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 Abstract— The increasing concern about climate change has 

underpinned global efforts toward the reduction of greenhouse 

gas emissions (GHGs). In this sense, energy efficiency actions 

(EEAs) are interesting solutions that have been expanding over 

the years in the industrial sector. Replacing low-efficiency 

electric motors with high-efficiency counterparts is a ubiquitous 

action in this sense. However, they still have an excessive cost, 

making it necessary to perform a proper technical-economic 

analysis to determine the feasibility of the action. For this 

purpose, life cycle cost analysis (LCCA) has proven to be an 

excellent alternative for economic viability verification of EEAs 

because this methodology considers expenses throughout the 

entire life cycle of the project or equipment. Considering 

decision-making involving optimization, this work proposes a 

methodology to calculate the present residual value at the end of 

the life cycle, considering the service time of motors and the 

chosen study period for the project. Two case studies involving 

predicted theoretical situations are simulated, and the impact of 

service time on the replacement of a 50-CV, four-pole motor and, 

40-CV in a local industry is assessed. It is observed that Net 

Savings are affected by the study period when replacement 

occurs in terms of a low-power high-efficiency motor since such 

action can lead to different service times. Overall, the improved 

LCC applied to induction motors replacement proves to be a 

good method for predicting the residual value, whereas the 

results show that different service times are necessary to 

maximize net savings and the residual cost in the same case. 

 

Link to graphical and video abstracts, and to code: 

https://latamt.ieeer9.org/index.php/transactions/article/view/8823 

 
Index Terms— energy efficiency, industrial economics, life 

cycle cost, service time, three-phase induction motors. 

I. INTRODUCTION 

HE industrial sector accounts for 32.3% of end 

electricity consumption in Brazil, with great 

potential for the application of energy efficiency 

actions (EEAs). The energy consumed by the currently 
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operating driving force represents 68% of the total consumption. 

Overall, electric motors represent approximately 30% of the 

country’s energy consumption. The three main EEAs in this 

scenario include the use of efficient drives (frequency converters, 

voltage regulators), matching the motor and load powers, and 

using high-efficiency motors [1]. 

In the context of standardization criteria and labeling 

procedures conducted on high-efficiency motors since 1993 [2], 

minimum energy performance standards (MEPSs) yielded a 

significant reduction in energy consumption. In 2002, with the 

Energy Efficiency Act already in force, three-phase induction 

motors were the first equipment to comply with minimum 

performance standards in Brazil [3]. In 2005, through 

Interministerial Ordinance No. 553/2005 of the Ministry of 

Mines and Energy (MME), the adoption of minimum efficiency 

levels for three-phase induction motors manufactured from 

December 2009 became mandatory with the introduction of two 

categories: standard and high-efficiency motors (equivalent to 

IE2) [4]. 

Ordinance no. 1 issued by the MME established in 2017 that 

the minimum efficiency level for three-phase induction motors 

with a squirrel-cage rotor should be of type IR3 (equivalent to 

premium or IE3). This ordinance came into effect in August 

2019 [5]. Thus, it is reasonable to state that Brazil is undergoing 

an energy transition scenario in which such motors play a 

significant role. Therefore, the replacement of traditional motors 

in operation with high-efficiency counterparts is an acceptable 

practice, provided that: (I) the process follows the analysis of 

motor loading; (II) there is proper technical justification for the 

replacement with a motor with lower rated power; and (III) 

another concise criterion is used for the replacement [6]. 

Life cycle cost analysis (LCCA) is an economic assessment 

measure recommended by the US government for energy 

conservation and energy efficiency projects [7]. LCCA finds 

applications in various fields, including wind farm maintenance 

management [8], wind turbine converter selection [9], 

determining the most cost-effective transmission line 

installations [10], assessing the cost-effectiveness of naturally-

ventilated industrial transformers compared to forced-air ones 

[11], economically measuring the impact of electric vehicle fleets 

in specific locations [12], sensitivity analysis of parameters on 

the optimal cost of photovoltaic water pumping systems [13], 

evaluating the viability of hybrid electric tractors for agriculture 

[14], and assessing the economic feasibility of energy efficiency 

public policies, among other applications [15] [16] [17]. 
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Recently, LCCA has emerged as a powerful tool in studies 

concerning SCIM replacement. It demonstrates the cost-

effectiveness of various motor retrofitting methods, 

highlighting the rewinding [19]. 

Considering that the service period of motors varies 

according to the nominal power [19] [16] and that the 

replacement with high-efficiency units can be carried out 

while maintaining, reducing [20] [21], or even increasing 

the nominal power [6], the service times of low-efficiency 

and high-efficiency motors may differ in practice if the 

rated power of high-efficiency motor is reduced and has a 

different service time. These differences in service times are 

statistical measurements of motors populations in 

regions/countries for government use. Therefore, it may 

result in a residual value at the end of the life cycle cost 

analysis (LCCA), thus justifying economic studies on the 

subject. 

In this context, the objective of this work is to determine 

the residual value in processes where low-efficiency motors 

are replaced with high-efficiency ones while taking the 

service times into account in the analysis. The latter 

parameter is crucial for investors as it quantifies the present 

value of the asset, providing relevant information for 

decision-making and partially addressing economic issues 

regarding estimating the resale value of reconditioned 

motors as mentioned in [5]. 

II. LCCA – LIFE CYCLE COST ANALYSIS 

LCCA is an economic evaluation tool that encompasses 

all costs associated with the life cycle of equipment or 

processes, making it an efficient method for assessing the 

feasibility of engineering actions. Economic feasibility 

study through LCCA occurs over periods. The time or study 

period is the duration during which the project’s feasibility 

is assessed. In other words, this is the period over which a 

specific engineering action is analyzed from the economic 

viewpoint. The service time or period is the duration during 

which the engineering action is in operation [22]. Figure 1 

represents the periods involved in LCCA. 

 

 Fig. 1. Periods involved in LCCA [22]. 

 

The life cycle cost of a three-phase induction motor is 

given by (1). 

𝐶𝐿𝐶𝐶 = 𝐶𝐼 + 𝐶𝐸 +  𝐶𝑂&𝑀 +  𝐶𝑟𝑒𝑝 −  𝐶𝑟𝑒𝑠 ,   (1) 

where CI is the present value of the investment, CE is the 

present value of the consumed energy cost, CO&M is the present 

value of the operation and maintenance cost, Crep is the present 

value of the replacement cost, and Cres is the present value of the 

residual cost at the end of the life cycle [19] [16] [7]. 

The energy cost CE for supplying a three-phase induction 

motor is calculated from (2). 

𝐶𝐸 =  
0.736 ∙ 𝑃𝑛 ∙ 𝐿 ∙ 𝑇 ∙ 𝐻

ƞ(𝐿)
,   (2) 

where Pn is the rated power in HP, L is the motor loading in pu, T 

is the electricity tariff in R$/kWh, H is the number of operating 

hours per year, and ƞ(L) is the motor efficiency as a function of 

loading [7]. 

To perform LCCA, it is necessary to represent costs in terms 

of the net present value (NPV). Thus, the NPV of electrical 

energy cost (NPVCE) is represented in (3), where ê is the real 

escalation rate, d is the discount rate, and ncycle is the study period 

in years. 

𝑁𝑃𝑉𝐶𝐸 = ∑ 𝐶𝐸 ∙ (
1 + ê

1 + 𝑑
)

𝑡
𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

 (3) 

The NPV of the investment cost (NPVCI) is obtained from (4). 

𝑁𝑃𝑉𝐶𝐼 =  
𝐶𝐼

(1 + 𝑑)𝑡
 , (4) 

where t is the investment period in years, also considering that an 

initial investment is required before the equipment operation 

begins, i.e., t = 0. 

The remaining costs mentioned in (1) are neglected in this 

study. The only exception is residual cost, which will be 

calculated in the next section. This is a valid assumption because 

maintenance and replacement costs are considered to be the same 

for both low- and high-efficiency motors, yielding a net balance 

equal to zero in the economic feasibility analysis. This premise is 

reasonable given that the maintenance schedule for the motors is 

the same, while there is no technological discrepancy in the parts 

replaced in both cases. 

III. NET SAVINGS 

Net savings is a supplementary economic performance 

measure calculated from the difference between the life cycle 

costs of the base and alternative cases, which consist of the low- 

and high-efficiency motors, respectively in this study [22]. Since 

costs are projected over a future study period, they are assessed 

in present value terms relative to the study’s outset. Therefore, 

one can define net savings NS as in (5). 

     𝑁𝑆 =  𝑁𝑃𝑉𝐿𝐸 − 𝑁𝑃𝑉𝐻𝐸 ,       (5) 

where NPVLE and VPLHE are the NPVs of the low-and high-

efficiency induction motors, respectively. 

IV. LCCA APPLIED IN THE REPLACEMENT OF INDUCTION 

MOTORS 

A. This section addresses the application of LCCA in the 

replacement of low-efficiency motors with high-efficiency ones 

based on simple and straightforward criteria. The service time is 

assumed to be the same for both types of motors, but different 
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from the study period. In addition, the economic feasibility 

analysis is carried out considering the net savings. 

A. Service Times Shorter Than The Study Period 

In this specific case, according to (3) and (4), the NPV 

of low-efficiency motors considering a service time mLE 

shorter than ncycle can be calculated from (6). 

𝑁𝑃𝑉𝐿𝐸 =  ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐿𝐸

𝑡=1

+ 𝐼0_𝐿𝐸 + 

(6) ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑚𝐿𝐸+1

+ 𝐼0_𝐿𝐸 ∙ (
1

1 + 𝑑
)

𝑚𝐿𝐸

 

+ ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚𝐿𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

, 

where CE_LE and I0_LE are the energy cost and investment 

cost of the low-efficiency motor, respectively. To complete 

the study period, it is necessary to purchase a new motor, 

and a new service time starts in mLE+1, until 2.mLE.  

Considering that the service time of high-efficiency 

motors mHE is shorter than the study period, one can 

calculate NPVHE from (7). 

𝑁𝑃𝑉𝐻𝐸 =  ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐻𝐸

𝑡=1

+  𝐼0_𝐻𝐸 + 

(7)  ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

] +

𝑛𝑐𝑦𝑐𝑙𝑒

𝑚𝐻𝐸+1

𝐼0_𝐻𝐸 ∙ (
1

1 + 𝑑
)

𝑚𝐻𝐸

 

+ ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

,  

where CE_HE and I0_HE are the electrical energy cost and 

investment cost of the high-efficiency motor, respectively. 

To complete the study period, it is necessary to purchase a 

new motor, and a new service time starts in mHE+1, until 

2.mHE. 

Substituting (6) and (7) in (5), as well as considering that 

both motors have the same service time mLE = mHE = m, 

one can calculate the net savings NS as in (8). 

𝑁𝑆 =  ∑ [(𝐶𝐸_𝐿𝐸 − 𝐶𝐸_𝐻𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

+ 

(8) (𝐼0_𝐿𝐸 − 𝐼0_𝐻𝐸)  + (𝐼0_𝐿𝐸 − 𝐼0_𝐻𝐸) ∙ (
1

1 + 𝑑
)

𝑚

 

 + ∑ [(𝐶𝐸_𝐿𝐸 − 𝐶𝐸_𝐻𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

. 

Considering the equalities in (9) and (10) and substituting 

both equations in (8) yields (11). 

∆𝐶𝐸 = 𝐶𝐸_𝐿𝐸 − 𝐶𝐸_𝐻𝐸 , (9) 

∆𝐼0 =  𝐼0_𝐻𝐸 − 𝐼0_𝐿𝐸 , (10) 

𝑁𝑆 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

− (∆𝐼0)  

(11) − (∆𝐼0) ∙ (
1

1 + 𝑑
)

𝑚

+ 

∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

. 

Thus, it is observed that NS is composed of three terms as 

represented in (12)–(14). 

𝐶𝐸 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚

𝑡=1

+  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑚+1

, 

(12) 

𝐶𝐼 =  (∆𝐼0)  +  (∆𝐼0) ∙ (
1

1 + 𝑑
)

𝑚

, (13) 

𝐶𝑅 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

] ,

2 ∙ 𝑚

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 (14) 

where CE is the net electrical energy cost, CI is the net 

investment cost, and CR is the net residual cost or active residual 

cost. In addition, equations (12)–(14) take into account that the 

service time is greater than half the study period, resulting in 

initial and intermediate investments. 

B. Service Times Longer Than The Study Period 

Using the same criterion adopted in Section IV.A, one can 

calculate the NPV for the low-efficiency motor corresponding to 

NPV’
LE considering that the service time differs from the study 

period (ncycle < mLE) from (15). 

𝑁𝑃𝑉’𝐿𝐸 =  ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

+  𝐼0_𝐿𝐸 + 

(15) 

 ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐿𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 . 

Similarly, the NPV for the low-efficiency motor 

corresponding to NPV’
LE considering ncycle < mHE is defined in 

(16). 

𝑁𝑃𝑉’𝐻𝐸 =  ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

+  𝐼0_𝐻𝐸 + 

(16) 

∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

] .

𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 

Substituting (15) and (16) in (5), also considering (9) and (10), 

and assuming that the low- and high-efficiency motors have the 

same service time (mbr = mar = m’) gives (17)–(19). 

𝐶𝐸’ =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

] ,

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

  (17) 
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𝐶𝐼’ =  ∆𝐼0,  (18) 

𝐶𝑅’ =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚′

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 , (19) 

where CE’ is the net electrical energy cost, CI’ is the net 

investment cost, and CR’ is the net residual cost or active 

residual cost. 

V. DIFFERENCES BETWEEN THE SERVICE TIMES OF MOTORS 

AND THE STUDY PERIOD 

This section presents the LCCA applied in three case 

studies while considering distinct service times for the 

motors and study time. 

A. Case 1: mHE < mLE < ncycle 

Using the same criteria adopted in Section IV, one can 

calculate NPVLE and NPVHE from (6) and (7), respectively, 

considering that the service time differs from the study 

period. Fig. 2 shows the service times of the assessed 

motors. 

Fig. 2. Service times defined for case 1. 

Substituting (6) and (7) in (5) and considering  

mHE < mLE < ncycle gives (20)–(22). 

𝐶𝐸1 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

, (20) 

𝐶𝐼1 =  (∆𝐼0) − (𝐼0_𝐿𝐸) ∙ (
1

1 + 𝑑
)

𝑚𝐿𝐸

+ 

(𝐼0_𝐻𝐸) ∙ (
1

1 + 𝑑
)

𝑚𝐻𝐸

, 

(21) 

 𝐶𝑅1 =   ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 

            + ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚𝑏𝑟

𝑡=2 ∙𝑚𝐻𝐸+1

,  

(22) 

where CE1 is the net electrical energy cost, CI1 is the net 

investment cost, and CR1 is the net residual cost or active 

residual cost. 

This section considers that the service times of both 

motors are longer than half the study period, yielding initial 

and intermediate investments for the accurate calculation of 

residual value. 

B. Case 2: mHE < ncycle < mLE 

In this case, one can determine the NPV for the low-efficiency 

motor NPVLE2 from (3) and (4) considering  

mHE < ncycle < mLE, resulting in (23). Fig. 3 shows the intervals 

associated with the LCCA for case 2. 

𝑁𝑃𝑉𝐿𝐸2 =  ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐻𝐸

𝑡=1

+ 𝐼0_𝐿𝐸 +  

(23)    ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=𝑚𝐻𝐸+1

 + 

∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

] .

𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 

Fig. 3. Service times defined for case 2. 

The NPV for the high-efficiency motor NPVHE2 considering 

mHE < ncycle < mLE is given by (24). 

𝑁𝑃𝑉𝐻𝐸2 =  ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐻𝐸

𝑡=1

+  𝐼0_𝐻𝐸 +  

(24)   ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê
1 + 𝑑

)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑚𝐻𝐸+1

+ 𝐼0_𝐻𝐸 ∙ (
1

1 + 𝑑
)

𝑚𝐻𝐸

 

+ ∑ [𝐶𝐸𝑎𝑟 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

2 ∙ 𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

. 

Substituting (23) and (24) in (5), one can determine NS, which 

consists of the terms defined in (25)–(27). 

𝐶𝐸2 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

] ,

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

 (25) 

𝐶𝐼2 =  (∆𝐼0)  + (𝐼0_𝐻𝐸) ∙ (
1

1 + 𝑑
)

𝑚𝐻𝐸

,  (26) 

 𝐶𝑅2 =   ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐿𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

− 

  ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

] ,

2 ∙ 𝑚𝐻𝐸

𝑡=𝑚𝐿𝐸+1

 

(27) 
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where CE2 is the net electrical energy cost, CI2 is the net 

investment cost, and CR2 is the net residual cost or active 

residual cost. 

It is noteworthy that the equations were derived for the 

specific case in which the service time of the high-

efficiency motor is shorter than the study period, yielding 

initial and intermediate investments. 

C. Case 3: ncycle < mHE < mLE 

Using the same criteria adopted in Sections V.A and V.B, 

one can determine the NPV for the low-efficiency motor 

NPVLE3 considering ncycle < mLE from (28). Fig. 4 shows the 

intervals associated with the LCCA for case 3. 

𝑁𝑃𝑉𝐿𝐸3 =  ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

+  𝐼0_𝐿𝐸 + 

(28) 

∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

, ]

𝑚𝐿𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 

 

Similarly, one can calculate the NPV for the high-

efficiency motor NPVHE3 considering ncycle < mHE from (29). 

𝑁𝑃𝑉𝐻𝐸3 =  ∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

+  𝐼0_𝐻𝐸 + 

(29) 

∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 

Substituting (28) and (29) in (5), it is possible to 

determine NS from (30). 

Fig. 4. Service times defined for case 3. 

𝑁𝑆3 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

− (∆𝐼0)  + 

(30) ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

] +

𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

 

∑ [𝐶𝐸_𝐻𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐿𝐸

𝑡=𝑚𝐻𝐸+1

 

 

The terms that constitute (30) can be determined from (31)–

(33). 

𝐶𝐸3 =  ∑ [(∆𝐶𝐸) ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑛𝑐𝑦𝑐𝑙𝑒

𝑡=1

 (31) 

𝐶𝐼3 =  (∆𝐼0)  (32) 

 𝐶𝑅3 = ∑ [(∆𝐶𝐸) ∙  (
1 + ê
1 + 𝑑

)

𝑡

]

𝑚𝐻𝐸

𝑡=𝑛𝑐𝑦𝑐𝑙𝑒+1

+ 

  ∑ [𝐶𝐸_𝐿𝐸 ∙  (
1 + ê

1 + 𝑑
)

𝑡

]

𝑚𝐿𝐸

𝑡=𝑚𝐻𝐸+1

 

(33) 

 

VI. METHODOLOGY 

From the equations presented in Section IV, it is possible to 

perform a techno-economic feasibility analysis for distinct 

service times of the motors, aiming to determine the residual 

value. Thus, the methodology employed in this work consists of 

analyzing the replacement of motors with different service times 

and comparing the results with the replacement of motors with 

identical service times. For this purpose, based on [7-8], it was 

found that the average service times of the 50-CV and 40-CV 

motors are 25 and 20 years in Brazil, respectively. To meet this 

requirement, three case studies (CS) were simulated, where the 

first and second CS (CS A and CS B) are about motor 

replacement in Brazil and the third, CS C, is a 40-CV and 60-CV 

motor replacement in Europe. The service time in this region is 

about 15 years: 

• CS A: Replacement of a low-efficiency 50-CV motor 

(IR2) with a high-efficiency 40-CV motor (IR3), 

whereas the motors have different service times; 

• CS B: Replacement of a low-efficiency 50-CV motor 

(IR2) with a high-efficiency 50-CV motor (IR3), 

whereas the motors have identical service times and, 

• CS C: Replacement of a low-efficiency 40-CV motor 

(IE2) with a high-efficiency 60-CV (IE3), whereas the 

motors have identical service times. 

The technical data of the motors regarding loading, efficiency, 

and rated current are provided in [9-10] and presented in Table I 

and II. Data regarding motor costs and their respective service 

times are available in [7-8] and presented in Table III and IV. In 

Table IV, an unusual discount rate of 5% is observed in 

economic analysis. However, it’s maintained 5% because the 

case study carried out in [19] presents 5% as the discount rate 

used in the economic analyses carried out in the paper (Europe). 

Additionally, the exchange rate between dollars and reais is R$ 

5.18 for every $1.00 plus 3% of the transaction value, resulting 

in the parameter summarized in Table I. 
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TABLE I  

ELECTRICAL PARAMETERS OF THE THREE-PHASE INDUCTION MOTORS IN CS A AND CS B 

Motor Type 
Rated Power 

(CV) 

Service 

Time 

(years) 

Current 

(A) 

Loading 

(pu) 

Efficiency 

(%) 

Cost 

(US$) 

Cost 

(R$) 

IR2 / four poles 50 25 37.96 0.481 91.05% 3383.74 18,053.61 

IR3 / four poles 40 20 34.09 0.531 92.70% 3601.46 19,215.23 

IR3 / four poles 50 25 36.46 0.424 92.40% 3992.81 21,303.24 

 

 

 

TABLE II  

ELECTRICAL PARAMETERS OF THE THREE-PHASE INDUCTION MOTORS IN CS C 

Motor Type 
Rated Power  

(CV) 

Service 

Time 

(years) 

Current 

(A) 

Loading 

(pu) 

Efficiency 

(%) 

Cost 

(US$) 

Cost 

(R$) 

IE2 / four poles 40 15 - 0.923 91.04% 3275.92 17,478.34 

IE3 / four poles 60 15 - 0.616 95.72% 4986,96 26,607.42 

 

Economic quantities such as the escalation rate, discount 

rate, and the industrial electrical energy tariff in the Brazilian 

Northeast region are presented in [19] [16] [21] [7] and in 

Table III. The escalation rate ê adopted in the present study is 

the one adopted in the Brazilian Northeast region, while the 

average tariff was determined from updated data [9-10]. 

Additionally, the discount rate used is the one recommended 

for energy efficiency actions, which is equal to 12% [23]. 

Table III presents the aforementioned data for CS A and CS B 

and Table IV presents European economic data available for 

CS C in this situation. 

The operating cycle of the motor is four thousand hours per 

year, considering a daily regime of around 12 hours per day 

[9-10] [7]. 

VII. RESULTS AND DISCUSSION 

After collecting the aforementioned data, the net savings 

were calculated for three different study periods: 15, 22, and 

30 years. The equations from Sections IV and V were used for 

analyzing the CS defined in Section VI considering the service 

time of the motors and the study period for each condition. 

Tables V, VI and VII show the results obtained, while Tables 

VIII, IX and X present the costs involved in LCCA for the 

assessed cases. 
 

TABLE III 

 ECONOMIC QUANTITIES ADOPTED FOR CS A AND CS B 

Escalation Rate 

(Northeast Region, 

Industrial Class) 

(%) 

Discount 

Rate 

(%) 

Average  

Energy Tariff 

(R$ / kWh) 

2.35% 12.00% 0.45608 

 

 

Analyzing CS A in accordance with Tables V and VIII, 

where the service time of the low-efficiency motor is longer 

than that of the high-efficiency motor, it is observed that the 

net savings vary according to the study period. 

 

 
TABLE IV  

ECONOMIC QUANTITIES ADOPTED FOR CS C 

Escalation Rate (EU, 

Industrial Class) 

(%) 

Discount 

Rate 

(%) 

Average  

Energy Tariff 

(R$ / kWh) 

2.91% 5.00% 0.80 

 

The study periods of 15 and 30 years showed satisfactory 

results. However, the 22-year period yielded net savings 

relatively lower than its counterparts. 

 
TABLE V  

NET SAVINGS CALCULATED FOR CS A 

50-CV Motor (IR2) – 40-CV Motor (IR3) 

Study Period Net Savings 

15 years R$ 48,345.29 

22 years R$ 21,971.31 

30 years R$ 39,780.44 

 

As for the costs, a high residual value is observed for the 

15-year study period, as well as a negative residual value for 

the 22-year period. Because the study period is shorter than 

the service times of the motors, it yields a potential asset for 

the motors represented in terms of the residual cost. 

In the second case, requiring a second investment in the 

high-efficiency motor, followed by the study period ending in 

two subsequent periods, leads to a negative impact on the 

residual cost. 

The results for CS B are given in Tables VI and IX, where 

the service time of the low-efficiency motor is equal to that of 
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the high-efficiency motor. It is observed that the net savings 

are marginally influenced by the study period. However, the 

residual cost changes based on the study period, resulting in 

lower costs as the study period is extended beyond the service 

time. The asset value at the end of the cycle can influence 

decision-making and serve as a benchmark to determine the 

ideal study period for maximizing net savings. 

 
TABLE VI  

NET SAVINGS CALCULATED FOR CS B 

50-CV Motor (IR2) – 50-CV Motor (IR3) 

Study Period Net Savings 

15 years R$ 34,155.23 

22 years R$ 36,065.92 

30 years R$ 35,874.76 

 

Finally, the results for CS C are shown in Tables VII and X. 

The net savings shows a valuable cost-effectiveness. One 

explanation is the high efficiency of the IE3 motor compared 

to the 40-CV motor, even with low load. Furthermore, In the 

year 15 and year 30 there is no residual cost. This happens 

because the service time of the motors are the same in year 15, 

and in year 30 there the same situation occurs (would be a 

second life cycle cumulatively on analysis).  

 
TABLE VII  

NET SAVINGS CALCULATED FOR CS C 

40-CV Motor (IE2) – 60-CV Motor (IE3) 

Study Period Net Savings 

15 years R$ 51,313,40 

22 years R$ 91,479.80 

30 years R$ 91,479.80 

 
TABLE VIII  

COSTS INVOLVED IN LCCA FOR CS A 

50-CV Motor (IR2) – 40-CV Motor (IR3) 

Study 

Period 
CE CI CR 

15 years R$ 32,772.93 R$ 1,161.62 R$ 16,733.99 

22 years R$ 36,784.96 R$ 3,153.60 R$ - 11,660.05 

30 years R$ 38,760.42 R$ 2,091.63 R$ 3,111.66 

 

 

TABLE IX 
COSTS INVOLVED IN LCCA FOR CS B 

50-CV Motor (IR2) – 50-CV Motor (IR3) 

Study 

Period 
CE CI CR 

15 years R$ 32,481.82 R$ 3,249.63 R$ 4,923.04 

22 years R$ 36,458.22 R$ 3,586.51 R$ 2,857.33 

30 years R$ 38,416.13 R$ 3,440.79 R$ 899.42 

TABLE X 
COSTS INVOLVED IN LCCA FOR CS C 

40-CV Motor (IE2) – 60-CV Motor (IE3) 

Study 

Period 
CE CI CR 

15 years R$ 59,868.60 R$ 3,249.63 R$ 0.00 

22 years R$ 82,197.67 R$ 12,670.40 R$ 21,952.52 

30 years R$ 104,150.20 R$ 12,670.40 R$ 0.00 

 

VIII. CONCLUSION 

This work has presented a mathematical framework that 

extracts, from real case studies involving different service 

times evaluated in an economic analysis, a study period that 

maximizes net savings and residual cost, the latter being a key 

factor in determining the resale costs of refurbished motors. A 

methodology for calculating the residual value considering a 

hypothetical situation in which low-efficiency motors replace 

high-efficiency ones was presented. Three case studies were 

assessed in detail: the simple and straightforward replacement 

of a motor with another with the same power ratings and high 

efficiency (CS B); replacement of a low-efficiency motor with 

another with a lower rated power (CS A) and replacement of a 

low-efficiency motor with another with higher rated power 

(CS C). 

It has been demonstrated that the chosen study period for 

economic analysis directly influences the metrics, as well as 

the service time of the motors used in the process. CS A 

considers a study period of 22 years, that is, longer and shorter 

than the service times of the low- and high-efficiency motors 

corresponding to 25 and 20 years, respectively. Under this 

condition, net savings are the lowest, while the residual cost is 

negative. In turn, the analysis of CS B, in which the motors 

have the same service time, net savings change little, while the 

shorter the study period, the higher the residual cost. Looking 

for CS C the motors service time are equals, the residual cost 

is high in the beginning of motor’s lifespan, and it decreases 

up to zero where service time is equal to study period. 

The necessity for a more comprehensive simulation arises 

from these preliminary results. This involves varying the study 

period year by year to derive a function and subsequently 

identify the maximum and minimum values for net savings 

and residual cost. Since this exceeds the scope of the present 

study, evaluating the motor replacement technique outlined in 

[6] will be the focus of future research. Consequently, 

additional data can be collected, enabling investors to 

monetize the asset value over their desired period. 
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