWR method and SIMCLDA, SDLDA,
RWRlncD, and BRWLDA were shown. The AUROC value
of FRWR was 0.9034, SIMCLDA was 0.8245, SDLDA was
0.8692, RWRlncD was 0.8867, and BRRWLDA was 0.8963.
The results demonstrated that using the standard dataset, our
FRWR method achieved a higher AUROC value in predicting
lncRNA-disease associations. Similarly, we also compared
the AUPRC values of the five methods, which were 0.1246,
0.1201, 0.1227, 0.1188, and 0.1213 for FRWR, SIMCLDA,
SDLDA, RWRlncD, and BRWLDA, respectively, as shown in
the figure. As shown in Table 2, the FRWR method also had
certain advantages in Top-k Recall values.

(a)

(b)

Fig. 2. Evaluating the efficacy of FRWR, focusing on (a) AUROC
and (b) AUPRC metrics, and comparing these outcomes with leading-
edge techniques.

TABLE II
EVALUATION OF FRWR’S EFFICACY USING TOP-K

RECALL (K = 10, 50, 100, AND 200) METRICS,
JUXTAPOSED WITH CUTTING-EDGE APPROACHES

Methods Prec_10 Prec_20 Prec_50 Prec_100 Prec_200
FRWR 0.2270.2270.227 0.2870.2870.287 0.3590.3590.359 0.4180.4180.418 0.4990.4990.499
SIMCLDA 0.215 0.265 0.337 0.403 0.473
SDLDA 0.220 0.273 0.350 0.4180.4180.418 0.487
RWRlncD 0.215 0.271 0.346 0.4180.4180.418 0.496
BRWLDA 0.223 0.279 0.349 0.411 0.498

3) Case Studies: Case studies on liver, gallbladder, and
pancreatic cancers were performed to demonstrate the pre-
dictive efficacy of the FRWR method. Globally, liver can-
cer is a highly prevalent and lethal malignancy. Its early
stages are asymptomatic, while later stages may present with
enlarged liver and poor liver function. Treatment methods
include surgical resection, thermal therapy, chemotherapy, and
targeted therapy, generally resulting in a poor prognosis [42].
Gallbladder cancer is one of the predominant malignancies
within the biliary tract. Risk factors include a history of
chronic cholecystitis and cholelithiasis. Its early symptoms
are not obvious, while later stages may present with jaundice
and indigestion [43]. The incidence of pancreatic cancer ranks
fourth among causes of cancer deaths. It has an occult onset
and asymptomatic early stages, with adenocarcinoma being the
primary pathological type [44]. These summaries offer insights
into three prevalent malignant neoplasms within the digestive
system, each representing significant threats to human health
and survival.

Before predicting potential lncRNAs associated with dis-
eases, we removed all known lncRNAs linked to each disease
and treated each disease as a novel entity. We then validated
the top 15 predictive results using the Lnc2Cancer 3.0 [45] and
RNADisease v4.0 [46] databases, which had not been utilized
in our prior analyses. These databases primarily served to
confirm the accuracy of the newly predicted lncRNA-disease
associations. In the standard dataset, all confirmed lncRNA-
disease interactions were used as training examples, with
yet-to-be-studied associations treated as prospective candidate
pairs. From the pool of candidate pairs, we identified the 15
most relevant lncRNAs for liver, gallbladder, and pancreatic
cancers.

The majority of the predicted lncRNA-disease associations
were corroborated by the Lnc2Cancer 3.0 and RNADisease
v4.0 databases, while only a minority of the lncRNAs re-
mained unconfirmed in their disease associations from the
case studies. These findings underscore the accuracy of the
proposed predictive method.

V. CONCLUSION

In this paper, we provide a detailed overview of various
computational methods currently used to predict lncRNA-
disease connections, alongside a comparison of their strengths
and weaknesses. A multilayer network method named FRWR
was proposed for prediction to provide an optimized solu-
tion. To elaborate, networks of lncRNA similarity, disease
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TABLE III
TOP 15 RELATED GENES OF LIVER CANCER PREDICTED

BY FRWR

Top 1-15 gene Lnc2Cancer 3.0 RNADisease v4.0
MEG3 ✓ ✓
H19 ✓ ✓
ZEB1-AS1 ✓ ✓
ACVR2B-AS1 ✓ ✓
HOTAIR ✓ ✓
UCA1 ✓ ✓
FAM215A ✓ ✓
CDKN2B-AS1 ✓ ✓
CRNDE ✓ ✓
LUCAT1 ✓ ✓
lnc-DILC ✓ ✓
ENST00000425005 ✓ ✓
DLX6-AS1 ✓ ✓
BCAR4 ✓ ✓
HULC ✓ ✓

TABLE IV
TOP 15 RELATED GENES OF PANCREATIC CANCER

PEDICTED BY FRWR

Top 1-15 gene Lnc2Cancer 3.0 RNADisease v4.0
HULC ✓ ✓
TUG1 ✓ ✓
BANCR ✓ ✓
SNHG16 ✓ ✓
XIST ✓ ✓
SNHG15 ✓ ✓
LINC00958 ✓ ✓
ABHD11-AS1 ✓ ✓
MTA2TR ✓ ✓
CCAT1 ✓ ✓
HOTTIP ✓ ✓
MEG8 ✓ ✓
BCYRN1 # #
MALAT1 ✓ ✓
BX111 ✓ #

similarity, and established lncRNA-disease associations were
developed, creating a multilayer heterogeneous network. The
FRWR technique was subsequently applied to this network,
leveraging principles of network propagation to deduce prob-
able new associations. Through cross-validation, the FRWR
method surpassed other methods on three evaluation metrics,
demonstrating its predictive ability. Furthermore, case studies
on several typical diseases validated that most prediction re-
sults were supported by real databases, showing this method’s
good reliability and interpretability. This method effectively
harnessed data from multiple sources and introduced a struc-
tured and refined framework for forecasting lncRNA-disease
links. Moving forward, we plan to delve deeper into the precise
roles of lncRNAs across a broader spectrum of diseases to
facilitate foundational research and its clinical applications.
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