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APNet: Accurate Positioning Deformable
Convolution for UAV Image Object Detection

Peiran Zhang , Guoxin Zhang , and Kuihe Yang

Abstract—Unmanned aerial vehicle (UAV) image object
detection, in recent years, has been receiving increasing
attention for its wide application in military and civil fields.
Current object detection methods perform well in generic
scenarios, while vast small objects and extremely dense
distribution in UAV images make it difficult to capture them,
resulting in sub-optimal performance. In this paper, we propose a
UAV image object detection framework APNet, which addresses
the issue mentioned above by fine-grain deformable convolution
(DC) and effective feature fusion. First, we design an accurate
positioning deformable convolution (APDC), which changes the
kernel shape dynamically to enforce refined features, especially
in regions where objects gather densely. Specifically, a positional
information enhancement attention (PEA) is designed to generate
more accurate convolutional position offsets depending on
the object position. Therefore, APDC alleviates inflexible
deformation in vanilla DC and exhibits better adaptability to
the shapes of different objects, which discriminates multi-objects
in densely distributed areas in a fine-grain way. Second, we
propose an effective cross-layer feature fusion (ECF) to integrate
multi-scale features effectively and aggregate attentive features
dynamically. Extensive experiments conducted on VisDrone
and UAVDT demonstrate the universality and effectiveness
of our APNet, achieving 29.8 and 48.7 in mAP and mAP50,
respectively. Compared to the state-of-the-art (SOTA) method,
our APNet achieves an improvement of 2.2 and 3.5 in mAP and
mAP50, respectively.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8716

Index Terms—Object detection, unmanned aerial vehicle (UAV)
images, deformable convolution (DC), attention mechanism.

I. INTRODUCTION

UAVs equipped with high-definition cameras have shown
tremendous potential in detection tasks. Currently, they

are widely applied in various practical scenarios, including
agriculture, logistics transportation, environmental monitoring,
and urban planning. In this paper, we are committed to im-
proving the detection accuracy of UAV image object detection
and exploring its potential, which is helpful for practical
application in the UAV community.

Two main categories encompass present object detection
works: two-stage detectors and one-stage detectors. Typical
two-stage detectors include R-CNN series [1]–[3]. Typical
one-stage detectors include YOLO series [4]–[6] and Reti-
naNet [7]. Two-stage detectors are well-known for their ex-
ceptional accuracy. However, they often experience slower
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Fig. 1. Illustration of the sampling locations in 3× 3 standard CNN,
deformable CNN, and APDC in UAV images. (a) regular sample
locations of standard convolution (e.g. red) and deformed sampling
locations of DC (e.g. white), in different regions. (b) accurate posi-
tioning sampling locations of APDC (e.g. yellow). APDC aggregates
intensive refined features via accurate positioning sampling locations
in regions where objects gather densely. For clear display, redundant
sampling locations are ignored, and best viewed in zoom-in.

speeds. One-stage detectors possess the opposite character-
istics, achieving real-time speeds but typically sacrificing
accuracy, particularly for small objects. DEtection TRans-
former (DETR) [8] pioneered the use of the Transformer [9]
structure in object detection. [10] considers DETR as a one-
stage detector. As research progresses, the DETR series [11]–
[13] has surpassed convolutional neural network (CNN) [14]-
based methods in general scenarios. RT-DETR [13] designs an
efficient hybrid encoder module that decouples the intra-scale
interaction and cross-scale fusion, achieving real-time speed.
It surpasses the SOTA YOLO series detectors in both speed
and accuracy.

However, when dealing with images obtained from UAVs,
these detectors tend to show sub-optimal performance. This
issue mainly stems from the substantial disparities between
images in general scenes and UAV views, such as small
objects, uneven distribution, complex backgrounds, and large
variations. To tackle these problems, a multitude of algorithms
have been proposed. To balance accuracy and efficiency,
CEASC [15] leverages sparse convolution to optimize the
head. Additionally, it incorporates a context-enhanced group
normalization layer to mitigate the loss of context information.
ClusDet [16] revolutionizes the detection process through
the integration of clustering, which leads to a significant
reduction in the overall number of chips. Furthermore, the
inclusion of a scale estimation procedure further enhances the
accuracy of detecting small objects. DSHNet [17] utilizes two
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Fig. 2. The overall architecture of APNet. UAV images are input into the backbone network to obtain multiple feature maps. The backbone
consists of stage 1, stage 4, and stage 5 from ResNet, as well as the proposed APDC module. We use the last three feature maps as the input
to the encoder, and these feature maps are denoted as {C3, C4, C5}. The encoder first utilizes the ECF module to aggregate multi-scale
features and then converts them into a sequence. The decoder and head precisely adjust parameters by minimizing the loss function, which
ensures accurate predictions of the object category and boundary.

distinct samplers to sample proposals for tail-class and head-
class objects individually. These proposals are then processed
by two diverse heads, effectively tackling the problem of
class imbalance through a dual-path approach. Considering
that high-resolution images can effectively preserve contextual
information even in deep networks, HRDNet [18] adopts a
shallow network to handle high-resolution features, while a
deep network is utilized to handle low-resolution features.
This approach reduces computation costs while retaining more
positional and semantic information. DMNet [19] utilizes a
network to generate a density map for each image, which
provides valuable information about the positions and density
of objects. This enables more precise cropping of images,
resulting in improved detection of tiny objects. QueryDet [20]
introduces a query mechanism where coarse positions are
predicted on low-resolution features. These positions are
then used to guide in predicting accurate positions on high-
resolution features. By adopting this approach, the model can
effectively utilize the benefits of high-resolution features while
avoiding useless computation costs.

Although these methods have improved the detection per-
formance in UAV images, they generally suffer from the fol-
lowing issues: First, they overlook the limitations of standard
convolutions in capturing features of densely populated and
occluded objects. As shown in Fig. 1, standard convolutions
struggle to accurately extract information from different ob-
jects in crowded regions. In the presence of occlusions, they
mistakenly capture information from the occluding objects.
Second, while employing multi-scale features, they fail to
effectively preserve information from small objects, and the se-
mantic gap between features at different scales is not bridged.

To solve the above problems, this paper proposes an ef-
ficient detection method for UAV images based on APDC.
First, we have developed a novel convolutional approach

that differs from existing convolutions. This approach places
a stronger emphasis on the positional information of the
objects and guides feature extraction based on their locations.
Unlike standard convolutions, it can dynamically adjust the
shape of the kernel. Moreover, compared to DC [21] and
modulated deformable convolution (MDC) [22], it closely
approximates the true shape of the object. Second, we have
designed the ECF module. This module not only effectively
preserves information from small objects but also reduces the
semantic gap between features at different scales, facilitating
the comprehensive fusion of multi-scale features. Finally, we
employ inner-IoU [23] to accelerate convergence and improve
accuracy. Our contributions are given as follows:

1) We propose an accurate positioning deformable convo-
lution (APDC) method that utilizes the positional information
enhancement attention (PEA) module to obtain accurate posi-
tional information. This information is used to dynamically
alter the shape of the kernel, enabling finer extraction of
features and enhancing detection performance.

2) An effective cross-layer feature fusion (ECF) module
is designed. This module is used for aggregating multi-scale
features and addresses the issue of information loss in small
objects.

3) Extensive experiments on the VisDrone and UAVDT
benchmarks demonstrate that our proposed model exhibits
compelling performance.

II. METHOD

We choose RT-DETR as the baseline and propose a more
efficient algorithm called APNet. The overall structure of
APNet is illustrated in Fig. 2. The backbone is a ResNet
[24] architecture with the addition of APDC. In the encoder
part, we propose the ECF module to fuse multi-scale features
from the backbone. The decoder and auxiliary prediction



306 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 4, APRIL 2024

heads optimize parameters iteratively using the loss function,
which ensures accurate predictions of the object category and
boundary.
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Fig. 3. The structure of PEA. Here, ‘X Avg Pool’ and ‘Y Avg
Pool’ correspond to 1D horizontal global pooling and 1D vertical
global pooling, respectively. ‘G Avg Pool’ refers to 2D global average
pooling.

A. Accurate Positioning Deformable Convolution

In traditional CNNs, the convolution is performed using
fixed-shaped kernels, typically 3× 3, 5× 5, or 7× 7. Conse-
quently, the entire network has a fixed-shaped receptive field.
However, this receptive field fails to accurately capture the
intricate spatial variations. To overcome the limitations of
conventional convolution, deformable convolutional networks
(DCN) [21] introduced a new module called DC. The DC
replaces the fixed sampling locations in standard convolution
with learnable sampling locations. These learnable sampling
locations are composed of fixed sampling locations added
with learnable offsets, where the learnable offsets are obtained
through convolution to the input features, enabling the shape
of the kernel to dynamically adapt to various objects. MDC
[22] introduced a modulation mechanism that allows the DC
to adjust the learnable offsets and input features from different
spatial locations.

However, the presence of numerous small objects and
densely distributed objects in UAV images demands higher
accuracy in sampling locations. Although DC and MDC have
demonstrated improved performance in general scenes, it does
not effectively enhance performance in UAV images. It may
even result in performance degradation due to the utilization
of extremely deviation sampling locations. The accurate gen-
eration of sampling locations relies on effectively learning the
positional information encoded within the input feature, which
is not easily achieved by a simple convolution. Building upon
this insight, we propose the APDC module.

The key to the DC lies in the learnable offsets. To generate
more accurate offsets, inspired by coordinate attention (CA)
[25], we designed the PEA module, whose structure is shown

in Fig. 3. PEA consists of three branches: two 1D pooling
operations along the x-axis and y-axis orientations, which ag-
gregate information along the respective spatial directions, and
one 2D pooling operation that globally aggregates information.
We concatenate the features from the two 1D branches along
the spatial direction and then apply a shared 1×1 convolution
to the concatenated features. This enables the attention module
to capture precise positional information. The 2D branch is
used to enhance the global modeling capability. These in-
terconnected information are combined using re-weight. PEA
excels at encoding global dependencies and precise positional
information, leading to more accurate offset estimation.

Given the input feature map x, a standard 3 ×
3 convolution samples x using a regular grid R =
{(−1,−1), (−1, 0), ..., (1, 0), (1, 1)}. For each location p on
the output feature map y, the output value y(p) is calculated
as follows:

y(p) =
∑
pn∈R

w(pn) · x(p+ pn) (1)

Here, pn enumerates the locations in R, w(pn) denotes the
weight at location pn in the kernel, and x(p+ pn) represents
the feature at location p + pn in x. DC introduces learnable
offsets, denoted as {△pn}Nn=1 , where N = |R|, resulting in
the following modified formulation:

y(p) =
∑
pn∈R

w(pn) · x(p+ pn +△pn) (2)

MDC utilizes a modulation scalar {△mn}Nn=1 to achieve
the modulation function, where △mn lies in the range [0, 1].
The formula is as follows:

y(p) =
∑
pn∈R

w(pn) · x(p+ pn +△pn) · △mn (3)

Building upon the equation, the proposed APDC utilizes
the PEA module to optimize the learnable offsets, denoted as
PEA (·). The formulation is as follows:

y(p) =
∑
pn∈R

w(pn) · x(p+ pn + PEA(△pn)) · △mn (4)

Based on the analysis that accurate offsets require effective
learning of positional information, we integrate APDC into the
2 and 3 stages of ResNet, replacing the original regular 3× 3
convolutions. APDC empowers the network’s receptive field
to dynamically and precisely adapt to the shape of objects.
This flexible receptive field, closely resembling the object’s
shape, facilitates fine-grained extraction of object information,
effectively enhancing the detection performance. Furthermore,
accurately learning the true shape is essential for distinguish-
ing between different objects, particularly in crowded regions.
Therefore, APDC is well-suited for detection tasks in UAV
images, and subsequent experiments have demonstrated the
validity of our approach.

B. Effective Cross-Layer Feature Fusion

Due to the flying altitude, images captured by UAVs
typically contain more small objects compared to general
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scenes, and these small objects often contain limited infor-
mation. Most existing detection algorithms are built using
CNN, where during the process of continuous convolution,
the information of small objects is easily polluted by other
objects or background information. In current detection al-
gorithms, it is common to utilize a backbone for extracting
multi-scale features and subsequently fuse them to address
the aforementioned issue. Features at different scales play
distinct roles. Low-level features have higher resolution and
more accurate positional information, making them suited for
precisely localizing objects, especially small ones. However,
they often lack sufficient semantic information and may not
meet the requirements of classification tasks. On the contrary,
high-level features contain rich semantic information, enabling
accurate classification. However, they lack precise positional
information, making them less suitable for localization tasks.

Feature pyramid network (FPN) [26] and its variants are
dedicated methods for fusing multi-scale features and have
been widely applied in numerous detection algorithms. They
employ aggregation paths, either top-down or bottom-up, or a
combination of both, to ensure that features contain rich se-
mantic information and accurate positional information. While
these methods effectively improve the capability to preserve
information from objects, they overlook the issue of lost in-
formation on small objects in low-level features. Furthermore,
these methods often employ simplistic techniques such as
direct addition or concatenating features from different layers
to achieve feature fusion. However, a notable semantic gap
exists between detailed high-level features and coarse low-
level features, and this straightforward fusion approach fails
to bridge this gap effectively. As a result, a potential issue may
arise where the coarse low-level features can overshadow the
fine-grained high-level features.

To address these issues observed in current multi-scale
feature fusion methods, we introduce an innovative ECF
module. ECF first enhances the low-level features and then
concatenates the high-level features with them along the
spatial dimension. The concatenated feature is processed by
parallel 1 × 1 convolution layers, and the output features
from different branches are element-wise added. This approach
not only preserves the information of small objects but also
facilitates more comprehensive interaction between features at
different scales. As a result, ECF can generate features that
retain both precise positional information and rich semantic
information. We incorporate RepBlock [27] into one of the
parallel branches. RepBlock consists of parallel 1×1 and 3×3
convolutions, allowing for diverse receptive fields. This design
is advantageous for detecting objects of various sizes. We set
the number of RepBlock in ECF to 3.

In addition, we incorporate the efficient multi-scale atten-
tion module (EMA) proposed by Ouyang et al. [28], whose
structure is shown in Fig. 4. The group plays a vital role in
EMA. Its main objective is to enhance the representation of
diverse semantic information. To achieve this, EMA initially
partitions the input features into G groups along the channel
dimension, generating several sub-features. These sub-features
are subsequently fed into sub-networks, each equipped with
either small or large receptive fields. The purpose is to capture
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Fig. 4. The Structure of EMA. Here, G denotes the number of divided
groups. ‘Avg Pool’ denotes 2D global average pooling.

spatial information at different scales. EMA achieves the en-
hancement of object information and suppression of irrelevant
information such as background and noise by reweighting
the extracted features. We utilize the EMA mechanism to
emphasize the information on small objects and refine the low-
level features.

C. Loss Function

The loss function plays a pivotal role in the training process.
Its purpose is to quantify the difference between the predicted
and the real labels. By minimizing the loss function, the
parameters undergo continuous optimization, resulting in im-
proved accuracy in both classification and localization. In the
baseline, the bounding box regression loss function consists
of two parts: the L1 loss and the generalized intersection over
union (GIoU) loss [29]. The GIoU loss takes into account
the degree of overlap between different bounding boxes and
introduces a new loss term. It effectively mitigates the problem
of gradient vanishing that occurs when there is no overlap
between the anchor box and the ground truth (GT) box. This
makes the GIoU loss more accurate in localizing objects. The
formula for the GIoU loss function is as follows:

LGIoU = 1− IoU +
|C −B ∩Bgt|

|C|
(5)

B and Bgt represent the predicted and the GT box, respec-
tively. C is the smallest box covering B and Bgt.

However, GIoU loss overlooks the limited generalization
capability of the intersection over union (IoU) loss. Zhang et
al. [23]proposed a novel loss function called Inner-IoU, which
can be easily incorporated into existing loss functions that
involve IoU loss. We apply the Inner-IoU loss to the GIoU
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TABLE I
COMPARISON RESULTS OF DIFFERENT MODELS ON VISDRONE

Model Backbone Resolution mAP mAP50 FLOPs Parameters FPS
Faster-RCNN [2] ResNet50 1000x600 19.1 31.8 118.3G 41.2M 37.6

Cascade-RCNN [3] ResNet50 1000x600 21.8 37.6 120.3G 69.2M 30.2
RetinaNet [7] ResNet50 640x640 11.1 19.5 83.4G 36.3M 57.7
Yolov5-m [5] CSPDarknet53 640x640 20.7 36.9 49.0G 21.2M 69.4
Yolov8-m [6] Darknet53 640x640 25.9 42.5 78.9G 25.9M 93.5

VAMYOlOX-m [32] CSPDarknet53 640x640 27.2 45.1 151.4G 27.1M 54.9
DSHNet [17] ResNet50 1000x600 24.6 44.4 - - -
DMNet [19] ResNet50 1000x600 28.2 47.6 - - -

QueryDet [20] ResNet50 2400x2400 28.3 48.1 - - -
RT-DETR [13] ResNet18 640x640 27.6 45.2 60.0G 20.0M 96.2

APNet ResNet18+APDC 640x640 29.8 48.7 61.9G 21.3M 65.3

loss, resulting in the Inner-GIoU [23]. The formula for the
Inner-GIoU loss function is as follows:

LInner−GIoU = LGIoU + IoU − IoU Inner (6)

The Inner-GIoU loss function utilizes auxiliary bounding
boxes to calculate the loss, effectively speeding up the bound-
ing box regression process and achieving better regression
results. At the same time, the retained loss term in GIoU ac-
curately describes the degree of overlap between the bounding
boxes. A series of experiments demonstrated the effectiveness
of the Inner-GIoU loss function in APNet.

III. EXPERIMENTS

A. Datasets
1) VisDrone: The VisDrone [30] comprises 10,209 images,

with a train set of 6,471 images, a validation set of 548
images, and a test set of 3,190 images. These images are
captured by UAVs across various areas, including urban and
rural, and at different altitudes. These images have a resolution
of approximately 2, 000× 1, 500. The annotations classify the
objects into ten categories: pedestrian, person, bicycle, car,
van, truck, tricycle, awning-tricycle, bus, and motor. Due to
the unavailability of the test set, we follow prior work [20] to
report evaluation scores on the validation set.

2) UAVDT: The UAVDT [31] comprises 40,735 images,
with a train set of 24,143 images and a test set of 16,592
images. These images are captured using UAVs primarily in
urban areas, with a resolution of approximately 1, 024 × 540
pixels. The dataset encompasses objects classified into three
categories: car, bus, and truck.

B. Implementation Details
We implemented the proposed method on the following

hardware configuration: an Intel i5-12600K CPU, 16GB RAM,
and NVIDIA 3090 GPU. The corresponding software configu-
ration included Windows 10 system, CUDA 11.1, and Python
3.7. During the training of APNet, we employ the AdamW
optimizer with a fixed momentum of 0.9 and weight decay
of 0.0001. We also set the initial learning rate to 0.0001
and utilize the batch size of 4. All training was conducted
without pre-trained weights. The size of the input image is
the same for the training and the validation. Other strategies
and hyperparameters follow the baseline.

TABLE II
COMPARISON RESULTS OF DIFFERENT MODELS ON

UAVDT

Model mAP mAP50
ClusDet [16] 13.7 26.5
DMNet [19] 14.7 24.6
GLSAN [33] 17.0 28.1

RT-DETR [13] 16.3 27.0
APNet 17.9 29.4

C. Evaluation Metrics

To assess the effectiveness of the proposed method, we
utilized multiple evaluation criteria, including mean average
precision (mAP), floating point operations (FLOPs), parameter
size, and inference time as frames per second (FPS). The mAP
was calculated by considering ten IoU thresholds ranging from
0.5 to 0.95 in increments of 0.05. An IoU threshold of 0.5 was
used to measure the mAP50. The computation procedure for
mAP is outlined as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

mAP =

∑N
n=1

∫ 1

0
p(r)dr

N
(9)

Where true positive (TP ) denotes the quantity of correctly
identified objects. False positive (FP ) denotes the quantity
of objects that are misidentified as positive. False negative
(FN) denotes the quantity of objects that are misidentified
as negative. N represents the number of categories, and p(r)
stands for Precision–Recall curve.

D. Results and Analysis

To evaluate the effectiveness of the proposed model in UAV
images, we compared it with other SOTA methods on Vis-
Drone and UAVDT. The comparison results on VisDrone are
presented in Table I. Despite a slight increase in computation
cost, with FLOPs and parameters increasing by 1.9G and
1.3M respectively, APNet effectively improved performance.
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Fig. 5. Qualitative results for visualization of result and feature heatmap. (a)(b) are visualization results of baseline and our method. (c)(d)
are visualization results of feature heatmap of baseline and our method.

TABLE III
MAP50 OF EACH CATEGORY IN THE VALIDATION SET OF VISDRONE

Model Resolution mAP50 Pedestrian Person Bicycle Car Van Truck Tricycle Awning-tricycle Bus Motor

Baseline

416x416 36.0 37.9 35.3 11.0 78.5 40.0 26.1 23.3 14.6 48.3 44.9
640x640 45.2 53.2 45.7 19.6 85.0 48.7 36.1 31.1 16.2 59.0 57.1
800x800 49.6 59.9 50.5 24.9 86.6 54.9 40.1 35.3 17.9 63.8 62.1

1000x1000 53.1 63.7 54.9 30.8 88.2 55.6 42.2 40.1 21.7 67.6 65.8

APNet

416x416 38.1 41.0 39.0 12.4 79.7 41.8 30.0 26.1 14.9 48.0 48.1
640x640 48.7 55.8 50.2 23.1 85.8 50.9 41.6 35.7 17.6 64.9 61.4
800x800 51.3 60.8 53.2 27.5 87.5 54.7 41.9 38.7 19.8 65.5 63.7

1000x1000 54.9 65.7 55.4 34.9 88.4 56.5 46.8 40.3 22.8 71.6 66.8

The mAP and mAP50 increased by 2.2 and 3.5 compared to
the baseline, reaching 29.8 and 48.7 respectively, surpassing
other advanced methods. According to the results presented
in Table II, our model demonstrates compelling performance
on UAVDT. Compared to the baseline, our model shows an
improvement of 1.6 in mAP and 2.4 in mAP50. Notably, our
method achieves impressive mAP and mAP50 of 17.9 and
29.4, respectively, surpassing other SOTA methods.

We visualize the detection results and feature heatmap of
the baseline and APNet in Fig. 5. Based on the compara-
tive results, it is evident that APNet demonstrates significant
effectiveness in detecting small objects and distinguishing
objects in crowded regions. Additionally, APNet showcases its
capability to accurately recognize occluded objects that remain
undetected by the baseline.

To investigate the robustness of the proposed method, we
use input images with resolutions of 416 × 416, 640 × 640,
800× 800, and 1, 000× 1, 000. Table III presents the mAP50
scores of the baseline and APNet under different resolutions.
It can be observed that mAP50 is improved at each of the
four resolutions, with respective improvements of 2.1, 3.5, 1.7,
and 1.8. The detection accuracy for almost every category is
enhanced, demonstrating that our proposed method can extract
features in a more granular manner.

E. Ablation Experiments

To objectively evaluate the effectiveness of each module,
we performed ablation studies on the VisDrone, employing
identical experimental conditions, and the results are shown
in Table IV. Compared to the baseline, the inclusion of

ECF improves mAP50 by 0.7, with minimal increases in
FLOPs and parameters. With the addition of APDC, there is a
slight increase in computation cost, but mAP50 improves by
2.3. Lastly, by introducing the superior Inner-GIoU without
altering the computation cost, there is a 0.5 increase in mAP50.

Furthermore, to demonstrate the superiority of each module
and analyze the impact of different hyperparameters, we
conducted additional experiments.

1) Effect of APDC: Table V illustrates the optimization
capability of different attention mechanisms on MDC. These
experiments were conducted in the second stage of the back-
bone. It can be observed that regular MDC cannot adapt
well to the characteristics of objects in UAV images, re-
sulting in a modest improvement of only 0.2 in mAP50.
Moreover, incorporating attention mechanisms to optimize the
offsets significantly enhances performance. When using CA
and EMA, mAP50 improves by 0.9 and 1.1, respectively.
Our proposed PEA demonstrates more effective extraction
of positional information and learning more accurate object
shapes, achieving a mAP50 of 47.5 with a 1.6 improvement,
surpassing previous methods.

Table VI demonstrates the effects of inserting APDC into
different stages of the backbone. Inserting APDC in stage 1
does not improve performance because the early extracted
feature maps have high resolution but poor representation
capability. Stage 2 and stage 3 show effective improvements
in detection performance, with mAP50 reaching 47.5 and
48.2, respectively. Stage 4 and stage 5 have limited positional
information, thus being unable to effectively enhance the
performance.
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TABLE IV
ABLATION EXPERIMENT ON VISDRONE

Baseline ECF APDC Inner-GIoU mAP50 Precision Recall FLOPs Parameters
✓ 45.2 59.6 43.7 60.0G 20.0M
✓ ✓ 45.9 60.4 44.3 60.0G 20.0M
✓ ✓ ✓ 48.2 61.3 46.7 61.9G 21.3M
✓ ✓ ✓ ✓ 48.7 61.5 47.0 61.9G 21.3M

TABLE V
PERFORMANCE OF DIFFERENT ATTENTION IN THE MDC

Method mAP50 FLOPs Parameters
baseline+ECF 45.9 60.0G 20.0M
+MDC 46.1 60.6G 20.3M
+MDC-CA 46.8 60.6G 20.3M
+MDC-EMA 47.0 60.7G 20.3M
+APDC(ours) 47.5 60.6G 20.3M

TABLE VI
IMPACT OF DIFFERENT STAGES OF APDC

Stage mAP50 Precision Recall
baseline+ECF 45.9 60.4 44.3
1 45.6 60.1 43.6
2 47.5 59.6 46.0
2,3 48.2 61.3 46.7
2,3,4 47.7 61.9 45.9
2,3,4,5 47.8 61.0 46.3

TABLE VII
IMPACT OF RATIO ON INNER-GIOU

Ratio mAP50 Precision Recall
1.2 48.0 61.5 46.1
1.23 48.1 62.2 46.3
1.25 48.7 61.5 47.0
1.28 47.8 61.6 45.8
1.3 47.6 62.4 45.6

2) Effect of Inner-GIoU: We conducted experiments with
different ratios to investigate the impact of Inner-GIoU on
performance, and the results are presented in Table VII. The
ratio controls the size of the auxiliary bounding boxes used in
calculating the loss. For different datasets, it is important to
select an appropriate ratio to achieve the best performance. In
the case of the VisDrone, the highest mAP50 value of 48.7 is
achieved when the ratio is set to 1.25.

IV. CONCLUSION

In this paper, we propose a novel one-stage method called
APNet for object detection in UAV images. Firstly, we propose
the APDC module, which endows the model to dynamically
and accurately extract object information. By incorporating
the APDC, the model can precisely learn the shapes of
objects, thereby solving the problem of distinguishing objects
in crowded regions and significantly improving detection ac-
curacy. Secondly, we introduce the ECF module to address the

issue of information loss for small objects. The ECF module
enhances valuable information while suppressing irrelevant
details, effectively preserving the information of small objects.
Additionally, it promotes comprehensive multi-scale feature
fusion through parallel processing. Finally, we utilize the
Inner-GIoU loss function to accelerate the convergence and
enhance detection accuracy. Extensive experimental results
demonstrate that APNet achieves SOTA.
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