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Abstract— The objective of the present study is to compare 

three control approaches: ON/OFF control, fuzzy logic, and 

convolutional neural networks (CNN) implemented in Python for 

controlling the real-time trajectory tracking of a six-axis industrial 

robotic arm. This analysis has significant applications in fields that 

require a high level of precision, such as automated welding and 

surgical interventions in the medical domain. To evaluate the 

performance and adaptability of the control models, we will 

analyze the results using metrics such as Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), as well as metrics including Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index (SSIM), Jaccard Index, and 

Pearson's correlation coefficient. The results obtained reveal 

valuable information about the advantages and limitations of each 

control approach, highlighting the effectiveness of CNNs in visual 

perception and trajectory tracking. The ability of CNNs to 

interpret visual complexities is presented as a key factor for their 

success in industrial robotics and automation applications, 

suggesting a promising future for these technologies in dynamic 

environments. 

 

Link to graphical and video abstracts, and to code: 

https://latamt.ieeer9.org/index.php/transactions/article/view/8702 

 
Index Terms—industrial robotic arm, line following, trajectory 

control, fuzzy logic, convolutional neural network.  

I. INTRODUCTION 

ncertain systems are those that experience disturbances; 

that is, in which events occur due to elements that are both 

an intrinsic part and part of the working environment of a 

machine or manipulator, whose occurrence directly or 

indirectly influences its operation, causing generally unforeseen 

inaccuracies in the tasks performed. Disturbances represent a 

very important factor in the automation analysis of industrial 

robots, since they can affect critical parameters such as power, 

speed, kinematic performance and precision. There are some 

problems in the robust control formulations that exist in the 

literature. In particular, certain characteristics of the uncertainty 

need to be known and the measurement of the position and 

velocity of the joints is required for most of the controllers 

proposed for robotic manipulators. 
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Over the world, robust controllers have been developed 

based on the estimation of uncertainty and disturbances, which 

do not require accurate information on uncertainties or accurate 

velocity measurement. For these cases, a robust observer and 

an uncertainty estimation technique are used, in addition to 

presenting numerical simulations and experimental results [1]. 

It is feasible to implement control in uncertain systems by 

estimating and compensating for the impact of uncertainties and 

disturbances through modifications in the nominal system’s 

controller. This is achieved using techniques such as 

disturbance observers and unknown input observers. A 

common technique is time-delayed control (TDC), which 

estimates the effect of uncertainties and disturbances using past 

data, designing a controller that counteracts unknown dynamics 

and disturbances. Additionally, in robotics, techniques like 

Uncertainty and Disturbance Estimation (UDE), has been 

applied, addressing limitations of TDC. The UDE is based on 

the control of uncertainty and disturbances, reinforcing 

linearized control laws and overcoming problems of uncertainty 

limits and fluctuations in Sliding Mode Control (SMC). Robust 

control designs based on UDE have also been proposed for 

systems with and without linearity and state delays [2], [3].  

Controlling a robot involves designing the torque of the 

joints or the actuator voltage so that they closely follow a 

desired trajectory. Classic servomechanism methods are 

applied individually to each joint using linear controllers such 

as the Proportional Integral Derivative (PID) controller [4], [5]. 

However, these controllers do not consider nonlinearities in the 

process or interactions between the joints, which becomes 

crucial for large displacements, high speeds, and accelerations 

[6]. To achieve high precision in trajectory, nonlinearity 

compensations and decoupling of the joints are required, which 

implies the use of fixed controllers. These controllers, common 

in robots, demand an exact knowledge of the dynamics and 

parameters of the system, which can lead to performance 

degradation and instability due to uncertainties in the design 

[7]. An effective solution is adaptive control schemes, where 

controllers automatically adjust to compensate for uncertainties 

[8]. These approaches are divided into model-reference 

adaptive control (MRAC) and self-tuning adaptive control 

(STAC) [9], [10]. The objectives of robot controllers include 

insensitivity to parameter uncertainties, unknown load 

variations, low computational demand, and decoupled joint 

response [11]. 

The literature proposes a variety of strategies to counteract 
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disturbances, including passive, active, and hybrid control 

methods, in addition to the application of machine learning 

techniques. This study provides crucial insights into the 

strengths and weaknesses of three different control methods, 

presenting effective solutions to evaluate precision and 

efficiency in the field of industrial robotics. 

II. TECHNIQUES TO COUNTERACT DISTURBANCES IN 

INDUSTRIAL ROBOTS 

A. Vibration 

In the literature, various vibration control techniques for 

industrial robots have been discussed, with passive, active, and 

hybrid control being the primary methods. Passive control, 

employing devices like friction and hydraulic dampers, springs, 

and viscoelastic materials, effectively dampens low-frequency 

vibrations but falls short at higher frequencies. Conversely, 

active control utilizes sensors and actuators electrical, 

hydraulic, or pneumatic to detect and counteract vibration, 

proving more efficient for high-frequency vibrations. Hybrid 

control merges these two, leveraging their combined strengths 

to address a broader frequency range [12]. 

Moreover, control algorithms like PID control, a 

straightforward yet effective feedback method, and Model 

Predictive Control (MPC), a more complex but potentially more 

effective approach in nonlinear or high-disturbance scenarios, 

have been developed. Zhu et al. proposed a sensor-based 

vibration control method using a finite element model to 

identify a robot's natural frequencies and mode shapes [13]. 

This controller adapts in real-time to reduce vibration, showing 

significant improvements over non-adaptive controllers. 

 

B. Load Variations 

Load variations are common in industrial robots and affect 

their precision, speed, and stability. This refers to changes in 

the weight the robot must move, which can cause imbalances 

and errors in its movement [14]. To address this issue, force 

feedback sensors are used in the robot's joints, allowing for real-

time correction and improving precision and efficiency, 

resulting in higher quality and reduced production time [15]. In 

addition to classical control approaches, adaptive control 

methods have been proposed, such as the Model-Based 

Adaptive Control (MBAC) for 6-axis robots. In this method, the 

system model is estimated in real-time using system 

identification techniques, and an adaptive controller is designed 

to adjust parameters according to load variations. This approach 

has proven effective in compensating for load variations and 

outperforms traditional control methods [15]. 

 

C. Sensor Noise 

Sensor noise, a prevalent disturbance in industrial robots, 

undermines the accuracy and reliability of decision-making 

data. This noise arises from various factors like electromagnetic 

interference, temperature, humidity, and sensor material 

quality. Research efforts are increasingly focused on 

minimizing or controlling this noise. Key strategies include 

digital filtering, noise subtraction, frequency domain 

transformation, and employing machine learning for noise 

reduction. 

Digital filters, notably low pass, high pass, band pass, and 

band reject, are instrumental in smoothing signals by filtering 

out irrelevant frequencies [16]. Recent advancements include a 

deep learning-based noise reduction model, particularly for 

acceleration sensors, utilizing a convolutional neural network 

trained on industrial robot vibration data. This model has 

demonstrated significant noise reduction, enhancing data 

accuracy. Another study highlighted the impact of electrical 

noise on force sensors, revealing substantial accuracy and 

reliability reductions in force measurements, with signal 

filtering systems shown to markedly improve force 

measurement quality amidst electrical noise [10]. 

 

D. Electric Current Variation 

Current and frequency variations are common in industrial 

robots, affecting the robot's speed and position, which can 

decrease product quality and increase downtime. To address 

this issue, speed and position controllers are used to maintain a 

constant electric current and regulate frequency, thus 

minimizing variations [17]. 

Regarding frequency variations, frequency regulators are 

used to maintain a constant frequency in the electrical current 

supplied to the robot's motors, reducing speed and position 

variations. Some regulators also adjust the current to 

compensate for fluctuations in the electrical power supply. 

Studies have demonstrated the effectiveness of these 

techniques. For example, one study evaluated a control system 

based on a position controller and an energy filter in a 6-axis 

industrial robot, achieving significant reductions in electrical 

current variations and improving the robot's precision and 

stability [18]. 

 

E. Friction in Motion 

Friction in motion is a common disturbance that affects the 

performance and precision of industrial robots, increasing the 

necessary energy, wearing down components, and generating 

harmful vibrations. To address this problem, techniques such as 

lubrication have been developed, which reduce friction and 

wear, as well as decrease noise and vibrations in the system 

[19]. Studies have evaluated lubrication in SCARA robot drive 

systems, demonstrating that it significantly reduces friction, 

improving precision and stability in high-speed operations. 

Another effective approach to reducing friction is the 

application of special coatings on moving parts [20]. 

 

Table I summarizes the strategies and techniques 

recommended by specialized literature for mitigating 

disturbances, with the goal of optimizing precision and 

efficiency in robotic applications. 
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TABLE I 

SUMMARY OF DISTURBANCES AND TECHNIQUES TO COUNTERACT THEM 

Disturbance Causes Effects 
Techniques 

Used 

Vibration 

Imbalance 
Loss of 
accuracy 

Vibration 
isolation. 

Imperfections in the 

parts 

Material 

fatigue 

Vibration 

absorption. 

External Forces 

Deterioration 

of product 

quality 

Use of shock-

absorbing 

materials. 

Load 

Variations 

Changes in demand 
Loss of 

accuracy 

Charge 

Controllers. 

Voltage fluctuations 
Deterioration 
of product 

quality 

Voltage 

Regulators. 

Load imbalances 
Damage to 

components 

Adjusting 
Controller 

Parameters. 

Sensor Noise 

Electromagnetic 
interference 

Inaccurate 
readings 

Shielding the 
sensors. 

Voltage fluctuations 
Loss of 

accuracy 
Signal Filters. 

Interference from 
other signals 

Control errors 
Interference 
isolation. 

Electrical 

Current 

Variation 

Voltage fluctuations 
Loss of 

accuracy 

Voltage 

regulators. 
Overload on the 

power grid 

Damage to 

components 

Current 

controllers. 

Changes in energy 

demand 

Deterioration 
of product 

quality 

Energy Filters. 

Friction in the 

movement 

Wear on parts 
Loss of 
accuracy 

Use of 
lubricants. 

Material 

incompatibility 

Premature wear 

of parts 

Adjusting the 

Parts. 

Lack of lubrication 

Increased 

energy 

consumption 

Design of parts 

with compatible 

materials. 

External 

agents 

Unexpected changes 
in control 

application 

variables. 

Crashes or 
accidents 

Application of 

real-time control 

mechanisms. 
Unwanted 

application 

results 

Adapting the 

trajectory to 

correct the error. 
Positional 

inaccuracy 
  

III. CASE STUDY 

In order to compare control algorithms for trajectory tracking 

in high-precision applications, such as medical surgery or 

welding, a study will be conducted using a disturbance case that 

modifies the original direction and position of a planned 

trajectory. This will require correcting the robot's trajectory to 

adapt to the change. A camera will be used as a sensor to detect 

this change. 

A. Six Degrees of Freedom Industrial Robot 

For the case study, a six-axis industrial robot is considered, 

specifically the EPSON VT6L-A901S robot. It has six degrees 

of freedom and is capable of lifting up to 6 kilograms of weight 

from its head. The main characteristics are shown in Table II. 

The robot moves using points stored in variables, which can 

be specified in Cartesian coordinates or in relative or absolute 

pulses (degrees) for each axis. Although it is possible to modify 

the robot's position individually for each axis, two main types 

of coordinated movements are primarily used: point-to-point 

and straight line. 

Point-to-point movements focus on efficiency by preserving 

the orientations of the axes, which can lead to curved 

trajectories instead of straight lines, always seeking to reach the 

destination without superfluous movements. 
TABLE II 

MAIN CHARACTERISTICS OF THE VT6 ROBOT ARM 

Feature VT6 – A901S 

Number of axes 6 

Load  3 kg (nominal), 6 kg (maximum) 

Mobility 
170° on axis 1, -160° a 65° on axis 2, -51° a 190° on 
axis 3, 200° in axis 4, 125° in axis 5, 360° in axis 6 

Moment 12 N*m for axes 4 y 5, 7 N*m for axis 6 

 

In contrast, straight-line movements seek the mathematically 

shortest route between the start and end points, without 

worrying about adjusting the movement of one or several axes 

of the robot, resulting in a straight line in all cases. 

B. Camera 

A webcam connected to the control computer via USB will 

be used as a sensor. The XB201-XM-2 camera features a video 

resolution of 1980x1080 and the flame rate of 30 FPS. This 

camera is mounted on the robot's head (axis 5), with its 

orientation parallel to this axis, allowing its angle to vary 

synchronously with the axis. 

C. Tracking Path 

The research aims to evaluate the performance of different 

control algorithms in accurate trajectory tracking. For this 

purpose, a tracking curve has been designed that includes 

simulated variations affecting the robot's trajectory, particularly 

changes in the position of the line to be followed. Fig. 1 shows 

the trajectory that will be used to evaluate the performance of 

the algorithms. 

 
Fig. 1. Curve for trajectory tracking. Note: Drawn on an A4 standard sheet of 

paper, 297 mm height and 210 mm width. 

 

D. Proposed Scenario 

The evaluation scenario for the algorithms will be maintained 

under uniform conditions for all, with the following 

characteristics: 
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• The camera will be mounted on axis 5 of the robot. 

• The initial capture position will be set with axis 5 at a 

constant height of 18 cm above the worktable, without 

variations in this height, as it will only affect the X and Y 

axes of the robot. This height will allow the placement of 

a marker to trace the trajectory. 

• A white paper sheet will be placed on the worktable, 

visible at the height of the camera, with a black-colored 

curve that will serve as a case study and application of the 

system. The same original curve is shown in Fig. 1. 

• A black-colored marker will be installed on the robot's 

head, which will touch the blank white sheet at the 

beginning, validating the tracking of the original curve. 

• Hardware connections will be made without positively or 

negatively affecting the process. 

• Adequate lighting will be provided in the workspace to 

avoid generating false lines for the camera. Tests will be 

conducted during daylight hours to avoid shadows. 

IV. DESIGN OF CONTROL ALGORITHMS AND MATH 

In this work, we use Python to analyze the performance of 

three active control techniques for real-time trajectory tracking 

of a six-axis industrial robotic arm. 

A. ON/OFF Based Active Controller 

The active ON/OFF control, known for its simplicity and 

ease of implementation, is used in factories and household 

appliances, such as Heating, Ventilation, and Air Conditioning 

(HVAC). This method supplies full power until the set point is 

reached. Sensor-based feedback provides the value of the 

control variable in real-time discretely. When this value 

exceeds the set point, the power is turned off until the control 

variable value is updated. If the value falls below the set point 

within the desired ranges, it is turned on again to correct it. This 

process is continuously repeated, maintaining the control 

variable within the desired ranges over time [21], [22]. 

In this context, the control variable refers to the difference 

between the percentages of black pixels in the binarized image 

of the trajectory line, and the main actuator involves the robot's 

movement along the X-axis to correct its X position and 

advance in Y to follow the trajectory. Fig. 2 shows the diagram 

of the active control system for line tracking (external agent 

disturbance). The essential characteristics of this active control 

are detailed in Table III. 
TABLE III 

FEATURES OF ON/OFF BASED ACTIVE CONTROLLER 

Control 

variable 

Difference between percentages of black pixels on the left 

and right side of the captured and binarized image. 

Input Webcam 1080p 

Actuators VT6L robot axes 

Output Robot X position 

 

First, we have the control variable ∆𝑃, which represents the 

difference in the percentages of black pixels on each side of the 

image, calculated with the expression (1). 

 

∆𝑃= 𝑃𝑙 − 𝑃𝑟   (1) 

 

Where 𝑃𝑙  is the percentage of black pixels in the left half of 

the image, and 𝑃𝑟  is the percentage of black pixels in the right 

half of the image. Then, we have the mathematical function that 

describes the basic operation of the controller is as (2). 

 

𝑓(∆𝑃) = {

(1,0),           ∆𝑃< −5
(0,1),   −5 ≤ ∆𝑃≤ 5
(−1,0),               ∆𝑃> 5

  (2) 

 

This function returns a two-position vector. The first position 

corresponds to the movement in X in millimeters that the robot 

should perform, and the second position corresponds to the 

movement in Y in millimeters that the robot should perform. It 

is also noted that a 5% maximum error percentage is allowed. 

This is necessary to prevent infinite loops, as there are cases 

where reaching an absolute 0% difference with the robot's 

actuators is impossible. Therefore, the robot must remain within 

the established ranges of ±5%. 

The operation of the proposed control system is visualized as 

a flowchart in Fig 2. 

 

 
Fig. 2. ON/OFF based active controller flowchart. 

 

B. Fuzzy Logic-Based Active Controller 

Fuzzy logic is an extension of classical logic that addresses 

the imprecision and ambiguity present in natural languages. In 

recent years, the number and diversity of applications using 
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fuzzy logic have experienced significant growth. Fuzzy logic 

represents an approach to synthesizing diverse, even 

contradictory, control rules to arrive at a coherent decision. This 

method is distinguished by its ability to compute using words 

instead of numbers, leveraging tolerance for imprecision to 

reduce solution costs. Fuzzy logic allows the true values of 

variables to range between 0 and 1, facilitating the management 

of vagueness and ambiguity through the theory of fuzzy sets, 

which addresses uncertainties directly [23], [24]. This logic 

uses fuzzy sets where elements have degrees of membership 

instead of binary membership. 

For the case study of this research project, the fuzzy logic 

controller will act on the control variable, which is the 

difference in black pixels to the left and right of the binarized 

image of the trajectory line that it follows. The values at the 

output of the controller will be the different positions in X and 

Y that the robot must adopt by moving its axes to make the 

control variable as close to 0 as possible. This will allow for 

greater precision compared to the previous percentage-based 

approach. 

Fuzzy logic will be applied to two output signals for two 

actuators, separating the movement on the X-axis and the 

movement on the Y-axis of the robot into independent 

actuators. This will enable the generation of smoothed 

trajectories without a stepping effect. Fig. 4 shows the general 

flow diagram of the active control system for line tracking 

(external agent disturbance), and Table IV describes the 

essential characteristics of this active control. 

 
TABLE IV 

FEATURES OF FUZZY LOGIC-BASED ACTIVE CONTROLLER 

Control variable 

Difference between percentages of black pixels 

on the left and right side of the captured and 
binarized image. 

Sensor Webcam 1080p: 1920x1080  

Actuators 
VT6L robot axes 

Model: EPSON VT6-A901S 

Output signals 
X robot position 

Y robot position (only positive or zero) 

 

In this proposed control system, the control variable is 

represented by ∆𝑁, which is the encountered error, meaning the 

difference in the number of black pixels on each side of the 

image, as expressed in (3). 

∆𝑁= 𝑁𝑙 − 𝑁𝑟    (3) 

 

Where 𝑁𝑙 is the number of black pixels on the left side of the 

image, and 𝑁𝑟 is the number of black pixels on the right side of 

the image. 

On the other hand, the mathematical function of a fuzzy 

control system will depend on the number of memberships 

used. For the current system, three well-differentiated 

categories are categorized: left, right, and center. These three 

categories describe the presented error, that is, on which side of 

the image the line is and then correct its position, attempting to 

approach the center. The mathematical function for these 

memberships is described in (4). 

 

𝑓(∆𝑁) =

{
 
 

 
 

0,                     ∆𝑁< −7000
∆𝑁+7000

−7000
,  −7000 ≤ ∆𝑁≤ 0

7000−∆𝑁

7000
,           0 ≤ ∆𝑁≤ 7000

0,                 ∆𝑁> 7000

  (4) 

 

Fig. 3 shows that the mathematical function used in the 

control system is based on fuzzy logic, specifically a triangular 

membership function. The values of -7000 and +7000 represent 

the error range of the control variable, referring to the minimum 

and maximum differences between the black pixels of the 

image. The value of 7000 corresponds to the maximum number 

of black pixels that have been captured in the images obtained 

by the camera throughout the trajectory tracking of the case 

study. In other words, in each of the captured and processed 

images, the maximum number of black pixels found is 7000. In 

addition to this, it must be considered that the captured and 

processed images have a dimension of 770 pixels width and 100 

pixels height. In this way, 7000 is the maximum value of pixels 

that the curve can occupy in the image, and therefore the 

maximum error that can occur in the control variable, which is 

desired to be as close to 0 as possible. Fuzzy logic regulates 

actuator movement within specified intervals, adjusting output 

at extremes for error correction, and enabling progression 

through subsequent adjustments based on remeasured control 

variables. 

 

 
Fig. 3. Graphical representation of the membership functions of the fuzzy logic-

based active controller.  

 

The change in the robot’s position will be proportional to the 

error and will depend on the opinions of all elements mentioned 

in the rules. The output signal will not be a signal with a 

constant value but with several possible values according to the 

decision made by the system for the two actuators in play. The 

rules are described below. 

 

- If the error is negative, then the X-axis actuator moves to 

the right, and the Y-axis actuator stops. 

- If the error is zero, then the X-axis actuator remains in the 

center, and the Y-axis actuator advances. 

- If the error is positive, then the X-axis actuator moves to 

the left, and the Y-axis actuator stops. 

 

It is important to highlight that these conditions do not 

generate classic logic responses, but rather combine the 

opinions of the three elements to produce fuzzy output signals 

with intermediate values. The results are predictable and 
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consistent, indicating the maintenance of fundamental 

principles across situations and applications. 

 

 
Fig. 4. Fuzzy logic-based active controller flowchart. 

 

C. Convolutional Neural Network Based Active Controller 

A Convolutional Neural Network (CNN or ConvNet) is a 

type of artificial neural network designed to process spatial 

data, being particularly effective in tasks such as object 

recognition, image classification, and anomaly detection. 

CNNs consist of several layers, each with a specific function. 

These typical layers include [25]: 

 

• Convolutional Layer: Applies filters to the input data to 

detect specific patterns. The filters are matrices that move 

across the input data, calculating scalar products between 

the values of the filter and the input data. 

• Pooling Layer: This layer reduces the dimensionality of 

the output data of the convolutional layer. This is done to 

reduce the number of parameters the network needs to 

learn, which can help improve training performance and 

efficiency. 

• Fully Connected Layer: Similar to a traditional layer of 

artificial neurons, it connects the patterns detected by the 

convolutional layers and performs the final classification 

of the data. 

 

CNNs are highly efficient for image processing because they 

share parameters across different layers. This means that the 

network only needs to learn a set of parameters for each type of 

pattern it detects [26]. 

To train a convolutional neural network for implementation 

as a control system, a dataset tailored to the network's needs is 

necessary. This dataset will consist of a series of images 

captured with the camera mounted on the robotic arm, 

corresponding to images of lines with different characteristics 

in shape and size. These images will serve as inputs to the 

system, representing what the system's sensor can detect. As 

output data, there will be the movements in X and Y that the 

robot should ideally make in response to the image captured by 

the camera. For that reason, a value of X and a value of Y will 

be needed as a response to each of the images used for the 

dataset. Instead of arbitrarily assigning these decisions to the 

robot, which could introduce bias, the dataset will be generated 

using the fuzzy logic controller discussed earlier. The dataset 

generation involves the following steps: 

 

• The robot will follow the trajectory of 10 lines with 

different arbitrarily designed characteristics to express 

various possible trajectories using the fuzzy logic 

controller. 

• The target curve of the case study in this report will not 

be used in the dataset generation process, as the goal is to 

evaluate the system's ability to predict movements needed 

to follow the curve without being taught during training. 

• Each of the 10 training curves will be used multiple times 

to generate more data for the dataset. To avoid 

redundancies, duplicate instances that only insert 

redundancy into the system will be removed during data 

preprocessing. 

 

It is important to highlight that the 10 training curves used do 

not represent only 10 images as data in the training set. 

Remembering that the images obtained by the robot are 

770x100 pixels and considering that the system takes an image 

immediately after obtaining an X and Y position output until 

finishing the total trajectory, each of the training curves 

represents an average of 800 images, which means that in the 

training set of the neural network there are approximately 8000 

preprocessed images of 770x100 pixels. In such small capture 

regions of the images obtained by the camera, this number of 

images guarantees the generalization of the system against 

different trajectories. Furthermore, the evaluation of the system 

is carried out with the curve of the case study that was not 

included within the 10 training curves. 

 

Both the decisions made by the fuzzy-based algorithm and 

the input images that generated these decisions in X and Y are 

stored. It's important to note that, for images, no additional 

processing is necessary apart from what was already done in the 

system previously.  

 

Subsequently, to adapt the input and output data of the neural 

network for training, the following data preprocessing is carried 

out: 

- Removal of duplicate instances. 
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- Normalization of images to obtain binary intensities of 0 or 

1. 

- Separation of data into training and evaluation sets, with 

20% of the data for evaluating the network. 

 

With the data already prepared according to the previous 

analysis, it is necessary to create a convolutional neural network 

model to be trained with all these data to predict the X and Y 

values that the robot should take in response to any input image. 

For this, the network topology is followed, in the operational 

order described below. 

 

a) Input Convolutional Layer: This layer performs 

convolutions on the image input, extracting features from 3x3 

pixel windows. The ReLU function is applied to the outputs of 

this layer to introduce nonlinearity. It is configured to receive 

images with a size of 770 x 100 pixels. The 32 neurons at the 

input will allow the reception of images to convolutional layers. 

Padding allows the layer to output images with the same 

dimensionality as they had at the input, filling with zeros if 

necessary, during the system's training period. Furthermore, it 

is important to emphasize that the images are binary, so only 

one channel is needed, saving computational costs, training 

time, and improving the performance of the training process. 

The ReLU activation function will in turn deal with images 

given its specialty with pattern detection in specific regions of 

the image. Its characteristics are summarized: 

 

• Type: Conv2D 

• Neurons: 32 

• Filter size: (3, 3) 

• Padding: 'same' (filled with zeros to maintain the size 

of the output as the input if necessary) 

• Activation function: ReLU (Rectified Linear Unit) 

• Input size: (770, 100, 1) 

 

b) Max Pooling Layer: This layer performs maximum 

pooling, reducing the spatial resolution of the output from the 

previous layer by half. It helps reduce the number of parameters 

and learn more general features. Its characteristics are 

summarized as follows: 

• Type: MaxPooling2D 

• Pooling window size: (2, 2) 

• Strides: (2, 2) 

 

c) Second Convolutional Layer: This layer performs 

additional convolutions on the features extracted by the 

previous layer. It increases the complexity of the learned 

features. Its characteristics are summarized as follows: 

• Type: Conv2D 

• Neurons: 64 

• Filter size: (3, 3) 

• Padding: 'same' 

• Activation function: ReLU 

 

d) Second Max Pooling Layer: Reduces the spatial resolution 

of the output. Its characteristics are summarized as follows: 

• Type: MaxPooling2D 

• Pooling window size: (2, 2) 

• Strides: (2, 2) 

 

e) Flatten Layer: Converts the previous 2D output into a 1D 

vector, preparing it to connect to dense layers. 

 

f) First Dense Layer: Hidden layer processing the 1D feature 

vector obtained in the previous layer. Its characteristics are 

summarized as follows: 

• Type: Dense 

• Neurons: 128 

• Activation function: ReLU 

 

g) Output Dense Layer: The output layer has 2 neurons since 

this is a regression problem, and the activation function is 

linear. This means that this layer is expected to produce 

continuous values, which will be used to predict the X and Y 

outputs of the system. 

• Type: Dense 

• Neurons: 2 

• Activation function: Linear 

 

The convolutional layers extract features from images, 

followed by dense layers that perform the final regression. The 

loss function used is Mean Squared Error (MSE), and the metric 

is accuracy, indicating how well the model predicts the system's 

outputs, measuring the percentage of correctness in the 

prediction. In total, the network has 7 layers, including 

convolutional layers, pooling layers, dense layers, and an output 

layer. The number of neurons in each layer is specified above 

for each type of layer. 

 

Additionally, some hyperparameters of the trained model are 

briefly described: 

• Epochs: Training is performed for 10 epochs. An epoch 

is a complete pass through the entire training set. During 

each epoch, the model adjusts its weights based on 

prediction errors and seeks to minimize the loss function. 

• Batch Size: Batches of data with a size of 128 are used 

for training. This means that in each epoch, the training 

set is divided into batches of 128 examples each. The 

model calculates weight updates after processing each 

batch, rather than after each individual example. This is 

beneficial for speeding up training and can help the 

model converge faster. 

 

After training, the historical evolution of MSE and Accuracy 

throughout the training is obtained. The history is visualized in 

Fig. 5, within which the X-axis indicates the number of epochs 

and the Y-axis shows the value of the metrics obtained. 

The history shows how the mean squared error of the model 

reduced in the second epoch. Similarly, the accuracy increased 

considerably in the second epoch. It is evident that from the 

eighth epoch onwards, there is no significant change in either 

the mean squared error or the accuracy of the model; hence, 8 

epochs are considered more than sufficient to achieve similar 

results. The training lasted approximately 18 minutes, requiring 

moderately high computational resources for its execution. 

Using the `evaluate` function of Keras, a mean squared error 

(MSE) of 0.0008395 and an accuracy of 99.747% are obtained 
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when evaluating the model with the dataset reserved for this 

purpose (20%). This implies a comprehensive learning of 

patterns in the images and the XY outputs to the robot. 

 

 
Fig. 5. History of the MSE and the accuracy of model training through the 

Epochs. 

V. RESULTS 

In Fig. 6, the curves generated by each of the control 

algorithms implemented in the six-axis industrial robot can be 

visualized, in addition to the original tracking curve. 

 

 
 

Fig. 6. Tracking curves. a) Original. b) ON/OFF control. c) Fuzzy control. d) 
Control by CNN. Note: Drawn on A4 standard sheets of paper, 297 mm height 

and 210 mm width.  

 

In Fig. 7, 8, and 9, the results of the curve comparison are 

presented, accompanied by overlaid images for visualization. 

 

In Table V, the advantage of the convolutional neural 

network over the fuzzy controller and the ON/OFF controller 

can be observed. The convolutional neural network 

demonstrates a remarkable ability to react more effectively to 

variations in the original trajectory. In Fig. 10, all the overlaid 

curves are visualized, with the curve generated by the 

convolutional neural network being highlighted. 

In Table V, as the values of MSE (Mean Squared Error), 

RMSE (Root Mean Squared Error), and MAE (Mean Absolute 

Error) approach zero, the similarity between the test curve and 

the original curve increases significantly. The values of PSNR, 

SSIM, Jaccard Index, and the Pearson correlation coefficient 

are metrics that indicate how similar the curves are. 

 

 
Fig. 7. Comparison between the curve generated by ON/OFF and the original 

curve. 

 
Fig. 8. Comparison between the curve generated by fuzzy and the original 

curve. 

 

 
Fig. 9. Comparison between the curve generated by CNN and the original curve. 
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TABLE V 

COMPARATIVE ANALYSIS OF CNN, FUZZY CONTROLLER, AND ON/OFF 

CONTROLLER 

  On/OFF Fuzzy Logic  CNN 

MSE 0,0914 0,0861 0,0838 

RMSE 0,3023 0,2934 0,2895 

MAE 4,2899 3,5238 3,4817 

PSNR 10,3909 10,6494 10,7665 

SSIM 0,8895 0,8945 0,8962 

Jaccard Index 0,9076 0,9128 0,9148 

Pearson Coefficient 0,1835 0,2381 0,2811 

 

 
Fig. 10. Comparison between the curves generated by all the control algorithms 

and the original curve. 

 

In Fig. 11 the robot can be seen following the trajectory from 

the beginning to the end of the proposed curve. 

 

 
Fig. 11. Trajectory tracking process at a) The beginning b) In the middle of c) 
The end of the trajectory. 

V. CONCLUSIONS 

This study presents the comparison of three control methods 

for trajectory control in an industrial robot. The comparative 

analysis demonstrates that the implementation of Convolutional 

Neural Networks (CNN) is essential to improve trajectory 

tracking in industrial robots. CNNs allow effective processing 

of visual information, key for high-precision tasks and 

adaptation to dynamic environments. 

The results show that the implementation of Convolutional 

Neural Networks (CNN) as a control in industrial robots offers 

significant advantages, such as an improvement in visual 

perception and trajectory tracking. CNNs demonstrate an 

exceptional ability to process visual complexities, which is 

crucial for tasks that require high precision and adaptability to 

changes in the environment. 

Despite the evident benefits, the implementation of 

convolutional neural networks in industrial robots also presents 

challenges. The need for large and representative datasets, as 

well as the complexity in training and tuning these models, 

poses technical challenges. Additionally, ongoing maintenance 

and updating of the models to adapt to changes in the industrial 

environment are critical aspects to consider in long-term 

implementation. 

REFERENCES 

[1] B. Singh and J. Sharma, “A review on distributed generation 

planning,” Renew. Sustain. Energy Rev., vol. 76, pp. 529–544, 

Sep. 2017, doi: 10.1016/J.RSER.2017.03.034. 

[2] N. Sadati and R. Ghadami, “Adaptive multi-model sliding mode 

control of robotic manipulators using soft computing,” 

Neurocomputing, vol. 71, no. 13–15, pp. 2702–2710, Aug. 2008, 

doi: 10.1016/j.neucom.2007.06.019. 

[3] H. Wang, “Adaptive Control of Robot Manipulators With 

Uncertain Kinematics and Dynamics,” IEEE Trans. Automat. 

Contr., vol. 62, no. 2, pp. 948–954, Feb. 2017, doi: 

10.1109/TAC.2016.2575827. 

[4] A. Ashagrie, A. O. Salau, and T. Weldcherkos, “Modeling and 

control of a 3-DOF articulated robotic manipulator using self-

tuning fuzzy sliding mode controller,” Cogent Eng., vol. 8, no. 

1, Jan. 2021, doi: 10.1080/23311916.2021.1950105. 

[5] R. Kumar, S. Srivastava, and J. R. . Gupta, “Modeling and 

control of one-link robotic manipulator using neural network 

based PID controller,” in 2016 International Conference on 

Advances in Computing, Communications and Informatics 

(ICACCI), Sep. 2016, pp. 243–249, doi: 

10.1109/ICACCI.2016.7732054. 

[6] Z. Cheng and Z. Zhuo, “Adaptive Iterative Learning Trajectory 

Tracking Control of SCARA Robot,” in 2021 IEEE 4th 

Advanced Information Management, Communicates, Electronic 

and Automation Control Conference (IMCEC), Jun. 2021, pp. 

910–914, doi: 10.1109/IMCEC51613.2021.9482360. 

[7] J. Liang, “Research on Industrial Robot Trajectory Tracking 

Control System based on PID Feedforward Algorithm,” in 2022 

IEEE 2nd International Conference on Electronic Technology, 

Communication and Information (ICETCI), May 2022, pp. 338–

342, doi: 10.1109/ICETCI55101.2022.9832315. 

[8] T. Power and D. Berenson, “Learning a Generalizable 

Trajectory Sampling Distribution for Model Predictive 

Control,” IEEE Trans. Robot., pp. 1–18, 2024, doi: 

10.1109/TRO.2024.3370026. 

[9] D. Zhang and B. Wei, “A review on model reference adaptive 



CASTRO et al.: TRAJECTORY CONTROL BASED ON ON/OFF, FUZZY LOGIC AND CONVOLUTIONAL NEURAL NETWORKS                              538 

 

control of robotic manipulators,” Annu. Rev. Control, vol. 43, 

pp. 188–198, 2017, doi: 10.1016/j.arcontrol.2017.02.002. 

[10] L. Sciavicco and B. Siciliano, Modelling and Control of Robot 

Manipulators. London: Springer London, 2000. 

[11] Z. Wang and P. Keogh, “Active Vibration Control for Robotic 

Machining,” Nov. 2017, doi: 10.1115/IMECE2017-71670. 

[12] D. K. Thomsen, R. Søe-Knudsen, O. Balling, and X. Zhang, 

“Vibration control of industrial robot arms by multi-mode time-

varying input shaping,” Mech. Mach. Theory, vol. 155, p. 

104072, Jan. 2021, doi: 

10.1016/j.mechmachtheory.2020.104072. 

[13] V. Nguyen, J. Johnson, and S. Melkote, “Active vibration 

suppression in robotic milling using optimal control,” Int. J. 

Mach. Tools Manuf., vol. 152, p. 103541, May 2020, doi: 

10.1016/j.ijmachtools.2020.103541. 

[14] H. Pan and M. Xin, “Nonlinear robust and optimal control of 

robot manipulators,” Nonlinear Dyn., vol. 76, no. 1, pp. 237–

254, Apr. 2014, doi: 10.1007/s11071-013-1123-1. 

[15] S. Islam and X. P. Liu, “Robust Sliding Mode Control for Robot 

Manipulators,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 

2444–2453, Jun. 2011, doi: 10.1109/TIE.2010.2062472. 

[16] E. Olsson, P. Funk, and N. Xiong, “Fault diagnosis in industry 

using sensor readings and case-based reasoning,” J. Intell. Fuzzy 

Syst., vol. 15, pp. 41–46, 2004. 

[17] J. Hollerbach, W. Khalil, and M. Gautier, “Model 

Identification,” 2016, pp. 113–138. 

[18] J. Yang, D. Wang, B. Fan, D. Dong, and W. Zhou, “Online 

absolute pose compensation and steering control of industrial 

robot based on six degrees of freedom laser measurement,” Opt. 

Eng., vol. 56, no. 3, p. 034111, Mar. 2017, doi: 

10.1117/1.OE.56.3.034111. 

[19] M. Ruderman, Analysis and Compensation of Kinetic Friction 

in Robotic and Mechatronic Control Systems. Boca Raton: CRC 

Press, 2023. 

[20] S. Zhen, Z. Zhao, X. Liu, F. Chen, H. Zhao, and Y.-H. Chen, “A 

Novel Practical Robust Control Inheriting PID for SCARA 

Robot,” IEEE Access, vol. 8, pp. 227409–227419, 2020, doi: 

10.1109/ACCESS.2020.3045789. 

[21] P. Santana and L. Correia, “Swarm cognition on off-road 

autonomous robots,” Swarm Intell., vol. 5, no. 1, pp. 45–72, 

2011, doi: 10.1007/s11721-010-0051-7. 

[22] J. N. Potter, S. A. Neild, and D. J. Wagg, “Generalisation and 

optimisation of semi-active, on–off switching controllers for 

single degree-of-freedom systems,” J. Sound Vib., vol. 329, no. 

13, pp. 2450–2462, Jun. 2010, doi: 10.1016/j.jsv.2009.12.011. 

[23] T. Dewi, Y. Wijanarko, P. Risma, and Y. Oktarina, “Fuzzy 

Logic Controller Design for Leader-Follower Robot 

Navigation,” in 2018 5th International Conference on Electrical 

Engineering, Computer Science and Informatics (EECSI), Oct. 

2018, pp. 298–303, doi: 10.1109/EECSI.2018.8752696. 

[24] A. Pandey, R. K. Sonkar, K. K. Pandey, and D. R. Parhi, “Path 

planning navigation of mobile robot with obstacles avoidance 

using fuzzy logic controller,” in 2014 IEEE 8th International 

Conference on Intelligent Systems and Control (ISCO), Jan. 

2014, pp. 39–41, doi: 10.1109/ISCO.2014.7103914. 

[25] L. Ran, Y. Zhang, Q. Zhang, and T. Yang, “Convolutional 

Neural Network-Based Robot Navigation Using Uncalibrated 

Spherical Images,” Sensors, vol. 17, no. 6, p. 1341, Jun. 2017, 

doi: 10.3390/s17061341. 

[26] S. Kulik and A. Shtanko, “Using convolutional neural networks 

for recognition of objects varied in appearance in computer 

vision for intellectual robots,” Procedia Comput. Sci., vol. 169, 

pp. 164–167, 2020, doi: 10.1016/j.procs.2020.02.129. 

José R. Castro Doctor in Electrical 

Engineering (Applied Engineering) at the 

Ecole de Technologie Superieure in 

Montreal, Canada, in 2016. Currently, he 

is a Research Professor at the Universidad 

Técnica Particular de Loja, and his field of 

research is related to Energy and Robotics. 
 

 

 

 

David P. Rosales was born in Loja, 

Ecuador on June 9, 2000. He holds a 

degree in Electronics and 

Telecommunications from the 

Universidad Técnica Particular de Loja in 

2017, corresponding to the bachelor’s 

degree of studies. Currently, he is a thesis 

student pursuing a master's degree in 

Artificial Intelligence at the Universidad International of the 

Rioja in Spain. 

 

 

 

Carlos Calderon Cordova (Senior 

Member, IEEE) is an Electronics and 

Telecommunications Engineer (UTPL-

Ecuador) and a Master in 

Electromechanics (UNL-Ecuador). His 

areas of expertise are Digital 

Transformation of Industry, Industrial 

Robotics, Automatic Control, and 

Industrial IoT. He is the Director of the 

CONSYS-UTPL Research Group and the Coordinator of the 

LERAP-UTPL Prototyping and Innovation Laboratory. He was 

Chair of the IEEE Robotics and Automation Society (Ecuador, 

2023). He was Chair of IEEE SIGHT (Ecuador, 2020-2021), 

and the Co-founder and the Executive President of the 

technology-based company KRADAC (2010-2021). He is the 

author of 37 Scientific Publications Indexed in Scopus / Web of 

Science. He has also generated 9 International Patent 

Applications. 

 

 

 


