
566 IEEE LATIN AMERICA TRANSACTIONS, VOL. 22, NO. 7, JULY 2024

Simplified SEP Approximations of Coherent Digital
Modulation Schemes over α− κ− µ Fading

Channel
Shreya Tated , Garv Anand , and Dharmendra Sadhwani

Abstract—In this paper, we propose novel, simplified yet
tight approximations of the error probability expressions of
numerous digital modulation schemes over a popular α− κ− µ
fading channel. With the help of a suitable approximation of the
Gaussian Q function and utilization of Taylor’s series expansion,
we facilitate the cumbersome integrals which play a key role
in simplification of the performance evaluation metrics like
symbol error probability (SEP) of various digital modulation
schemes. This facilitates cost effective receiver’s design making
the overall system economically viable. We further illustrate the
accuracy of the proposed SEP expressions with the help of the
relative error. An insight on the truncation error (and its upper
bound) is also highlighted in this paper. We also compute the
relative error in the upper bound of the truncation error to
further justify the accuracy of the proposed integrals. Moreover,
the asymptotic expressions for the integrals are also provided
which gives an idea regarding diversity order of the wireless
communication systems for large signal to noise ratios.
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Index Terms—α-κ-µ fading model, bit error rate, symbol error
probability, modulation, Gaussian Q function, wireless commu-
nication, multipath fading, performance analysis and bounds

I. INTRODUCTION

Wireless communication systems are obstructed by fading
as well as shadowing. The latter is responsible for long
term signal fluctuations whereas the former causes small
scale fading. Hence, it is imperative to take the effect of
fading while computing the performance evaluation metrics in
communication theory. For example, on the basis of bit error
rate (BER), the authors in [1] evaluated the performance of
filtered multi-tone (FMT) modulation scheme under multipath
fading. Furthermore, using the characteristic function (CHF)
method, the authors in [2] computed the BER of various
coherent as well as non-coherent digital modulation techniques
over generalized fading model. To provide a deeper insight into
the error performance analysis, the authors in [3] evaluated the
BER of spacial modulation (SM) under rapidly time varying
multipath fading. Noteworthy, there are various basic math-
ematical models which can represent multipath fading viz.
Rayleigh, Nakagami−q, one-sided Gaussian, Nakagami−m,
Rician [4]. Several attempts have been made to put all these
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basic fading models under one umbrella giving rise to generic
fading distributions like κ − µ, α − µ, η − µ, λ − µ, α − F
[5]–[8] which are extensively supported by the experimental
results in practical communication systems.

Fraidenraich et al. in [9] introduced α−η−µ and α−κ−µ
fading models which apart from including majority of the
classical fading channels as stated above, prove to be sig-
nificant in emerging communication systems. For example,
the authors in [10], analyzed the performance of decode-
and-forward multi-hop wireless communication systems in
terms of the performance evaluation metrics like the amount
of fading and channel capacity over non-linear generalized
α − κ − µ fading model. Kumar et al. in [11] analyzed
the performance of cooperative spectrum sensing (CSS) over
α−η−µ and α−κ−µ fading models. Further, in terms of error
expressions, Kalia et al. in [12] analyzed the performance of
spatial modulation systems over α−κ−µ fading channel. Le
et al. in [13] evaluated the performance of unmanned aeriel
vehicle (UAV)-enabled wireless network over α−κ−µ fading
channel. Moualeu et al. in [14] tried to analyze the average
error rate of digital modulation schemes over α−κ−µ fading
channel but they end up doing analysis for only those modu-
lation schemes which involve the computation of first order of
the Gaussian Q function [15, Eq. (1)] like binary phase shift
keying (BPSK), binary amplitude shift keying (BASK) and
binary frequency shift keying (BFSK). Moreover, it should
also be noted that the analytical expressions derived in [14]
have higher computational complexity due to the presence of
the Fox H-functions. The author in [16] also analyzed the
average error rate over α−κ−µ fading model but for BPSK
only. Moreover, the work of [16] is also expressed in terms
of the Fox H-functions which again dilutes the analytical
tractability of the error performance metrics. Salahat et al. in
[17] also tried to analyze the error performance over α−η−µ
and α− κ−µ fading models but the work is again limited to
those modulation schemes where the computation of only first
order of the Gaussian Q function is required and therefore the
solution is not versatile which could cover all types of digital
modulation schemes. A more general fading channel namely
α − η − κ − µ which includes α − κ − µ and α − η − µ as
its special cases is explored by the authors in [18], [19] but
in [18] the error performance metrics like average error rate
is still expressed in terms of the complex Fox H-functions
which again increases the computational complexity; while in
[19], the average error rate is not expressed in closed form
rather it requires numerical integration methods to compute a
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Fig. 1. Implementation of the Proposed Methodology in Wireless Communication System.

cumbersome integration.
As far as we know, via simplified analytical expressions,

the detailed analysis of error performance of all the numerous
digital modulation schemes known so far over α − κ − µ
fading model is still not reported in the literature. In this paper,
we provide tractable and tight approximations to the symbol
error probability (SEP) of all the well-known digital modula-
tion techniques like BASK, BPSK, BFSK, square quadrature
amplitude modulation (SQAM), BFSK with minimum corre-
lation, rectangular-QAM (RQAM), hexagonal-QAM (HQAM)
cross-QAM (XQAM) and differentially encoded quadrature
phase shift keying (DE-QPSK) over α − κ − µ fading dis-
tribution. Noteworthy, the derived analytical expressions are
valid for the entire range of the fading parameters. Moreover,
an insight on the closed form bounds of the truncation error is
also highlighted in this paper which gives a fair idea regarding
the accuracy of the proposed expressions. In addition, the
asymptotic SEP is also included which highlights the diver-
sity order (and error performance thereof) of communication
systems over α− κ− µ fading channel.

II. SIMPLIFIED SEP APPROXIMATIONS OF COHERENT
DIGITAL MODULATION SCHEMES

A. Channel Model

The probability density function (PDF) of α−κ−µ fading
channel is defined as [14]

fγ(γ) =

∞∑
j=0

λjγ
α
2 (µ+j)−1e

−µ(1+κ)

γ̄α/2
γα/2

, (1)

where α, κ, µ are the fading parameters; λj =
αµµ+2jκj(1 + κ)µ+j

2Γ(µ+ j)j!eκµγ̄
α
2 (µ+j)

, γ̄ is the average SNR, γ is

the instantaneous SNR and Γ(·) is the Gamma function [20].
The α−κ−µ fading model facilitates all the classical fading

channels by just a simple variation of the fading parameters,
as seen in Table I.

B. Simplified Yet Tight SEP Approximations

Proposition 1: We propose simplified approximated inte-
grals which are vital in computing the SEP of numerous digital

TABLE I
CLASSICAL CASES OF THE α-κ-µ FADING CHANNEL [14]

Fading Channels Parameters
κ-µ α = 2, κ = κ, µ = µ
Rayleigh α = 2, κ → 0, µ = 1
Nakagami−m α = 2, κ → 0, µ = m
One-Sided Gaussian α = 2, κ → 0, µ = 1/2
Rician α = 2, κ = K,µ = 1

modulation schemes over α− κ− µ fading channel, as

I1 ≈ A

8p

∑
k1+k2+k3+k4=p

L−1∑
j=0

N−1∑
n=0

(−1)nλj
p!µn(1 + κ)n

n!k1!k2!k3!k4!γ̄
nα
2

× Γ(β)

νβ
, for β > 0, ν > 0 (2a)

I2 ≈ B

64

16∑
l=1

L−1∑
j=0

N−1∑
n=0

(−1)nλjµ
n(1 + κ)nΓ(β)

0.5βn!γ̄
nα
2 δβl

,

for β > 0, δ > 0 (2b)

where β = α
2 (µ+j)+nα

2 , ν =
σ2
∑4

i=1 ξiki
2

, ξi is defined in
Table II; A, B, σ and ζ depend upon the type of the modulation
scheme and the parameter δl is defined as: δl = [ξ1(σ

2 +
ζ2), ξ2(σ

2+ζ2), ξ3(σ
2+ζ2), ξ4(σ

2+ζ2), ξ1σ
2+ξ2ζ

2, ξ1σ
2+

ξ3ζ
2, ξ1σ

2+ξ4ζ
2, ξ2σ

2+ξ1ζ
2, ξ2σ

2+ξ3ζ
2, ξ2σ

2+ξ4ζ
2, ξ3σ

2+
ξ1ζ

2, ξ3σ
2+ξ2ζ

2, ξ3σ
2+ξ4ζ

2, ξ4σ
2+ξ1ζ

2, ξ4σ
2+ξ2ζ

2, ξ4σ
2+

ξ3ζ
2].

It should be noted that since all the parameters α, µ, j, n, ξ, k
are positive, the conditions β, ν, δ > 0 always hold true
yielding a versatile solution (2).

Proof : The integrals which are vital in the SEP computation
of digital modulation schemes over α− κ− µ fading channel
are defined as [4]:

I1 = A

∫ ∞

0

Qp(σ
√
γ)× fγ(γ)dγ (3a)

and

I2 = B

∫ ∞

0

Q(σ
√
γ)Q(ζ

√
γ)× fγ(γ)dγ, (3b)
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TABLE II
PARAMETER RELATED TO GAUSSIAN Q FUNCTIONS’S

APPROXIMATION [21]

i ξi
1 2.627414291213963e+1
2 3.239828844061399e+0
3 1.446462700182916e+0
4 1.039566130751374e+0

where p is the integer order of the Gaussian Q function, Q(·).
Clearly, Eq. (3a) is cumbersome to compute. Hence, we utilize
a simple yet accurate alternative form for the Gaussian Q
function with four sub-intervals, defined as [21]

Qp(σ
√
γ) ≈ 1

8p

{
4∑

l=1

exp

(
−ξlσ

2γ

2

)}p

. (4)

Using multinomial theorem, we simplify Eq.(4) as

Qp(σ
√
γ) ≈ 1

8p

∑
k1+k2+k3+k4=p

p!

k1!k2!k3!k4!

× exp

(
−
σ2γ

∑4
l=1 ξlkl
2

)
. (5)

It should be noted that substituting Eqs.(1) and (5) into Eq.
(3a) will lead to a cumbersome integral. Hence, to facilitate
Eq. (3a), we use Taylor’s series expansion of the exponential
term present in Eq. (1), yielding:

exp

(
−µ(1 + κ)

γ̄α/2
γα/2

)
=

∞∑
n=0

(−1)n

n!

(
µ(1 + κ)

γ̄α/2
γα/2

)n

.

(6)
Now using Eq. (6) and substituting Eqs. (5) and (1) into

Eq. (3a), we have

I1 ≈ A

8p

∑
k1+k2+k3+k4=p

∞∑
j=0

∞∑
n=0

(−1)nλj
p!µn(1 + κ)n

n!k1!k2!k3!k4!γ̄
nα
2

×
∫ ∞

0

exp

(
−
σ2
2γ
∑4

l=1 ξlkl
2

)
γ

nα
2 +α

2 (µ+j)−1dγ (7)

Eq. (7) can be easily solved using the identity [20,
(3.381/4)]:∫ ∞

0

γβ−1e−νγdγ =
Γ(β)

νβ
, β > 0, ν > 0, (8)

which after truncation to L and N terms yields the proposed
approximated SEP integral Eq. (2a). We can similarly solve
Eq. (3b) yielding Eq. (2b). This completes the proof. Hence,
using Eq. (2), we can compute the SEP of numerous digital
modulation schemes as exhaustively presented in Table III.

As far as we know, Eq. (2) is new and involves simple
algebraic functions unlike [14] where the SEP is expressed as
an infinite series of the Fox H-functions whose computational
complexity is relatively high. On the other hand, besides being
tractable, Eq. (2) easily converges to finite number of terms
N and also requires fewer number of terms L to accurately

compute the SEP. Apart from this, we have proposed the SEP
for all the well-known coherent digital modulation schemes
unlike [14] where the SEP of only BASK, BPSK and BFSK
is proposed; whereas the proposed work includes the compu-
tation of well-known QAM schemes as well. This proves the
versatility of the proposed solution.

C. Bounds for the Truncation Error of (2)

We get the proposed SEP integrals of Eq. (2) after truncated
to finite N and L i.e. they must converge to ensure acceptable
truncation. To do so, we provide the bounds for these integrals.
We explicitly derive the truncation error for Eq. (2a) whereas
the same can be similarly computed for Eq. (2b).

The truncation of Eq. (2a) after N − 1 terms results in the
following truncation error:

∈I1≈
A

8p

∑
k1+k2+k3+k4=p

∞∑
j=0

∞∑
n=N

(−1)nλj

× p!µn(1 + κ)n

n!k1!k2!k3!k4!γ̄
nα
2

Γ(β)

νβ
. (9)

Now on changing the summation index to t = n − N and
using the identities (t + N)! = N !(N + 1)t, Eq. (9) can be
written as:

∈I1≈ A
8p

(−1)Nα(µ(1+κ))µ+Ne−κµ

2N !γ̄

α(µ+N)
2

∑
k1+k2+k3+k4=p

p!
k1!k2!k3!k4!

×
∞∑
j=0

µ2jκj(1 + κ)jΓ
(

α(µ+j+N)
2

)
Γ(µ+ j)j!ν

α(µ+j+N)
2

∞∑
t=0

(
α
2 (µ+ j +N)

)
αt
2

(N + 1)t

×

(
−µ(1 + κ)

(γ̄ν)
α
2

)t

, (10)

where (x)y =
Γ(x+ y)

Γ(x)
is the Pochhammer symbol [20,

Page No. xliii]. Now, using the above definition of the
Pochhammer symbol, the identity (1)t = t! and the definition

2F1(a1, a2; b1; z) =
∑∞

t=0

(a1)t(a2)t
(b1)t

zt

t!
[20, Eq. (9.14.1)],

Eq. (10) can be written as:

∈I1≈
A

8p
(−1)Nα (µ(1 + κ))

µ+N
e−κµ

2N !γ̄
α(µ+N)

2

∑
k1+k2+k3+k4=p

× p!

k1!k2!k3!k4!

∞∑
j=0

µ2jκj(1+κ)jΓ

(
α(µ+j+N)

2

)
Γ(µ+j)j!ν

α(µ+j+N)
2

×2 F1

(
1, α(µ+j+N)

2 ;N + 1;

(
−µ(1 + κ)

(γ̄ν)
α
2

))
, (11)

where 2F1(·) is the generalized hypergeometric function
[20, Eq. (9.14.1)].

Finally, the summation with index j when truncated to L−1
terms gives the upper bound in the truncation error as:
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TABLE III
PROPOSED SEP OF VARIOUS COHERENT DIGITAL MODULATION SCHEMES OVER α-κ-µ FADING CHANNEL

Coherent Modulation Schemes1 Proposed Simplified SEP (Ps)
BPSK [4] Ps ≈ I1|p=1

BFSK [4] Ps ≈ I1|p=1

BFSK with minimum correlation [4] Ps ≈ I1|p=1

M -SQAM [4] Ps ≈ I1|p=1 − I2|σ=ζ

M ×N -RQAM [4] Ps ≈ I1|p=1 − I2|σ=ζ

M ×N -XQAM [22] Ps ≈ I1|p=1 − I2|σ=ζ

M -HQAM [23] Ps ≈ I1|p=1 + I2|
σ=ζ=

√
2σ
3

− 3I2|
ζ=

√
σ
3

DE-QPSK [24] Ps ≈ 4(I1|p=1 − 2I1|p=2 + 2I1|p=3 − 2I1|p=4)

1 SQAM: A = 4(1 − 1√
M

), B = 4(1 − 1√
M

)2, σ =
√

3
M−1 ; RQAM:

A = (4− 2
M

− 2
N
), B = (4− 4

M
− 4

N
− 8

M×N
), σ =

√
96

31M×N−32
;

σ =
√

24
7M−4

; DE-QPSK: A = 1, σ = 1; BPSK: A = 1, σ =
√
2; BFSK:

A = (4 − 2
M − 2

N ), B = 4(1 − 1
M )(1 − 1

N ), σ =
√

12
5M×N−4 ; XQAM:

HQAM: A = 2(3− 4M
−1
2 +M−1), B = 4(1−M

−1
2 )2,

A = 1, σ = 1; BFSK with minimum correlation: A = 1, σ =
√
1.43

∈I1<
A

8p
(−1)Nα (µ(1 + κ))

µ+N
e−κµ

2N !γ̄
α(µ+N)

2

∑
k1+k2+k3+k4=p

× p!

k1!k2!k3!k4!

µ2LκL(1 + κ)LΓ
(

α(µ+L+N)
2

)
Γ(µ+ L)L!ν

α(µ+L+N)
2

×2 F1

(
1, α(µ+L+N)

2 ;N + 1;

(
−µ(1 + κ)

(γ̄ν)
α
2

))
. (12)

Similarly, the closed-form upper bound for the truncation
error of Eq. (2b) can be given as:

∈I2<
B
64

(−1)Nα(µ(1+κ))µ+Ne−κµ

2N !γ̄

α(µ+N)
2

16∑
l=1

µ2LκL(1+κ)LΓ

(
α(µ+L+N)

2

)
Γ(µ+L)L!(2δl)

α(µ+L+N)
2

× 2F1

(
1, α(µ+L+N)

2 ;N + 1;

(
−µ(1 + κ)

(2̄γδl)
α
2

))
.

(13)

D. Asymptotic SEP

In order to get further insights on the systems’ performance,
asymptotic SEP is computed i.e. when γ̄ → ∞. It can be
easily verified that in the high SNR regime, j = 0 term of (1)
dominates. Apart from this, Eq. (6) is simplified to:

exp

(
−µ(1 + κ)

γ̄α/2
γα/2

)
≈ 1. (14)

Now carrying out the similar process as in subsection ′B′, the
asymptotic integrals can be written as:

IAsymp
1 ≈ A

8p

∑
k1+k2+k3+k4=p

λ0
p!

k1!k2!k3!k4!
× Γ(β)

νβ
, (15a)

IAsymp
2 ≈ B

64

16∑
l=1

λ0Γ(β)

2βδβ
, (15b)

where λ0 =
αµµ(1 + κ)µ

2Γ(µ)eκµγ̄
αµ
2

and β =
αµ

2
.

Now, with the help of Eq. (15) and Table III, the asymptotic
SEP of various digital modulation techniques can be easily

computed. Noteworthy, since IAsymp
1 and IAsymp

2 are propor-
tional to γ̄−αµ

2 , the diversity gain only depends upon α and
µ.

III. SIMULATION RESULTS AND DISCUSSIONS

A. Significance of N and L in determining the accuracy of
(2)

The accuracy of (2a) can be seen via Figs. 2-4 where we
have computed the relative error (RE) in (2a) as:
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Fig. 2. Accuracy of Eq. (2a) for BPSK against N at various values
of average SNRs with α = 1, κ = 1, µ = 1.
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Fig. 3. Accuracy analysis of Eq. (2a) for BPSK against different
values of L with α = 1, κ = 1, µ = 1.



570 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 7, JULY 2024

2 4 6 8 10 12 14 16 18 20

L

10
-40

10
-20

10
0

R
E

 o
f 

U
p

p
e

r 
B

o
u

n
d

 (
1

2
)

Fig. 4. Accuracy of Eq. (2a) for BPSK via computing the RE in the
upper bound of the truncation error against different L with α =
1, κ = 1, µ = 1.

RE =
|Proposed Eq. (2a) − Exact Eq. (3a)|

Exact Eq. (3a)
, (16)

whereas the RE in the upper bound of the truncation error of

Eq. (12) can be calculated as
∈I1 Eq.(12)

Exact Eq. (3a)
. As an instance,

we have taken BPSK modulation for one set of the fading
parameters: α = 1, κ = 1, µ = 1.

Fig. 2 illustrates that for very noisy environment (γ̄ = 0
dB), the RE saturates to 10−2 for N ≥ 15. On the other hand,
when γ̄ increases, the same level of accuracy is achieved for
lesser number of terms i.e. for N = 2. However, it should be
noted that increasing the number of terms N does not increase
the computational complexity as the proposed expressions are
expressed in terms of simple algebraic functions which can
be computed at hand. It should be noted that only L = 2 is
sufficient for the RE to reach to as low as 10−2 i.e. 1%.

In Fig. 3, the RE is calculated for different values of L and it
can be seen that after L = 2, the RE becomes as low as 10−3.
It should be noted that in case of a very noisy environment,
N = 15 is needed to make a constant, low value of the RE;
whereas the scenario where the effect of noise is less, N = 6
is sufficient to achieve the same level of accuracy.

In Fig. 4, the RE in the upper bound of the truncation error
of Eq. (12) is computed, against various values of L. It can be
seen that for L = 2 we get the RE as low as 10−5 (for γ̄ = 0
dB) which further decreases as γ̄ and L increases.

It should be noted that a similar, thorough analysis of the
RE was carried out for various digital modulation schemes
against various combinations of the fading parameters. It
was concluded that for L = 9 and N = 145 we get the
desired accuracy for the SEP of all the digital modulation
schemes as illustrated in Table III. Although it seems that a
large value of N increases the computational complexity but
since the proposed approximation involves only elementary
functions, the computational time in the available software
packages is negligible; which further gives an idea regarding
the tractability of the proposed solution.

B. SEP Plots

In this section, the accuracy of Eq. (2) is shown by plotting
the SEP vs average SNR using MATLAB software.
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Fig. 5. Accuracy of Eq. (2a) for BPSK against numerous values of
α, κ and µ.

To assess the impact of the fading on the effectiveness of
the suggested system and channel model, in Fig. 5, we have
included the SEP of BPSK for various values of α, κ and
µ. It can be clearly seen that an increase in the value of
one parameter keeping two parameters constant improves the
system’s error performance. It is noticeable that the approxi-
mated SEP curves are in remarkable agreement with the exact
SEP plots for the entire range of the average SNRs, and for
various values of the fading parameters. The accuracy of the
proposed SEP is further verified with the help of simulated
results. The asymptotic SEP also shows that as the value
of any one fading parameter (say α) increases, the slope of
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different combinations of α, κ, µ.
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Fig. 8. Utility of Eq. (2) in computing the SEP of 16-SQAM and
16-HQAM for different combinations of α, κ, µ.

the proposed SEP becomes steeper which clearly indicates
performance improvement of BPSK.

Fig. 6 further shows the SEP plots of BPSK for some of the
classical distributions which are derived from α-κ-µ fading
model, which in turn shows the versatility of the proposed
solution. Here also, we can see that as the value of µ increases
keeping α = 2, κ = 0 constant, the error performance of
BPSK is enhanced. Clearly, the exact, proposed and simulated
curves are in excellent agreement highlighting the accuracy
of the proposed analysis. Noteworthy, the asymptotic SEP
indicates the performance improvement (with the help of steep

slope) as the value of µ increases.
In Fig. 7, the usefulness of the proposed solution is further

shown by computing the SEP of 32-RQAM and 32-XQAM
against different combinations of α and µ keeping the value
of κ = 0 constant. We can see that as the values of both
α and µ increases, the error performance improves. It can
also be seen that the results obtained from the analytical
expressions are very tight for the entire average SNR range,
and for all the considered values of the fading parameters. We
can further verify that for both the combinations of the fading
parameters, 32-XQAM yields power gain of around 1.139 dB
over 32-RQAM [25]. The asymptotic SEP also matches with
the proposed SEP curves for higher average SNR regime.

Similarly, via Fig. 8, the SEP plots of 16-HQAM and 16-
SQAM are shown which closely match with the exact curves.
We have shown the results for fixed values of α = µ = 1 and
variable κ. Clearly, as we increase the value of κ, we get the
reduced SEP (if we see at constant average SNR), indicating
performance improvement. Further, from the proposed SEP
curves, it can also be seen that 16-HQAM provides a power
gain of around 0.45 dB [23] over 16-SQAM.

Noteworthy, all the analytical findings as shown in Figs. 5-8
have been verified with the help of Monte-Carlo simulations.
For better understanding, we hereby explain the channel imple-
mentation through Monte-Carlo simulations. The simulation
process can be broken down into the following steps:

• Initialization: The number of symbols to be simulated
is set to 10,000,000. This large number is chosen to
ensure that the results are statistically reliable. The SEP
for different SNR values is initialized to zero.

• SNR Loop: For each SNR value (in dB), the following
steps are performed:

– Channel Modeling: The α − κ − µ fading model
is simulated. The channel coefficient is generated
according to the α − κ − µ model. The channel
coefficient represents the effect of the channel on the
transmitted signal, including path loss, fading, and
phase shift. The channel coefficient is normalized
to have a mean power of 1. This ensures that the
channel does not introduce any additional gain or
loss to the signal power.

– Signal Generation: A random sequence of symbols
is generated. These symbols are mapped to constel-
lation points (as per the case i.e. BFSK, BPSK, and
different QAM schemes). The constellation points
represent the possible values that the transmitted
signal can take.

– Noise Generation: Noise is added to the signal. The
noise power is calculated based on the average power
of the signal and the current SNR value. The noise
is complex Gaussian with zero mean and a variance
equal to half the noise power (since it’s complex
noise). This represents the effect of thermal noise in
the receiver.

– Signal Reception: The received signal is the sum
of the faded signal (channel coefficient times the
signal) and the noise. This represents the signal that
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the receiver observes.
– Detection: For each received symbol, the closest

constellation point is found, and the corresponding
symbol is detected. This is done by minimizing the
Euclidean distance between the received signal and
the possible transmitted signals. This represents the
receiver’s attempt to estimate the transmitted symbol
from the received signal.

– Error Calculation: The SEP is calculated as the
ratio of the number of incorrectly detected symbols
to the total number of symbols. This gives a measure
of the system’s performance.

• Results: The SEP for different SNR values is returned.
This provides an estimate of the system’s performance
over α − κ − µ fading channels at different average
SNR values. The randomness in the simulation comes
from the random generation of the channel coefficients
and the noise. By averaging the results over a large
number of symbols, the law of large numbers ensures
that the simulation results are close to the true theoretical
performance.

IV. CONCLUSION AND FUTURE WORK

Via this paper, a thorough analytical framework has been
described for the simplified SEP approximations of numerous
coherent digital modulation techniques over α-κ-µ fading
channel. With the help of graphical illustrations, we have
shown that the proposed analytical expressions converge for
a finite number of simple algebraic terms giving results with
minimum computational complexity. Besides being tractable,
the derived expressions are tight for the entire range of the
average SNR. In addition, the proposed solution yields results
for the entire range of the fading parameters which are further
validated using computer simulations.

As a future work, the approach using Taylor series expan-
sion can be used to simplify the error performance metrics
of several wireless communication systems over intractable
yet significant fading distributions like multi-cluster fluctuating
two-ray fading model [26] which includes several important
fading distributions like Nakagami-m, fluctuating two-ray fad-
ing model, Rician shadowed, κ − µ shadowed, two-wave, as
its special cases.
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