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A Technique to Generate Depth Maps from Real
Scenes without Manual Calibration

Carlos W. Carvalho , Ricardo S. Casado , Marcio M. Fernandes , and Emerson C. Pedrino

Abstract—This paper proposes a technique for the generation
of a disparity map from a real scene, captured by a stereo vision
system. The underlying motivation for this work is to develop
a system not requiring the use of a calibration pattern, which
usually involves manual intervention. This is a well-desired
feature to allow its use in real-life environments, e.g., helping
people with severe visual impairment or blindness to navigate
through open spaces. Experimental results showed that the
developed technique has a level of effectiveness similar to the
other two well-established techniques found in the literature,
making it a promising alternative to be employed in situations
where the calibration step becomes a burden to the user.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8653

Index Terms—stereo vision; disparity map; calibration; visual
impairment; blindness.

I. INTRODUCTION

Among various types of existing disabilities, one of the
most common is visual impairment, defined as partial or

total loss of sight. According to the World Health Organization
(WHO), several million of people worldwide suffer from some
form of severe visual impairment or blindness.

Advances in technology have played a significant role in
the task of making daily life easier for people with physical
disabilities. In particular, computer vision is a research area
showing concrete results, with various works seeking to help
in tasks such as pattern recognition and scene mapping, among
others.

A subject of great research interest for scene mapping is the
analysis of disparity between elements in a scene. Disparity
can be defined as a measure quantifying how far from the
observer is an element in a given scene. Early studies about
it were able to quantify the disparity between elements in a
scene using some specific objects added to it. A well-known
method was proposed by Zhang in [1] and [2], which was
characterized by the use of a known object (a chessboard) to
help the calculation of the disparity between elements in the
scene. Since then, this has been an area of intense research
interest, including some recent developments such as [3], [4],
[5], [6] and [7].

Considering that various research efforts aim to reproduce
some aspects of the human vision, including scene mapping,
it is natural to think that a method able to map the disparity
between elements in a scene can be used to develop a system to
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help visually impaired people in daily tasks, such as mapping
distances between someone and surrounding objects [8].

In this context, the main objective of the work presented
in this paper was to develop a method to generate disparity
maps from real scenes, with minimal human intervention, a
good degree of effectiveness, and relatively low computational
complexity. The technique was developed through analysis,
combination, and adjustments among a set of existing algo-
rithms [9], [10]. The underlying motivation for this work is to
use the technique as part of embedded systems employed by
aid devices for spatial navigation, targeting people with severe
visual impairment or even total blindness.

II. DEVELOPMENT OF THE PROPOSED TECHNIQUE

Many existing stereo vision systems use a calibration pattern
to perform the calibration process, based on the technique
presented in [2]. Considering that one of the objectives of this
work is to be employed in aid devices for visually impaired
people, the need of a manually performed calibration step
should be avoided.

For the generation of a disparity map without human
intervention, the analysis of the geometry of the scene can
be done by searching the elements present in it, seeking to
obtain a fundamental matrix, leading to the calculation of the
disparity between elements.

However, to make possible the calculation of such a matrix,
it is necessary to know at least a certain number of corre-
sponding pairs of points in the images that were captured by
the stereo vision system [11]. To tackle this issue, the set of
adopted algorithms searches for initial pairs of corresponding
points in a scene and calculates the fundamental matrix for
them, followed by rectification. These steps can replace the
conventional calibration process since such a matrix is shown
to be sufficient for the rectification process, which is followed
by the disparity map generation.

During the development of this project, the use of a stereo-
vision system was necessary to test the algorithms. So, the
Minoru3D webcam, from Promotion and Display Technology,
was adopted, as it is capable of capturing images in three
dimensions by using two distinct lenses. All algorithms were
tested using MatLab tools (R2014b, 64 bits), with support of
its specific toolbox for stereo vision (The MathWorks, Inc.).

The next subsections show the algorithmic steps that con-
stitute the proposed technique, which are summarized by the
block diagram shown in Fig. 1.
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Fig. 1. Technique overview.

A. Image Acquisition and Pre-processing

The whole process starts by capturing a pair of images using
the webcam, followed by a pre-processing step. Although
issues such as brightness and image quality may influence
the effectiveness of the method, due to the type of camera
used, these issues rarely showed to be a serious problem in
our experiments.

B. Detection of Initial Corresponding Points

Once the pre-processed images are obtained, the next step
consists of obtaining the initial pairs of corresponding points
from the scene elements. In this step, it is essential to maxi-
mize the number of obtained points, to increase the precision
of the matrix generated by them, as the goal of the fundamental
matrix is to approximate the relationship between points from
a pair of images by a curve.

To estimate the fundamental matrix, random corresponding
points need to be chosen from the images being processed.
However, getting random points from an image and finding the
match between them in another image can be highly complex.
Thus, one way to find initial corresponding points is to focus
on the corners of the elements from both images.

Many algorithms for the detection of corners can be found
in the literature, so we have analyzed some of them to select
the one that would produce the largest number of corners that
could be matched. The algorithms considered in this work
were BRISK [12], SURF [13], Harris [14], Minimum Eigeen
Value (Min8Val) [15], FAST [16], [17] and MSER [18].

Each of those algorithms for corner detection was applied
to the scenes, to find the number of points obtained. Then, a
correspondence metric was applied to obtain the number of
pairs of corresponding points from those corners that were
found. The adopted algorithm to compute the correspondence
metric in this analysis was the Sum of Squared Differences
[19]. This is a metric that, starting from the image luminosity
channel, uses a finite window around an analyzed point to
define its disparity.

So, let R(u, v) be a pixel of a reference window of length
len and width wid, and S(l, w) be a pixel of the search window.
The difference of all the points of the defined window is
calculated, and the square of all these differences is added,
as shown by Equation 1:

Rlen∑
v=0

Rwid∑
u=0

[R(u, v)− S(l + u,w + v)]2 (1)

Once obtained the number of corners that can generate pairs,
a match rate measure was developed, to analyse the ability

that each algorithm for corner detection has to produce corre-
sponding points. This rate is represented by Tc, as shown in
Equation 2, where C is the number of obtained corresponding
points, and Il, Ir are the number of corners in the left and
right images, respectively:

Tc =
C[

li+lr
2

] .100 (2)

To select the most suitable algorithm, the match rate,
which represents the percentage of corners that create cor-
respondences, was calculated for all the algorithms for corner
detection that were considered in this work, which was applied
to 10 scenes S. The obtained results shown in Table I indicate
that the SURF algorithm produces the largest match rate of
corresponding points concerning the others. Thus, SURF has
been adopted as the algorithm to find corners from stereo
images in the developed technique described in this paper.

TABLE I
FINDING CORNERS: MATCH RATE FOR EACH ALGORITHM

(%)

S BRISK SURF Harris Min8Val FAST MSER
1 4.5 46.4 19.9 12.2 14.3 20.2
2 7.0 53.6 16.5 8.9 13.8 29.4
3 4 51.6 10.1 3.3 0 9.1
4 4.1 41.3 7.1 9.6 8.7 15.4
5 6.5 53 14 6 13.2 25.1
6 0.6 13 5.3 2.2 7.9 4.2
7 5.6 51.3 18.8 9.6 11.8 30.7
8 0 18.8 4.5 13.6 0 2.7
9 0 22.4 3.8 5.9 0.7 2
10 3.2 71.5 17.4 27.5 7.9 6.1

C. Fundamental Matrix Calculation

Once the initial corresponding points using SURF are
obtained, the next step is to calculate the fundamental matrix.
As said before, the fundamental matrix is used as a linear
estimation between coordinates of corresponding points in a
pair of stereo images to map a point from a given image
to its corresponding point in another image. Usually, the
fundamental matrix is estimated using a linear approximation
algorithm applied to a random set of elements chosen from
the set of corresponding points. Then, the obtained matrix is
submitted to a metric, which represents its efficiency rate for
the intended use. Once the matrix efficiency is attested, it can
be used as a possible fundamental matrix.

Different metrics to express how good a fundamental matrix
is can be found in the scientific literature. Experimental
analysis was performed on some of them to find the metric
which can best approximate the number of corresponding
points, while still maintaining the highest number of correct
correspondences. The algorithms considered for this analysis
were Least Median of Squares (LMedS) [20], Random Sample
Consensus (RANSAC) [21], M-estimator Sample Consensus
(MSAC) [22], and Least Trimmed of Squares (LTS) [20].

Experiments were carried out to obtain metrics for the fun-
damental matrices based on the corresponding points obtained
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using the SURF algorithm. The real correspondence rate Ts

for each scene was calculated based on the expression, shown
by the Equation 3, where CSURF is the original number of
corresponding points obtained by the SURF algorithm, and
CF is the number of real corresponding points obtained after
the use of a fundamental matrix metric:

Ts =
CF

CSURF
.100 (3)

As a result of this analysis, the data in Table II show the
real correspondence rates obtained for each metric. It should
be noticed that scene 8 was omitted from the results due to
the fact this scene did not generate any correspondences able
to be mapped by the fundamental matrix.

TABLE II
REAL CORRESPONDENCE RATE FOR SELECTED METRICS

(%)

SCENE LMedS RANSAC MSAC LTS
1 50.3 25.1 27.4 49.7
2 50.2 28.4 24.4 49.8
3 50 54.2 54.2 50
4 50.3 29.1 28.5 49.6
5 50.9 20.7 20.4 49.8
6 50 15.3 19.2 50
7 50.1 24 26.6 49.8
8 0 0 0 0
9 50.6 29.6 23.5 49.4

10 50.4 27.7 23.5 49.6

Based on this analysis, it can be concluded that the most
suitable metric for the proposed technique is the Least Median
of Squares (LMedS). The analysis also showed that the MSAC
metric can be effective using only 8 correspondences (against
16 for the others). So, when the number of corresponding
points used to estimate a fundamental matrix is less than
sixteen, the MSAC metric can be used instead of the LMedS
metric.

Once the fundamental matrix is estimated, any point from
an image can be mapped to a point in the other image.
Using this information, it is possible to execute a process of
rectification for the obtained pair of images, by determining
the coordinates of the points that need to stay at the same
height (y coordinate) in both images. By doing so, it is no
longer necessary to perform a manual calibration step to
proceed with the mapping of the scene elements.

D. Rectification Step

Once the fundamental matrix was obtained from the ge-
ometry of the analyzed scene, the next step consisted of the
rectification of the obtained pair of images. The goal of the
rectification process is to guarantee that each pair of corre-
sponding points has the same height (i.e., the y coordinate) in
both images.

Usually, a rectification process uses the fundamental matrix
to compute two new matrices (one for each image), which

correspond to the transformations that the planes of each
image should undergo. Then, such matrices are converted
employing projective transformations that are applied to the
pair of images, and so achieving the required rectification
[23]. The applied rectification adopted by our method does not
use parameters related to calibration. Instead, the fundamental
matrix originally obtained from the analyzed scene produces
a flat rectification of the original images [11].

Considering that the fundamental matrix is capable of
mapping any pair of corresponding points from the images,
it is possible to estimate the dislocation degree that should
be applied to each plane of the captured image to ensure that
corresponding points possess the same height when the images
are projected on the common plane created by the rectification
process.

To summarize, the transformations that each image plane
should undergo are obtained using the following steps :

• The left camera of the system is rotated (using the
fundamental matrix) so that the epipoles of its image go
to infinity along the x axis;

• The same previous rotation is applied to the right camera
to recover the scene geometry;

• The right camera is rotated, this time based on the rotation
matrix;

• Finally, the scale of both images is adjusted; each ho-
mography between the original positions and the new
positions of each camera is a projective transformation.

Since planar rectification is a slightly easier process than
cylindrical rectification, this is the rectification type adopted
by this work. As an example, Fig. 2 shows the result of the
rectification process, applied to a pair of images obtained by
the stereo vision system.

Fig. 2. Pair of stereo images after the flat rectification process, with
yellow lines representing correspondences between corners.

Finally, as the fundamental matrix is highly dependent on
the scene geometry, it may be possible in some cases that the
projective transformations calculated during rectification are
so distinct that they are capable of greatly distorting the plane
of the pair of images. Usually, this condition occurs when
epipolar lines cross themselves in one of the image planes –
more specifically when the image plane intersects the baseline
of the scene geometry. This potential issue is tackled in Section
III-B.

E. Calculation of Disparity between Points

Once the rectified pair of images is obtained, the next step
consists in calculating the disparity between them. In this
work, we have adopted a semi-global method to analyze the
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correspondence between points, which works like an adapted
local method.

A local method is generally based on a measurement of
contrast obtained with the use of the Sobel filter [24], followed
by the application of the Sum of Absolute Differences. By
doing so, it is possible to compare blocks of points (pixels)
present in the images, obtaining a disparity measure between
them. The Sum of Absolute Differences is similar to the
method of the Sum of Squared Differences [19].

So, let R(u, v) be a pixel of a reference window, which
possesses length len and width wid. Also, let S(l, w) be a
pixel of the search window. The Sum of Absolute Differences
is represented by Equation 4:

Rlen∑
v=0

Rwid∑
u=0

|R(u, v)− S(l + u,w + v)| (4)

The difference between the local and the semi-global meth-
ods is that, once the disparity for all the windows is calculated,
the local method ends. On the other hand, in the semi-global
method, the disparity for each window is adjusted to force
similarity between the neighboring windows. By doing so, the
semi-global method guarantees the consistency of the disparity
calculated for the whole map [25].

F. Post-processing

Following the disparity map generation, a step of post-
processing is executed to improve the quality of results. A
detailed analysis of the disparity map initially obtained showed
that the process of rectification previously applied produced
areas not belonging to the original scene. This occurs because
the process of rectification distorts the planes of the original
images, creating an area of black pixels around each rectified
image (as can be seen in Fig. 2), which constitutes data of no
interest.

In order to fix this issue and achieve a representation as
close as possible to the original scene, it is possible to apply
the original transformations used in the rectification, creating
a new transformation, and applying it to the disparity map.

So, starting from the projective transformations produced in
the rectification step, a new transformation is calculated in two
steps: first, the arithmetic mean of the two original projective
transformations (used in the rectification step) is calculated.
Then, this result is inverted, obtaining a new transformation,
which is applied to the original disparity map.

Mathematically, being ML and MR the correspondence
matrices of the projective transformations from the right and
left images, respectively, the new transformation MC is given
by Equation 5:

Mc =

(
ME +MD

2

)−1

(5)

After applying the new projective transformation to the
disparity map, the new map has a closer perspective to the
original images. However, when the new transformation is
applied, an unknown grayscale block appears on one side of
the map. Since this block is not a result of the calculation
of the disparity, it should be removed. Therefore, the vertical

blocks containing only unknown shades of grey are removed,
generating the final disparity map calculated for the original
scene image. An example of the output obtained by the
technique is shown in Figs. 3a and 3b.

(a) (b)

Fig. 3. An original scene and the corresponding disparity map,
obtained by the technique. Original scene (a) Disparity map (b).

III. TECHNIQUE ADJUSTMENTS

Once the development of the first version of the system to
generate disparity maps from a given scene (Section II) was
finished, some initial experimental results could be obtained.
Thus, the effectiveness of the process could be questioned,
and possible adjustments applied to the system, seeking to
guarantee the required performance for its intended use, as
presented in the next subsections.

A. Interference of External Agents in the Map

Since the developed method is intended to be used in
real (not controlled) environments, it is not uncommon for
external agents to create inconsistencies in the obtained dis-
parity map. To better understand these inconsistencies, we
sought to understand how each external agent can potentially
affect the disparity map and tried to find alternatives to avoid
these situations. By doing so, it was possible to highlight the
following issues:

• Excess or lack of luminosity in the scene can affect the
generation of a disparity map, as it becomes harder to
find corresponding corners in a pair of images.

• Noise pixels in the original image can be mapped as
a corner by the SURF algorithm, possibly affecting the
precision of the calculation of corresponding points.

• Pattern repetitions in a scene may result in areas with
high disparity being mapped into areas with low disparity,
and vice-versa.

• Scene elements overlapped by other elements during
image capturing may not be mapped in the disparity map,
since it may happen that they only appear in one image
of the stereo pair.

• Image reflections or transparencies may induce the gen-
eration of disparity maps showing objects that actually
do not exist in the original scene.

Problems due to luminosity, pattern repetitions, and re-
flections/transparencies can be addressed by generating the
disparity map more than once, or even recapturing the scene
image, forcing the corners to be recalculated.
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As for problems due to elements overlapping, it can be
argued that the mapping of those in the foreground is enough
to meet the system requirements. Finally, applying digital
noise filters during the pre-processing step can significantly
reduce the observed some adverse effects.

B. Possible Problems to Generate the Disparity Map
During the development process, we came across two situ-

ations where the disparity map could not be generated:
1) When the number of corresponding points is less than

eight, it is impossible to generate the fundamental ma-
trix, even using the MSAC metric.

2) When epipolar lines cross each other across the image
planes, it implies a high distortion of the respective orig-
inal image. This way, it is impossible to guarantee that
corresponding points will have the same y coordinate
after rectification.

In general, when one of these problems occurs, it is ini-
tially infeasible to generate the disparity map. However, some
factors can be observed in those cases:

In the first one, the low number of corresponding points is
generally caused by the low quality of the captured images of
the scene. Consequently, this condition results in the SURF
algorithm detecting a low number of corners for each image.
This problem can be solved by recapturing the images and
restarting the generation process of the disparity map.

In the second case, the epipolar lines appear due to the
way the fundamental matrix is calculated, probably using
incorrect correspondences. Since the nature of the fundamental
matrix calculation is random (as it is based on a random
choice of corresponding points), the process does not need
to be restarted when this issue occurs. It is just necessary
to recalculate the fundamental matrix until a suitable one is
generated (i.e., one that does not generate epipolar lines). This
strategy has been successfully adopted by the system presented
in this paper.

C. Reducing Distortions in the Disparity Map
Also due to the random nature of the calculation of the

fundamental matrix, it is possible that the generated disparity
map is not suitable for a proper stereo analysis, even after
applying the aforementioned corrections. This problem may
arise due to the adopted process to generate the fundamental
matrix. In this context, the rectification step might produce
a pair of projective transformations that can cause a great
distortion in the original images of the stereo vision system,
producing areas of unknown shades of gray.

To overcome this issue, a disparity map is considered valid if
the existing distortion is minimal. So, a simple algorithm was
created, which calculates the area percentage not belonging to
the true disparity map. If this area is less than a threshold,
the map is considered valid. Otherwise, it is discarded, and
a new fundamental matrix is calculated, with the whole
process being restarted from the rectification step onwards.
This procedure is repeated until a valid disparity map is found.
Some experimental analyses have shown that, in general, a
valid disparity map contains less than 5% of the non-disparity
area.

IV. VALIDATION OF THE PROPOSED TECHNIQUE

A. Analysis of Effectiveness

To verify the effectiveness of the proposed technique, the
disparity maps obtained using it were compared with disparity
maps produced by a well-established method.

A possible way to conduct this analysis is by using a
similarity metric. A metric frequently used in stereo vision
works is based on the calculation of the mean error between
two maps, or between a given map and a reference disparity
map (called groundtruth). The mean error is given by the mean
of the values obtained from an error map E, which consists
of a bi-dimensional matrix with the same dimensions as the
disparity maps under analysis. So, the mean error of each
point (x, y) of E can be calculated by Equation 6, where
d(x, y) is the adopted comparative metric, and t is a threshold
reflecting the highest acceptable difference between points of
equal coordinates present in both, the disparity map M and
the ground-truth map G.:

E(x, y) =

{
0 if d(x, y) < t

1 otherwise
(6)

The comparative metric d(x, y) can be calculated as the ab-
solute differences between the intensities of points in position
(x, y) of each map, as shown in Equation 7:

d(x, y) = |M(x, y)−G(x, y)| (7)

Alternatively, it can be calculated as the square differences
of those points, as shown in Equation 8:

d(x, y) = [M(x, y)−G(x, y)]2 (8)

For both of those metrics, the closer to zero the value d(x, y)
is, the better the map is. For validation purposes, we have
compared results obtained using the proposed methodology
against two other methods.

The first one is based on results quoted by the The Mid-
dlebury Stereo Datasets, which usually takes the absolute
difference as a metric. The technique employed by that work
uses the semi-global algorithm [25] to generate a disparity
map. The efficiency of the disparity maps produced by it is
already present in the Middlebury Datasets, with the mean
error value (using absolute differences) already computed and
standing at around 25% [26]. That implies in a success rate
of around 75%.

The second comparison was made with Zhang’s technique
[2], as it is considered canonical for works with stereo vision.
Thus, the data presented in Table III show the similarity
between maps obtained using Zhang’s methodology and the
technique proposed in this paper, with figures for both, the
absolute and squared differences. The value of ten grey tones
was the adopted threshold between points.

According to those figures, the obtained mean value stands
around 71% and 75%, depending on the adopted metric for
calculation. Those values can be considered very close to the
results quoted by the Middlebury Datasets [26]. Furthermore,
the disparity maps obtained by the proposed technique were
shown to be similar to the ones obtained using Zhang’s
method.
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TABLE III
SIMILARITY RATE BETWEEN THE PROPOSED TECHNIQUE

AND ZHANG’S METHOD [2] (%)

SCENE
Similarity Rate

based on
Absolute Differences

Similarity Rate
based on

Squared Differences
1 72.83 70.86
2 80.45 75.28
3 75.44 71.76
4 83.80 82.51
5 76.07 74.23
6 72.87 69.03
7 71.45 67.91
8 65.10 60.10
9 71.54 67.73

10 77.60 74.23
x̄ 74.71 71.36
σ 5.23 5.91

B. Analysis of Efficiency

To evaluate the efficiency of the developed technique in
terms of processing time to generate a disparity map from
a scene, some experiments were carried out. Thus, a given
image set was selected from the Middlebury Stereo Datasets
repository from [27] and [28], and it was verified the required
time to create a disparity map for each image of size 640x480
pixels.

The hardware setting used in the experiments consisted
of a standard personal computer running the Win10 operat-
ing system, configured with an Intel® Core™ i5 processor
(1.70GHz), and 4 GB RAM, without using GPU processing.
The technique under evaluation is implemented using Matlab
Tools, as already mentioned in Section II.

For each image, the data presented in Table IV show the
processing time required to generate a disparity map. Five runs
were performed for each image, resulting in the calculation of
the corresponding mean (x̄) and standard deviation (σ). All
results are quoted in seconds.

TABLE IV
TIME SPENT TO GENERATE A DISPARITY MAP (SECONDS)

Time in Seconds for tests 1-5, x̄, σ
SCENE 1 2 3 4 5 x̄ σ

1 0.27 0.28 0.27 0.27 0.27 0.27 0.00
2 0.31 0.29 0.30 0.31 0.32 0.31 0.01
3 0.29 0.29 0.29 0.28 0.28 0.29 0.01
4 0.28 0.30 0.27 0.28 0.29 0.29 0.01
5 0.28 0.28 0.28 0.28 0.28 0.28 0.00
6 0.30 0.29 0.28 0.30 0.28 0.29 0.01
7 0.27 0.27 0.28 0.27 0.27 0.27 0.01
8 0.28 0.28 0.27 0.27 0.28 0.28 0.00
9 0.26 0.28 0.26 0.26 0.26 0.26 0.01

10 0.27 0.27 0.28 0.28 0.26 0.27 0.01

Those figures show that, for the image scenes considered,
the time spent to generate a disparity map is less than half
a second, using a hardware platform that can be considered
modest at the time of writing this paper. It should be noted

that, for those experiments, it was never necessary to recreate
the maps due to the aforementioned issues.

V. CONCLUSIONS

The objective of this work was to analyze, combine, and
adjust state-of-art algorithms to create a technique to generate
a disparity map from a real scene, representing the depth of
the elements in it, without manual calibration. The developed
technique was shown to be effective in generating disparity
maps employing successive processing steps, composed by
stereo image acquisition, detection of corresponding points,
fundamental matrix calculation, rectification step, and calcu-
lation of disparity between points, finalized by post-processing
operations.

The analysis of experimental results using the proposed
technique showed that it can produce maps with a similarity
rate of around 75% when compared with two other well-
established methods. In terms of processing efficiency, the
proposed technique was able to produce maps in less than
half a second, for a given set of images and using a standard
computing platform. It should be observed that, if necessary,
the algorithm to calculate disparity can be replaced by another
one (possibly more effective), with minimal changes among
other modules of the whole system.

Finally, as a result of the underlying motivation for this
work, it should be emphasized that the proposed technique
has the advantage of not requiring the use of a calibration
pattern. That is an important feature for a system intended to
be used as part of the design of aid devices for people with
severe visual impairment or blindness.
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