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Abstract— The global emergency of COVID-19 caused by the 

SARS-CoV-2 virus at the end of 2019, it was without a doubt a 

critical and historical point for society in general; for instance, the 

effective development of vaccines, as well as the efficient 

distribution of them; They were an unprecedented challenge to 

slow down the spread or mitigate its impact on societies around 

the world. This article specifies three bio-inspired metaheuristic 

algorithms (genetic algorithm, particle swarm optimization 

algorithm, and artificial bee colony algorithm) that were used in 

the context of the capacitated vehicle routing problem to generate 

vaccine distribution routes, specifically, COVID-19 vaccine for 

over 18 years old the first and the second doses applications in 

Mexico, particularly in the State of Mexico. The quality of the 

solutions obtained by these algorithms is compared, and the 

performance of the particle swarm optimization (PSO) algorithm 

being superior in solution quality. The results show that the 

construction of vaccine distribution routes applying bio-inspired 

algorithms determines reliable scenarios that support the decision-

making of the personnel dedicated to carrying out this activity. 

 
 Link to graphical and video abstracts, and to code: 

https://latamt.ieeer9.org/index.php/transactions/article/view/8709 

 

Index Terms—Artificial Bee Colony Algorithm, Bio-inspired, 

Capacitated Vehicle Routing Problem, Genetic Algorithm, 

Metaheuristics, Particle Swarm Optimization Algorithm. 

I. INTRODUCTION 

t the end of 2019, the existence of a virus was announced 

that would gradually spread worldwide, giving rise to the 

COVID-19 pandemic (Corona Virus Disease). According 

to the World Health Organization (WHO), the disease is caused 

by a virus called SARS-CoV-2  [1].  

The evolution of the pandemic was characterized from the 

next relevant aspects, the implementation of health measures in 

daily activities, isolation, distribution, and application of 

vaccines, and finally to recover daily routine. Today it is not 

possible to precisely determine how SARS-CoV-2 infections 

began, however, all evidence suggests that the virus has an 

animal origin which it is not a manipulated or constructed virus 

[2]. According to Banxico [3], in Mexico, the evolution of the 

pandemic was divided into three phases [3]: i. The installation 

of the National Day of Healthy Distance; ii: Non-essential 

economic activities were suspended; iii. The activities of the 

construction, mining, transportation, equipment manufacturing 

industries were reestablished. Phase 1. It began in February 

2020, it is characterized by imported cases, the implementation 

of mitigation strategies has not yet been considered and ends 

with the installation of the National Day of Healthy Distance. 

Phase 2. Since March 2020, most cases and transmission were 

already local, limited to the suspension of in-person classes, 

mass events, and at the end of March non-essential economic 

activities were suspended. Phase 3. In April 2020 and is 

characterized by showing faster and more widespread 

transmission. In this phase, the activities of the construction, 

mining, transportation, equipment manufacturing industries 

were reestablished as essential activities if they could comply 

with health safety protocols. The new normal or the return to 

daily activities gradually involved changing personal care 

habits, the way of carrying out daily activities, and the way of 

communication, among others. The return to normality was 

carried out in accordance with criteria established by federal 

and state authorities, such as the usage of face masks, hand 

washing frequently, and healthy distance they are part of the 

gradual changes to the new routine [4].  The return to normality 

was carried out in accordance with criteria established by 

federal and state authorities, such as the usage of face masks, 

hand washing frequently, and healthy distance they are part of 

the gradual changes to the new routine [4].   

To deal with the pandemic, the WHO issues the Emergency 

Use Listing (EUL) procedure. The procedure evaluates the 

suitability of the creation of medicines and vaccines as quickly 

as possible, respecting the criteria of safety, efficiency, and 

quality [5]. 

This involved a rigorous evaluation of clinical data from 

experimental trials corresponding to human trials, recruiting 

groups of volunteers [6]. Likewise, it required thorough 

analysis of data related to safety, efficiency, quality, and risk 

management plan by independent experts and WHO teams. 

The technical advisory group for the COVID-19 vaccine in 

Mexico is a group of experts that defines a strategy focused on 

reducing the number of deaths associated with COVID-19 

based on the mortality observed in the country. As a result, 4 

prioritization axes were established for the application and 

distribution of the COVID-19 vaccine in Mexico [7]: 1) Age of 

individuals; 2) Personal comorbidities; 3) Priority care groups; 

and 4) Epidemic behavior. 

Based on an analysis of population projections from National 

Council of Population (CONAPO, Consejo Nacional de 

Población; Mexico) and data from the National 

Epidemiological Vigilance System (SINAVE, Sistema 

Nacional de Vigilancia Epidemiólogica; Mexico) risk groups 

and vaccination stages were identified [7]: 
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1. Stage 1 (December 2020 – February 2021): First-line 

healthcare personnel in COVID-19 control. 

2. Stage 2 (February – April 2021): Remaining health 

personnel and people aged 60 and over. 

3. Stage 3 (April – May 2021): People from 50 to 59 years 

old. 

4. Stage 4 (May – June 2021): People from 40 to 49 years 

old. 

5. Stage 5 (June 2021 – March 2022): Remaining population. 

 

Plus, for the application of vaccines to be successful, it was 

necessary to carry out an exhaustive study to guarantee the 

timely administration of vaccines throughout the national 

territory. In Mexico, the distribution of vaccines against 

COVID-19 in accordance with the vaccination stages was 

carried out by the Ministry of Defense (SEDENA, Secretaría de 

la Defensa Nacional; Mexico) using land and air routes. 

According to WHO, the spread of the virus at the beginning 

of October 2023 is defined by 771 million confirmed cases, 

including 6.9 million deaths, and a total of 13.5 billion vaccine 

doses administered [8]. 

At the same time, on 10 January 2023, there is 84% coverage 

in all age groups, highlighting 91% coverage for the group of 

people aged 18 years and over [9]. Vaccine distribution is a 

problem that can be approached as the classic Vehicle Routing 

Problem (VRP), which is a combinatorial optimization 

problem. The main objective of VPR is to define an optimal set 

of routes for a fleet of vehicle, which must satisfy the demand 

of a set of clients while satisfying some requirements and 

restrictions overall, that in most of the cases are the 

minimization of the total cost from the distribution. Delivery 

schedule and vehicle routing are important in supply chain 

operations. Supply chains are affected by multiple factors that 

become restrictions or variables of the problem, resulting in the 

creation of different variants of the VRP [10]. 

Vaccine distribution is a problem that can be approached as 

the classic Vehicle Routing Problem (VRP), which is a 

combinatorial optimization problem. The main objective of 

VPR is to define an optimal set of routes for a fleet of vehicle, 

which must satisfy the demand of a set of clients while 

satisfying some requirements and restrictions overall, that in 

most of the cases are the minimization of the total cost from the 

distribution. Delivery schedule and vehicle routing are 

important in supply chain operations. Supply chains are 

affected by multiple factors that become restrictions or 

variables of the problem, resulting in the creation of different 

variants of the VRP [10]. 

Multiple articles have been published in relation to vaccine 

supply chains that belong to cold chains, even before the start 

of the pandemic [11], [12], [13], [14], [15]. The interest in these 

studies is due to the challenges involved in its implementation, 

also, the number of variables that must be considered, such as 

time windows, load capacity, conservation and temperature 

management of cargo transportation, fuel consumption, client 

satisfaction, delivery priority, traffic conditions just to mention 

a few.  

In the other hand, the state of the art shows the different 

solution approaches to solve the VRP. Those include exact 

methods, heuristics, and metaheuristics. Exact methods provide 

optimal solutions, in general, appropriately to solve problems 

in small scale but the heuristics and metaheuristics usually 

produce solutions close to the optimal without limits on the size 

of the problem. The heuristics produce solutions swifter than 

the exact method. Likewise, metaheuristics are high level 

algorithms that combine different heuristics [16], applicable to 

different kinds of problems of optimization with little 

modifications to adapt them to a specific problem. According 

to [16], the heuristics and metaheuristics algorithms are still the 

main solution methods. 

Derived from the above, this article presents a comparative 

study of the use of bio-inspired metaheuristics as a proposal to 

carry out route planning in the transfer of biologicals, 

considering the variables of loading capacity, transportation 

cost and client demand. 

The article is structured as follows: Section II provides a 

review of the works related to the study of the VRP according 

to the variables under consideration; the formulation of the 

distribution problem is explained in Section III; the description 

of the metaheuristics used is shown in Section IV; the strategy 

followed to validate the proposals is described in Section V; 

while the results are presented in Section VI, and finally the 

conclusions and open lines of study are included in Section VII.  

II. RELATED WORKS  

This section explains some works reported in the literature 

addressed to handling the VRP and the cold chain problem. 

The logistics of the cold chain is studied by Zheng et al. [15] 

considering its fuel consumption and distribution period. The 

authors propose a solution based on the bi-objective location-

routing problem. Furthermore, they use a multi-objective hyper 

heuristic (MOHH) to model and solve the problem. The results 

obtained provided a set of solutions with several options for a 

decision maker to select the distribution of interest.  

On the other hand, a hybrid algorithm, immune wolf colony 

hybrid algorithm is proposed by Dou et al. [14] which reports 

rapid convergence of the global optimal solution and optimizes 

the logistics of vaccine distribution centers, considering 

restrictions such as the freshness and time windows.  

Another approach to the cold chain, named as the location-

routing problem-based low-carbon cold chain (LRPLCCC) 

where Leng et al. [13], develop the problem as a bi-objective 

mixed-integer programming (MIP) in addition to proposing a 

MOHH for the bi-objective model and obtain solutions. The 

study focused on two aspects: minimizing the total logistics cost 

that includes fixed costs of depots, leased vehicles, fuel 

consumption and carbon emissions; and improving client 

satisfaction and product conservation.  

A distribution route optimization model using DNA 

computing and the Ant Colony Optimization (ACO) algorithm 

is proposed by Huang and Fei [17] based on an analysis of the 

special characteristics for the transport of biological such as 

room temperature and delivery in a certain range of time. The 

proposed DNA-ACO algorithm managed to minimize costs 

more efficiently than algorithms such as ACO and fish swarm 

ant colony optimization (FSACO).  

Fu et al. [18] establish a location model of cold chain 

logistics distribution center with the objective of minimizing 

the total cost including manufacturers, distribution centers and 

clients. As a solution tool, the characteristics of the fireworks 
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algorithm (FWA) are used to improve the fish swarm algorithm 

(FSA), the resulting algorithm is applied to the model.  

The same way, Zhang et al. [19], suggest an FSA upgraded, 

including some FWA elements, and applying it to its 

optimization model of location-routing problem-based low-

carbon cold chain that includes fixed costs, transportation cost, 

cost of load damage, cooling cost, emissions of carbon cost, and 

penalization cost. 

Sujaree and Samattapapong [20] propose a hybrid algorithm 

called hybrid artificial chemical reaction optimization 

algorithm (HACROA), which was used to design a vaccine cold 

chain network with the objective of minimizing total travel 

distances. Finally, a mathematical model is proposed by Soria 

et al. [21] for the distribution of different COVID-19 vaccines 

in Mexico, resulting in an efficient strategy to satisfy demand 

in each period. 

III. CAPACITATED VEHICLE ROUTING PROBLEM METHOD 

The proposal suggested in this study considers a variant of 

the VRP known as the capacitated vehicle routing problem 

(CVRP) since the only restriction it considers is the capacity of 

the vehicles. The CVRP involves determining a set of vehicle 

routes with minimum cost in such that [22], [23]: 

1. Each client is visited only once by a single vehicle. 

2. All routes start and end at the depot. 
3.  The demand for any route does not exceed the capacity of 

the vehicles. 

 

The problem can be expressed in the next graph theory. Let 

𝐺 = (𝑉, 𝐴) a complete graph where 𝑉 = {0,1, … , 𝑛} is the set 

of vertices and 𝐴 is the set of arcs. The set of vertices 𝑖 =
1, … , 𝑛 corresponds to the clients while the vertex 0 represents 

the deposit. Each arc (𝑖, 𝑗) ∈ 𝐴 has an associated non-negative 

cost, 𝑐𝑖𝑗 , which represents the travel cost to go from the vertex 

𝑖 to the vertex j. Each client 𝑖 (𝑖 = 1, … , 𝑛) is associated with a 

non-negative demand, 𝑑𝑖, to be delivered, depot is assumed that 

𝑑0 = 0. A set of 𝐾 similar vehicles with capacity 𝐶 are in the 

depot and must be used to supply clients. It is assumed that 𝑑𝑖 ≤
𝐶 for each 𝑖 = 1, . . . , 𝑛 [22].  

The mathematical formulation from the CVRP is described 

using the two-index vehicle flow formulation.  

Let 𝑥𝑖𝑗  an integer variable that takes the value 1 if the arc 

(𝑖, 𝑗) ∈ 𝐴 belongs to a solution and takes value 0 in opposite 

case.  

In addition, to the notes mentioned, for a set 𝑆 ⊆ 𝑉, let 𝛿(𝑆) 

and 𝐴(𝑆) the set of arcs (𝑖, 𝑗) ∈ 𝐴 that have got uniquely one or 

both end vertices in 𝑆, respectively and 𝑑(𝑆) is the demand of 

total of set. 

The CVRP can be formulated using the following integer 

linear programming model [22], [23]: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑟 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑉𝑖∈𝑉

(1) 

 

Subject to the following restrictions: 

∑ 𝑥𝑖𝑗

𝑖∈𝑉

= 1   ∀ 𝑗 ∈ 𝑉 ∖ {0}, (2) 

∑ 𝑥𝑖𝑗

𝑗∈𝑉

= 1   ∀ 𝑖 ∈ 𝑉 ∖ {0}, (3) 

∑ 𝑥𝑖0

𝑖∈𝑉

= 𝐾, (4) 

∑ 𝑥0𝑗

𝑗∈𝑉

= 𝐾, (5) 

∑ ∑ 𝑥𝑖𝑗 ≥ 𝑟(𝑆)

𝑗∈𝑆𝑖∉𝑆

   ∀ 𝑆 ⊆ 𝑉 ∖ {0}, 𝑆 ≠ ∅, (6) 

𝑥𝑖𝑗 ∈ {0,1}   ∀ 𝑖, 𝑗 ∈ 𝑉. (7) 

 

The indegree and outdegree constraints (2) and (3) force that 

an arc enters and leaves each vertex associated to a costumer, 

respectively. As well as the restrictions (4) and (5) force the 

degree requirements for the depot vertex. The connectivity of 

the solution and the vehicle capacity requirements are both 

forced in the restriction (6). Given a set 𝑆 ⊆ 𝑉 ∖ {0}, it is 

defined 𝑟(𝑆) as the minimum number of vehicles needed to 

attend all the costumers in 𝑆. This problem is considered NP-

hard because of the number of variables O(n2) and constraints. 

IV. METAHEURISTICS 

According to Konstantakopoulos et al. [10], local search 

metaheuristics are popular for offering efficient solutions and 

because of its utilization in conjunction with other algorithms, 

because their combination, the advantages of each algorithm are 

leveraged. 

In the execution of the metaheuristics used in this research, a 

population of individuals is required 𝑃 = {𝑥1, ⋯ , 𝑥𝑛}, where 

each one represents a potential solution to the application 

problem. In its operation, each solution 𝑥𝑖 is evaluated given a 

fitness function 𝑓(𝑥𝑖), which is expected to be maximized or 

minimized, whichever the case. Based on, the metaheuristics 

used in this research are described below. 

 

A. Genetic Algorithm 

Genetic algorithm (GA), it is an optimization algorithm 

inspired by the principle of natural selection, and the concept 

comes from the most survival fit and proper. As it works, new 

populations are generated through the usage of repetitive 

genetic operations in some cases from the individuals who are 

in the population. Each individual is evaluated to obtain its 

fitness measure; so, the ones with the best results, they are 

selected from the population. A crossover operator is applied, 

creating new individuals combining parts of the selected 

individuals. After that, a mutation operator is applied in the new 

individuals, thereby creating further new individuals. The 

selection, crossover and mutation operations will be repeated in 

the current population until the new population is completed 

[24]. The GA pseudocode is as follows [25]: 
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Algorithm 1 Basic Genetic Algorithm 
Begin 

  𝑡 = 0 // iterations 

  Initialize 𝑃(𝑡) // initial population. 

  While (no stop condition) 

    ∀ 𝑥𝑖
𝑡   ∈  𝑃 (𝑡) Assess its aptitude 𝑓(𝑥𝑖

𝑡)   

    Select from 𝑃(𝑡) the best individuals {𝑥′}    

    Apply genetic operators (crossover and mutation) to 

{𝑥′}  and obtain the new generation 𝑃(𝑡 + 1) 

    Set 𝑡 = 𝑡 + 1 

 End While 

End 

 

B. Artificial Bee Colony 

The Artificial Bee Colony (ABC) algorithm is inspired by the 

foraging behavior of bees and belongs to the group of swarm 

intelligence algorithms. 

In this algorithm each candidate solution represents the 

position of the food source in the search space and the nectar 

quality of the food source is used to evaluate its fitness. In its 

operation, three groups of bees are considered to guide the 

process of exploration and exploitation: employees, onlookers, 

and scouts [26].  

In the initialization phase, a population of food sources 

(solutions) are initialized by scout bees and parameters are 

assigned. A scout bee generates a random food source 𝑥𝑖 

(solución) and evaluates its nectar 𝑓(𝑥𝑖), then associates with 

this food source to become an employee.  

After initialization, the interaction of three phases is required 

[25]: 

1. Employed bees’ phase. Employed bees search for new 

food sources with more nectar within the neighborhood of 

the food source 𝑥𝑖 and when they find it, its aptitude is 

evaluated and compared with the previous one, and in case 

it is better, it is retained in the population (Greedy 

selection). The employed bees then share information 

about their food sources to the onlooker bees. If the amount 

of nectar decreases to a low level or depleted exhaust, the 

food source is abandoned, and the bee becomes 

unemployed. Otherwise, it may continue searching for 

food. 

2. Onlooker bees’ phase. Onlooker bees select a food source 

𝑥𝑖 depending on the probability obtained with the roulette 

selection method. As in the employed bees’ phase, a greedy 

selection is applied, and new locations of all food sources 

are determined.  

3. Scout bees’ phase. The employed bees whose solutions 

did not improve after a specified number of attempts 

become scouts and their solutions are abandoned. The 

scout bee is then associated with a random solution 𝑥𝑖 

becoming an employed bee. If a food source has 

equivalent or better nectar than the old source, the old 

source is replaced and those initially poor or exploited 

sources are abandoned.  

 

ABC algorithm has three control parameters: the bee colony 

size, the local search abandoning limit, and the maximum 

number of search cycles or a fitness-based termination criterion. 

The ABC pseudocode is as follows [26]: 

 

Algorithm 2 ABC Algorithm 
Begin 

  Initialization phase 

  While (no stop condition) 

    Employed bees’ phase. 

    Onlooker bees’ phase 

    Scout bees’ phase 

    Memorize the best source of food found. 

  End While 

End 

C. Particle Swarm Optimization  

The particle swarm algorithm (PSO) considers an analogy of 

the collective behavior from groups of animals, such as the fish 

shoals and flocks of birds [27].  

In PSO, a swarm of particles flies in a D-dimensional search 

space seeking an optimal solution from the consecutive updated 

of its trajectory based on the best positions previously visited. 

Each particle 𝑥𝑖 has its own trajectory determined by its 

position vector 𝑋𝑖 = [𝑥𝑖1, … , 𝑥𝑖𝐷] and its velocity vector 𝑉𝑖 =
[𝑣𝑖1, … , 𝑣𝑖𝐷]. 

The algorithm initializes a group of particles with random 

positions and then the individuals begin to move through the 

search space iteratively. At each iteration, the particles are 

updated in the following greater two values, the particle 𝑥𝑖
∗ is 

the best solution obtained so far for the particle 𝑥𝑖 and the 

particle 𝑥𝑔 is the best overall solution. The PSO pseudocode is 

as follows [27]:  

 

Algorithm 3 PSO algorithm 
Begin 

  Initialize each particle by randomly selecting values for 

its position 𝑋𝑖 and velocity 𝑉𝑖 

  While (no stop condition) 

    For each particle 𝑖 = 1 a 𝑁 

      Evaluate velocity 𝑣𝑖𝑑  and update position 𝑥𝑖𝑑  

      Calculate aptitude of the particle 𝑥𝑖 

      If (𝑓(𝑥𝑖) > 𝑓(𝑥𝑖
∗)) 

        𝑥𝑖
∗ ← 𝑥𝑖   

      End If 

      If (𝑓(𝑥𝑖) > 𝑓(𝑥𝑔)) 

        𝑥𝑔 ← 𝑥𝑖  

      End If 

    End for 

  End while 

  Return 𝑥𝑔 

End 
 

In each iteration 𝑡 the velocity of the particle is updated with 

the equation 8:  

𝑣𝑖𝑑(𝑡 + 1) = 𝑤𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑥𝑖𝑑
∗ (𝑡)  − 𝑥𝑖𝑑(𝑡)) +
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                              𝑐2𝑟2 (𝑥𝑑
𝑔

(𝑡) − 𝑥𝑖𝑑(𝑡))                               (8)             

 

Where 𝑤 is the inertia factor, 𝑐1 and 𝑐2 are the cognitive and 

social acceleration coefficients, 𝑟1 and 𝑟2 are uniform random 

values between (0,1). Finally, the position of the particle is 

updated with the equation 9: 

 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡 + 1)                                   (9) 

 

Generating solutions for routing problems with constraints 

can result in exhaustive searches that may take too much time 

to execute, or it is not possible to generate solutions that meet 

the constraints. To avoid the previously mentioned, a penalty 

cost is implemented if the solution exceeds the loading capacity 

of the vehicles. In this way the search space is also diversified. 

The following capacity overload penalty objective function is 

frequently used in CVRP study [28], [29], [30] (equation 10): 

 

𝑧(𝑥) = 𝑐(𝑥) +  𝛼 ∗ 𝑞(𝑥)                            (10) 

 

Where 𝑐(𝑥) is the cost of traversing the routes (distance) and 

𝑞(𝑥) is the sum of the excess demand on the routes that make 

up the solution. The parameter 𝛼 represents the penalty constant 

and is usually set to incorporate an additional cost into the 

objective function to guide the algorithm toward feasible 

solutions that satisfy the requirements of the problem. 

V. METHODOLOGY   

The methodology used in this paper is described in Fig 1. 

 
Fig. 1. Methodology for development of the work. 

 

Next, the methodology for validating the proposal for the 

distribution of biological products in Mexico is described, 

specifically, for the State of Mexico. The data acquisition 

includes the identification of the different distribution centers 

(depot) and application sites (clients) for the transportation of 

vaccines, means of transport, vaccination stages, doses of 

vaccines acquired, among others. Therefore, in this study it is 

assumed that: 

1. The demand for biologicals by application site 

corresponds to the population within the application age 

group and number of application sites in the municipality. 

2. Time windows are not considered. 

3. The vehicles have the same load capacity, and each 

vehicle leaves from the distribution center to various 

application sites and returns to the starting point. 

4. Intermediate points (transshipment) between distribution 

centers and application sites are not considered.  

5. There are no biological demands that exceed the capacity 

of vehicles.  

6. The cost matrix is asymmetric, and the number of vehicles 

is unlimited. 

The distribution network is made up of one depot and 261 

application sites distributed in the age groups 18 to 29 years, 30 

to 39 years, 40 to 49 years, 50 to 59 years, and 60 years and 

older.  

The vaccine application sites were obtained from the official 

site of the Government of the State of Mexico [31] and are 

distributed in the 125 municipalities that make it up. The 

coordinates of the application sites were consulted from the 

map application server, Google Maps [32]. 

The required demand by application site was obtained from 

the National Institute of Statistics and Geography (INEGI, 

Instituto Nacional de Estadística y Geografía; Mexico) by 

consulting the population within the age range corresponding to 

the dose and area of the application site [33]. 

Regarding the cost of routes, the Distance Matrix API of 

Google Maps Platform was used [34] to obtain the travel 

distance between the application sites using their corresponding 

coordinates. 

A. Free Parameters of the Metaheuristics 

The performance of the metaheuristics is considerably 

affected by the parameter configuration because it controls 

some characteristics such as convergence, quality of the 

solution and execution time. Each algorithm was executed with 

different parameter configurations based on recommended 

ranges from the literature [28], [35], [36], [37], [38], [39], [40], 

[41], followed by an iterative process of adjustment and 

refinement. Specifically, for each algorithm, we started with 

standard or recommended parameter values, followed by a 

sensitivity and performance analysis where each parameter was 

adjusted independently while keeping the others constant across 

multiple executions. In each run, one hundred optimization 

cycles were carried out. Overall, parameter determination was 

carried out empirically, aiming to maintain similar initial 

conditions across the algorithms:  

 

1. Genetic algorithm 

a) Population size = 50 

b) Crossover rate = 0.7 

c) Mutation rate = 0.1 

d) Elitist selection = 1 

2. Artificial bee colony algorithm 

a) Scout bees = 50 

b) Food sources = 50 

c) Limit of abandon of local searching = 100 

3. Particle swarm optimization algorithm 

a) Particles = 50 

b) Inertia = 0.5 

c) Acceleration coefficients C1 = 2.05 y C2 = 2.05 
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B. Solution Representation 

The solution representation uses a vector of length (𝑛 + 𝑚), 

where n elements representing customers are visited by m 

vehicle routes. Fig. 2 provides an example of an instance with 

five customers (𝑛 = 5) and three vehicles (𝑚 = 3). The 

sequence between two 0𝑠 is the sequence of customers to be 

visited by a vehicle. As shown in Fig. 2, customers 1 and 3 are 

assigned to the same route, and the vehicle visits customer 1 

before customer 4. The solution representation is the same for 

all three algorithms. 

 

 

0 1 3 0 4 5 0 2 
Fig. 2. Solution representation which n = 5 y m = 3. 

 

 Regarding the generation of solutions in the initialization 

phase, a heuristic approach is used with the Greedy 

Randomized Construction Method. An initial solution is built 

by assigning one client at a time to a route of 𝑘 vehicles. The 

client is randomly selected and assigned to the location that 

minimizes the cost of assigning the client on the current set of 

routes, while meeting the vehicle load capacity. In case it 

exceeds it, it is assigned to the next route that minimizes the 

cost and does not exceed the load capacity, the procedure is 

repeated until all clients are routed.  

VI. RESULTS 

The performance of the algorithms was done in an equipment 

with AMD Ryzen 9 5950X 16 Cores processor and 32 GB of 

RAM with Windows 10 as Operating System. The algorithms 

were developed and compiled with JAVA programming 

language (JDK 8), multithreading programming with Spring 

Framework. 

A. Quality Evaluation 

In the literature, a frequently used measure to analyze both 

the effectiveness and quality of solutions obtained with 

metaheuristics is the percentage deviation between the best 

solution obtained (OS) and the best-known solution (BKS). Its 

calculation is as equation 11: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  (
𝑂𝑆−𝐵𝐾𝑆 

𝐵𝐾𝑆
) × 100                (11) 

 

In Table I, the rows correspond to 3 instances of the Augerat 

problem set for the CVRP as reference values and the rows 

include the best solutions obtained by each algorithm 

implemented for the instances A-n32-k05 [42], B-n50-k08 [43] 

and P-n070-k10 [44] (where A, B and Pare the groups of the 

instances, n is the number of nodes and k is the number of 

vehicles), while the columns correspond to the performance of 

the algorithms and their percentage deviation from the best-

known solutions. Each algorithm was run ten times for each 

instance and each run consisted of 100 iterations. 

 
TABLE I  

PERCENTAGE DEVIATION OBTAINED BY THE ALGORITHMS 

Instance 

Best solution obtained by each 
metaheuristic 

Percentage deviation 

BKS GA ABC PSO GA ABC PSO 

A-n32-k05 784 1023 993 893 30.48 26.66 13.9 

B-n50-k08 1312 1542 1525 1457 17.53 16.23 11.05 

P-n070-k10 827 1296 1283 1190 56.71 55.14 43.89 

Average percentage deviation 34.91 33.52 22.95 

Note: Where A, B and P are the groups of the instances, n is the number of 

nodes and k is the number of vehicles.  

 

In Table I, it is possible to note that the average percentage 

deviation demonstrates the performance of the algorithms, the 

solutions close to the optimal can represent an efficient 

implementation of the algorithms, thus, the performance of the 

proposed algorithms is acceptable for the present study. 

 

B. Obtaining Instances for Vaccine Distribution 

Considering the information on vaccination phases [31] and 

population census [33], Table II describes the number of 

vertices, number of arcs and total demand corresponding to 

each instance. In Table II, the instance E18A1 indicates the first 

dose of the 18–29-year age group, E40A2 indicates the second 

dose of the 40–49-year age group, and so on. Where for each 

instance the number of binary variables corresponds to the 

number of arcs and the restrictions to 3n+2 (n = number of 

vertices) in the model. 

 
TABLE II 

NUMBER OF APPLICATION SITES AND DEMAND FOR COVID-19 VACCINES 

FOR EACH INSTANCE 

Instance Vertices Arcs Demand 

(Vaccines) 

E18A1 178 31506 3183223 

E18A2 177 31152 3355937 

E30A1 187 34782 2537527 

E30A2 162 26082 2472808 

E40A1 178 31506 2538297 

E40A2 177 31152 2515270 

E50A1 207 42642 1951408 

E50A2 190 35910 1926948 

E60A1 117 13572 1105234 

E60A2 201 40200 1919417 

 

According to the labelling and packaging of the 

Pfizer/BioNTech and Moderna vaccines [45], [46], the desired 

minimum capacities in the vehicles for distribution are 

described in Table III. The capacity 𝐶 was defined by dividing 

the demand for vaccines of the instance between the 𝐾 = 10 

vehicles.  
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TABLE III 

CHARACTERISTICS OF VEHICLES FOR DISTRIBUTION 

Instance 
C 

(Vaccines) 

Pfizer/BioNTech  Moderna 

𝑚3 kg 𝑚3 kg 

E18A1 320000 4.88 9.55E-03 2.05 3.18E-02 

E18A2 340000 5.14 1.01E-02 2.16 3.36E-02 

E30A1 260000 3.89 7.61E-03 1.63 2.54E-02 

E30A2 248000 3.79 7.42E-03 1.59 2.47E-02 

E40A1 254000 3.89 7.61E-03 1.63 2.54E-02 

E40A2 252000 3.85 7.55E-03 1.62 2.52E-02 

E50A1 196000 2.99 5.85E-03 1.25 1.95E-02 

E50A2 193000 2.95 5.78E-03 1.24 1.93E-02 

E60A1 111000 1.69 3.32E-03 0.71 1.11E-02 

E60A2 192000 2.94 5.76E-03 1.23 1.92E-02 

 

C. Analysis of Solution Quality  

Each algorithm was run ten times for each instance, likewise, 

each execution was carried out by twenty-five threads. Table IV 

compares the best solutions found by the algorithms; the best 

solutions obtained for each instance are highlighted. 

 
TABLE IV 

BEST SOLUTIONS OBTAINED BY THE ALGORITHMS 

Instance ABC PSO GA 

E18A1 
9.16E+06 7.95E+06 8.24E+06 

E18A2 
8.50E+06 7.93E+06 8.28E+06 

E30A1 
9.07E+06 8.06E+06 8.44E+06 

E30A2 
8.90E+06 7.99E+06 7.94E+06 

E40A1 
1.24E+07 1.07E+07 1.21E+07 

E40A2 
1.06E+07 9.38E+06 9.83E+06 

E50A1 
9.85E+06 9.72E+06 1.00E+07 

E50A2 
1.07E+07 9.68E+06 9.81E+06 

E60A1 
6.29E+06 5.20E+06 5.28E+06 

E60A2 
1.26E+07 1.17E+07 1.28E+07 

 

From Table IV it is possible to note the efficiency of the PSO 

algorithm with respect to the other metaheuristics, by 

generating the best solutions in 90% of the instances, 

immediately followed by the GA. 

When analyzing the quality of the solutions obtained by 

calculating the percentage deviation and considering those 

obtained with the PSO algorithm as the best values, it is possible 

to observe that the solutions obtained by the ABC algorithm 

range between 1.27 to 21.08 with an average of 11.6, whereas 

for the GA ranges between -0.66 and 12.6 with an average of 

4.49 (the negative sign means that the genetic algorithm 

generated a better solution than PSO for instance E30A2). 

These values indicate that the ABC and GA algorithms are on 

average 11.6% and 4.49% higher in distribution cost. 

 

D. Execution Time Analysis 

The average computational time of the ten runs performed by 

the algorithms on each instance is illustrated in Fig. 3, it is 

clearly observed that the ABC algorithm is the one that obtains 

the solutions more quickly, while the PSO algorithm is the one 

that requires the most time. 

 

 

 
Fig. 3. Required execution time for each instance. 

 

Once again, by calculating the percentage deviation with 

respect to the execution time and considering the ABC 

algorithm as optimal, it can be determined that the percentage 

deviation of the PSO algorithm ranges between 649.15 to 

1001.44 with an average of 867.38 while for the GA it ranges 

between 566.24 and 868.43 with an average of 728.07, the 

above highlights the efficiency in terms of computational time 

of the ABC algorithm, in other words, the PSO algorithm is on 

average 867.38% greater while the GA is 728.07% greater in 

terms of computational time. However, it is necessary to clarify 

that the complexity of operations and the number of function 

evaluations conducted by the algorithms and their local search 

methods are not the same due to the inherent probability and/or 

randomness associated with each algorithm. 

 

E. Detailed Analysis 

Further analysis of the performance of the algorithms is 

carried out below, considering the E60A1 instance for the case 

study. Firstly, the obtaining of routes by each of the 

metaheuristics is observed in Fig. 4. In this it can be seen how 

from the first iterations the PSO and AG algorithms begin to 

approach the global minimum of 5.20E06 and 5.28E06 

respectively, while the ABC algorithm does not present a lot of 

variation towards its global minimum of 6.29E06.  

On the other hand, Fig. 5 shows the time in minutes required 

to obtain the solutions. From these results it is possible to 

observe the constant increase over time, however, the resource 

savings that the ABC algorithm requires are clear. The average 

duration of an optimization cycle for the ABC algorithm is 0.34 

minutes, for the PSO algorithm 2.59 minutes, and for the GA 

2.37 minutes. 
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Fig. 4. Obtaining solutions for E60A1 instance. 

Fig. 5. Computational time of best solutions for E60A1 instance. 

Finally, Fig. 6 presents the graph of the best solution obtained 

for the E60A1 instance by the PSO algorithm, Table V shows 

its corresponding routing of application sites, where each route 

belongs to vector of the best solution and node 262 is the 

distribution center which correspond to the node 0 in Fig. 2. 

 
TABLE V 

BEST SOLUTION FOR E60A1 INSTANCE 

Route Application sites Nodes 

1 262, 119, 81, 75, 80, 74, 115, 22, 8, 127, 151, 

162, 24, 71, 82, 121, 262 

16 

2 262, 194, 158, 130, 46, 99, 45, 177, 44, 77, 182, 
262 

11 

3 262, 26, 94, 88, 101, 112, 87, 120, 188, 47, 174, 

43, 207, 147, 262 

14 

4 262, 67, 126, 116, 6, 181, 124, 190, 218, 7, 186, 

187, 157, 92, 95, 93, 191, 145, 65, 183, 262 

20 

5 262, 11, 84, 61, 152, 103, 171, 86, 85, 66, 13, 
165, 149, 32, 262 

14 

6 262, 5, 184, 96, 110, 16, 163, 15, 262 8 

7 262, 213, 123, 97, 161, 100, 42, 91, 193, 173, 

148, 262 

11 

8 262, 76, 146, 98, 64, 14, 164, 23, 29, 137, 79, 

262 

11 

9 262, 133, 205, 125, 48, 134, 132, 175, 176, 262 9 

10 262, 180, 117, 28, 144, 70, 69, 41, 68, 30, 2, 102, 
262 

12 

 

 
Fig. 6. Best solution graph for E60A1 instance. 

VII. CONCLUSIONS 

In this work, three bio-inspired metaheuristic algorithms were 

used to generate COVID-19 vaccine distribution routes in the 

State of Mexico, Mexico. For this, ten instances were determined 

corresponding to the age groups and the application of vaccines 

considering the vaccination phases proposed by the federal 

government. The analysis carried out includes both the quality of 

the solution and the required execution time, using the percentage 

deviation as a measure of the performance of each algorithm to 

determine the difference between the solutions obtained between 

them.  

To validate the reliability of the solutions obtained, the same 

approach was used in each algorithm so that each solution 

complies with the CVRP restrictions by overcapacity penalty, 

initialization of feasible solutions, among others. 

From the results, it is concluded that the PSO algorithm 

generates the best solutions that require the most computational 

time, immediately followed by the genetic algorithm. The 

elements that determined this result were the exploration and 

exploitation of the search space. On the one hand, the PSO 

algorithm emphasizes exploration. In this algorithm, particles 

explore the search space, adapting their positions in response to 

interactions with other particles, making easier the discovery of 

regions in the search space.  

On the other hand, The GA based on the genetic crossover and 

mutation operators explores the search space and exploits 

favorable solutions, facilitating the probability of discovering 

superior solutions.  

Something quite different happens with the ABC algorithm. 

This algorithm is based on employed and scout bees as local 

search mechanisms. The ABC algorithm places more emphasis 

on exploitation and neglects exploration. 

In the context of CVRP, determining optimal routes involves 

the exploration of various combinations of client visit sequences, 

in the case of bio-inspired algorithms and especially the swarm 

behavior, offers a means to explore numerous combinations of 

routes approaching the optimal ones. However, in terms of 
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computational time, the ABC algorithm is faster in all instances, 

due to the lower complexity in its development stages and 

operations; therefore, the decision maker can select the best 

solution with greater computational effort or a quick solution 

under the risk that a better solution may exist.  

Future work is oriented towards the application of this type 

of algorithms to the transfer of other types of products, the use 

of other restrictions such as delivery time windows, costs of 

cooling systems, multiple depots, product conservation and 

others specific to cold supply chains. 
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