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Abstract—COVID-19 has become the most significant pan-
demic in recent years. Today, Mexico has recorded millions of
infections and deaths since the pandemic started. Around the
world, machine learning methods have been used to under-
stand, predict or develop strategies to manage the virus and
the pandemic. Although algorithms provide good results, it is
necessary to understand why a model makes specific predictions
with a particular data set. To explain this question, we apply
Explainable Artificial Intelligence (XAI) in this paper. With this,
it is possible to understand the characteristics that influence the
model decisions when denoting between deaths and survivors.

As a case of study, the positive cases detected during the
winter season of 2020-2021 and 2021-2022 were considered. In
this season, respiratory diseases increased considerably, and in
the study period, they influenced the increase in positive cases
and the spread of COVID-19. Preliminary results suggest that
age is essential when using a Random Forest model. Preliminary
results suggest that age is essential when determining the
prognosis of a patient infected by COVID-19 in winter seasons.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8595

Index Terms—XAI, Interpretable Random Forest, COVID-19,
winter season, Mexico.

I. INTRODUCTION

The severe acute respiratory syndrome, SARS-CoV-2, re-
sponsible for the COVID-19 pandemic, has been the pre-

cursor of immense global issues. Since its initial identification
in Wuhan, China, in December 2019, it has claimed over 6
million deaths worldwide1. Until now, Mexico has recorded
over 7 million confirmed cases; unfortunately, 334,336 of these
cases have culminated in death2. The repercussions of COVID-
19 have a significant impact on society. Of this, the deep
vulnerabilities and interdependencies of various sectors, such
as education, transportation and politics, stand out. The latter
results in the urgent need for cooperation and preparation to
face the challenges derived from COVID-19.
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In recent years, Machine Learning (ML) has become one of
the main disciplines that supports the challenges represented
by the study of viruses, diseases and other topics related to the
diagnosis and management of diseases. [1]–[3]. The state-of-
the-art delineates potential solutions, encompassing medicine,
political science, and social sciences, between others. [4]–[6].

The efficacy of ML algorithms depends on the quality and
the data intrinsic characteristics [7]. In the context of the
COVID-19, diverse data sources have been used with ML
methods. For instance, from medical imaging modalities like
X-ray and tomography scans, which aid in directly detecting
the virus [8], [9], to big datasets acquired from the health
sector. This last category of data is particularly notable because
it enables understanding patterns related to patient survival,
death causes or provides insights into the dynamics of trans-
mission of the virus and spread trajectory [10]–[12].

ML models have complex architectures and algorithms,
showing considerable promise in forecasting behavioural pat-
terns within datasets. Nevertheless, these models often remain
enigmatic, because it works like a black-box [13]. Such opacity
has challenges, especially when it is imperative to understand
the underlying mechanisms driving the predictions of the
model.

With the need for transparency and intelligibility, there has
been growing emphasis on Explainable Artificial Intelligence
(XAI) [14]. XAI aims to bridge the gap between complex
model outputs and human interpretability, i.e. XAI offers a
means to interpret models, providing users with insights into
how and why a given model makes specific decisions [15].

The research community has exhaustively studied COVID-
19 due to its fast spread and unique medical symptoms. A
particular focus has been on understanding its behaviour in
seasons where respiratory virus occur more. During the winter
season, medical practices face challenges due to respiratory
illnesses. To manage these challenges, medical practices must
focus on preventing the transmission of respiratory viruses,
promoting and facilitating inmunization, and ensuring timely
and accurate diagnosis and treatment of respiratory infec-
tions [16]. In fact, although it is not the only symptom,
pneumonia was characteristic of COVID-19 and according to
statistics worldwide, it is in the winter season that both cases
and their severity increased.

Derived from the aforementioned, it is possible to note the
need to further explore the patterns that allow models based
on artificial intelligence to perform prediction or classification
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tasks in patients diagnosed with COVID-19.
Up to now, there has been a notable absence of research

focused on the incidence of COVID-19 during winter seasons
and the application of Explainable Artificial Intelligence (XAI)
methods. Consequently, the study detailed in this paper intro-
duces a well-known XAI methodology that elucidates the pre-
dictions derived from patient data, enabling the identification
of key attributes during the winter months, a period marked
by a significant rise in respiratory diseases. Specifically, we
analyze the cases reported in Mexico during the winter seasons
of 2020-2021 and 2021-2022.

Although the use of machine learning algorithms have been
and are being used in a large number of applications, one of
the unknowns that is of interest in this article is to provide
greater transparency and understanding of the models used
with the help of XAI strategies. The case study in this paper
is focused on identifying essential information about factors
that influence patient outcomes, to support decision making.
In this way, this research promotes the integration of machine
learning in public health and highlights the need to have
transparent methodologies in the forecasting and management
of diseases that worsen in winter periods such as COVID-19.

From now on, the paper is structured as follows: Section 2
presents a series of preliminaries that include the general as-
pects of XAI. Section 3 describes the methodological strategy
used in this study. The results obtained are shown in Section
4 and finally, section 5 includes the main concluding remarks.

II. PRELIMINARIES AND OVERVIEW

The adoption of Artificial Intelligence (AI) techniques,
especially ML methods, has had a significant clinical impact
on diagnosis and disease prediction. However, in real medical
practice, these models must be explained to users so that
they can better understand how they work and the results
they provide. To do this, XAI helps to the end user making
decisions using AI algorithms. The remainder of this section
describes XAI and provides an overview of work related to its
medical applications.

A. Explainable Artificial Intelligence

In the medical domain, the methodologies of IA through
which knowledge is garnered often remain enigmatic for most
health practitioners. The aim in this sector extends beyond
making class predictions. Some questions arise, such as What
makes this prediction reliable? and How did this model get a
conclusion?. To address these inquiries, XAI act as a post-hoc
analytical method, which elucidates the features that contribute
to the model performance [17]. Notably, SHAP (SHapley
Additive exPlanation) values emerge as a prevalent technique
in XAI methods. SHAP is based on game theory to provide
an interpretation of the predictions of ML models through
the Shapley values. This approach applies game theory to
allocate the output of a predictive model among its input
features equitably. These features are compared to players
in game theory, with the allocation based on their respective
contributions to the overall prediction [18].

Consider a set of instances denoted by DS named a
dataset with n instances, where an instance is composed by
a pair (x, y), wherein x is an array of features described as
[x1, x2, · · · , xm] with m features. Assume that M is the set of
all features, and the class is denoted by y. The Shapley value
is defined by the following equation:

ϕi =
∑

S⊆M\{i}

|S|!(|M | − |S| − 1)!

|M |!
[f(S ∪ {i})− f(S)] (1)

Where S is a subset of M excluding the i-th feature; the terms
f(S ∪ {i}) denotes the prediction made by the model with it
includes the i-th feature, while f(S) represents the prediction
made by the model without this feature [18].

Algorithm 1 SHapley Additive exPlanations
Require: model,DS
Ensure: Shapley values for each feature
M ← getAllFeatures(DS)
shapV alues← initializeArray(|M |, 0)
for i = 0 to |M | − 1 do

feature←M [i]
for all S ⊆M \ feature do

s1← S ∪ {feature} {subset With Feature}
s2← S {subset Without Feature}
weight← |S|!×(|M|−|S|−1)!

|M|!
contribution← modelPredict(model, s1)− modelPredict(model, s2)
shapV alues[i]← shapV alues[i] + weight× contribution

end for
end for
return shapV alues

The SHAP algorithm describe in 1, initiates by creating a
group with no features, setting all initial SHAP values to zero.
Features are then randomly added to this group. The impact of
each feature is evaluated by comparing model predictions with
and without the inclusion of that feature across all possible
sequences of feature inclusion. The average of the features
effect is calculated by dividing its total impact by the number
of possible feature combinations.

SHAP values highlight the importance of each feature in
predictions made by the model. Features that significantly
increase predictions have high positive SHAP values, while
those that decrease predictions show negative values. These
values provide a granular view of how each feature influences
the model, ensuring that the sum of all SHAP values equals
the difference between a specific prediction and the average
of all predictions in the dataset [15].

B. Medical XAI

State-of-the-art has been employing XAI in the context
of the COVID-19 pandemic. Predominantly, the research are
focuses on methodologies and datasets suitable to images,
such as X-rays and on non-image datasets from hospitals.
An example of the latter are hospital records that include
personal data of patients, laboratory results and others related
to the medical history. But in no case they correspond to
a diagnostic image, for example, ultrasound, tomography,
magnetic resonance, etc.

Ong et al. [19] applied deep learning to interpret chest X-ray
scans to diagnose COVID-19. While early research indicated
that COVID-19 impacts could be seen in chest X-rays. They
used the SHAP method to enhance the understanding of
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COVID diagnosis through X-ray scans. The results effectively
highlight significant areas in the images, thereby increasing
the transparency and interpretability of the model.However,
the trade-off between model complexity and interpretability,
the absence of rigorous clinical validation, and the impact of
imbalanced data on model performance highlights the need
for further research to enhance the robustness and clinical
relevance of XAI applications in medical diagnostics.

Given that doctors often need help deciphering why cer-
tain AI-based systems make specific predictions, Chauhan
et al. [20] presented an approach to differentiate between
Covid-19 positive and negative chest X-ray images using
XAI. The results suggest that the model is interpretable and
ensures that the outcomes are easily understood, promoting
trust among healthcare professionals and patients. Nonethe-
less, notable constraints encompass the potential of variability
in accuracy when applied to diverse real-world settings and the
requirement for a certain level of technical proficiency to fully
understand the XAI explanations, which may not be accessible
to all healthcare practitioners.

On non-image datasets, Kırboğa et al. [17] used data from
the Erzurum Training and Research Hospital and implemented
the SHAP strategy to an interpretable explanation of Troponin
data was provided in the COVID-19 process. For reference,
Troponin is a protein located in heart muscles. Through the
high-performing XGBoost model, they identified the most
important features through the SHAP method. Notably, D-
Dimer (an indicator of potential blood clotting conditions),
mortality rate, CKMB (an enzyme termed Creatine kinase,
which accelerates specific chemical reactions), and Glucose
emerged as the most significant features. These findings
suggest that XAI can forecast trends using big historical
datasets. Despite employing explainable artificial intelligence
to enhance transparency, these models still require a high level
of expertise for interpretation.

Choudary et al. [21] classified whether the patient is affected
with COVID or not and elucidated the significance of every
attribute on the output using SHAP. Their results suggested
that “Abroad travel” is the attribute that impacts the model
and is followed by “Attended large gathering” y “Sore Throat”.
These are the features that influence a certain person to get
tested positive for COVID in June of 2020, which is when the
dataset has been prepared. However, the study uses a synthetic
dataset based on early WHO guidelines, limiting its real-world
applicability and generalization to new data.

Additionally, to uncover potentially overlooked bio-markers
indicative of COVID-19 infection severity, Wu et al. [22] anal-
ysed data from confirmed COVID-19 patients from Zhuhai,
China. The explanation by SHAP reveals specific increases and
decreases in certain bio-markers linked to severe infection and
higher mortality risk. For instance, a patient with elevated N-
terminal pro-brain natriuretic peptide levels might be classified
as normal by a decision tree due to a lack of symptoms.
However, there is a possibility that such a patient may show
symptoms later on and progress to a more severe condition.
The small sample size, complex interpretation methods like
LIME and potential overfitting can be limitations. Dependency
on detailed feature engineering and challenges in generalizing

findings underscore the need for further research with more
significant, diverse datasets to enhance clinical applicability.

The works mentioned above, despite being proposals that
involve machine learning algorithms, mostly identify two
limitations: the lack of seasonal representation in the data sets
and detailed understanding of the behavior of the algorithms.

The latter limits the ability of AI models to capture vari-
ations in the presentation and severity of COVID-19 during
winter periods, in addition to affecting the diagnostic accuracy
and clinical generalization of the developed models. Both
aspects are a central part of the study presented in this paper.

III. METHODOLOGY

With the continuous generation of data, the extraction of
knowledge from datasets has become a required mechanism in
the medical domain. In the literature there are several useful
methodologies for these purposes. The study presented here
summarises the knowledge extraction process in three phases
(Fig. 1). Each of these phases are explained in the following
sections.

Fig. 1. Methodological Framework of XAI for identifying key fea-
tures of COVID-19 during the winter season.

A. COVID-19 Dataset

The COVID-19 database from Mexico is an open-access
resource available on the official website of the General Di-
rectorate of Epidemiology3. Consolidated from health centres
across Mexico, it has been updated since April 14, 2020 until
today. The database includes patient details like nationality,
age, gender, location, treatment facility, pre-existing medical
conditions, and COVID-19 test results between others.

Our study was focused on data about patients who received
a positive COVID-19 diagnosis during two specific winter
intervals: from November 1, 2020, to February 28, 2021, and
subsequently, from November 1, 2021, to February 28, 2022.
The analytical focus was prominently placed on two critical
locations in Mexico: Mexico City and Mexico State, due to
they having shown a historical high infections and mortality
rates in Mexico [23].

The General Epidemiology Department provides a data
directory with categorized attributes within the dataset. For the
purpose of this study, the focus was narrowed to confirmed
SARS-COV2 cases from Mexico City and Mexico State, as
identified by the Clinical Epidemiological Association and
the Determination Committee based on positive results from
laboratory and antigen tests conducted by health personnel.

3https://www.gob.mx/salud/documentos/datos-abiertos-152127

https://www.gob.mx/salud/documentos/datos-abiertos-152127
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TABLE I
DATA DISTRIBUTION

Winter-season Survived Died IR
2020-2021 210,695 16,410 12.84
2021-2022 47,403 674 70.33

The selection of the dataset for COVID-19 was guided by clin-
ical relevance and the availability of epidemiological records,
concentrating on crucial attributes such as age, gender, and
pre-existing health conditions, including pneumonia, diabetes,
and hypertension. These factors are known to influence the
severity and mortality of COVID-19 [24], [25].

The final dataset considers two categories: those records
without a death date were labelled as Survived (class 1), and
the rest as Died (class 0). The study consider specific attributes
due to their importance, which includes Sex (female/male),
Intubation, Pneumonia, Pregnancy, Diabetes, Chronic Obstruc-
tive Pulmonary Disease (COPD), Asthma, Immune disorders,
Hypertension, Heart disease, Obesity, Chronic kidney issues,
Smoking habits, medical intensive care unit (MICU). Except
sex attribute, all other attributes take binary values of "yes"
or "no". The Age attribute was categorised based on the next
range:
• Over 60 (age >= 60): adult60
• Adult in their 50s (age between 50 to 59): adult50
• Adult in their 40s (age between 40 to 49): adult40
• Adult in their 30s (age between 30 to 39): adult30
• Adult in their 20s (age between 18 to 29): adult20
• Youth (age between 12 to 17): Youth
• Child (age <= 11): child
The data were pre-processed using one-hot encoding, giving

as result a dataset with 35 features. Table I shows the details
of the data distribution of the subsets considered during the
winter seasons in two central Mexican locations. The final
column presents the imbalance ratio (IR), defined as the
proportion of instances in the most representative class to
those in the least representative classes. This metric offers a
quantitative perspective on the disparity between classes [26].

As can be seen, in the data distribution shown in Table I,
a severe class imbalance is evident, mainly in the winter
period of 2020-2021. This is represented by a substantial
imbalance ratio of 12.84. It is considered that there is a
class imbalance when some of the classes that make up the
study problem are more represented than others. This situation
represents a problem because most ML algorithms tend to
better recognise the most represented class (majority), ignoring
the least represented class (minority) [26].

B. Knowledge Extraction

In this study, a ML model was built to analyse the rela-
tionship that may exist between COVID-19 positive patients
and its prevalence in winter seasons. For evaluation purposes,
each dataset was assessed using the 10-fold cross-validation
method. This method evaluates the performance of ML models
by partitioning the dataset into ten subsets. For each iteration,

nine subsets perform as the training set, while the remaining
subset functions as the test set. We incorporate Scikit-learn, a
ML API in Python [27].

For classification purposes, we employ the Random Forest
(RF) classifier, an ensemble learning method. We use all
default hyper-parameters except for the random seed, which
we set to 42. This technique combines multiple decision
trees, linking the Bagging algorithm and the random subspace
approach (Fig. 2). Herein, each tree is built from a bootstrap
sample of the original dataset and is not pruned after construc-
tion, which can lead to partial over-fitting of the data.

Fig. 2. Random forest algorithm strategy4.

The feature to split at each branch in the tree is chosen
from a random subset of size ms from the complete set of
features to increase diversity. This subset is different for each
branching point. Notably, this subset varies for each branching
instance. [28]. The Scikit-learn API uses averaging to improve
the predictive accuracy and control over-fitting.

C. Performance Evaluation

To assess the performance of the model, we consider the
confusion matrix. It is commonly used a 2×2 confusion matrix
as that given in Table II, where each entry (i, j) contains
the number of correct/incorrect classifications [29]. The next
simple measures can be derived: TP and TN are the number
of true positives (actually positive, and classified as positive or
minority class) and the true negatives (actually negative, and
classified as negative or majority class) respectively. FP and
FN refer to the number of instances misclassified: FP actually
negative, but classified as positive, and FNactually positive,
but classified as negative.

TABLE II
CONFUSION MATRIX

Classified as positive Classified as negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

As evidenced in Table I, the datasets exhibit a class imbal-
ance problem, making the geometric mean a well-established
measure within this context [30].

g =
√
a+ · a− (2)

4https://www.simplilearn.com/tutorials/machine- learning-tutorial/random-forest-algorithm

https://www.simplilearn.com/tutorials/machine-learning-tutorial/random-forest-algorithm
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where a+ is the sensitivity or true-positive rate (i.e., the
accuracy on the minority class):

a+ =
TP

TP + FN
(3)

and a− is the specificity or true-negative rate (i.e., the accuracy
on the majority class):

a− =
TN

TN + FP
(4)

In addition to existing metrics, we added the F1-Score
macro to evaluate our model. The F1-Score balances precision
and recall, treating all classes equally. This metric provides
unbiased insights into the accuracy of the model for each
class [26].

D. Explainability Model

In this study, the interpretability and explainability of the
random forest model were explored utilising the SHapley
Additive exPlanations (SHAP) methodology [15].

The SHAP method has shown its efficacy in the medical
field, shedding light on clinical decision-making derived from
image and non-image datasets. Furthermore, its usage has
been widely studied in COVID-19 cases. Consider that SHAP
has been developed with Python5, the last step of the Fig. 1
illustrates the process to get an overview of which features are
most important for the random forest model we can plot the
SHAP values of every feature.

IV. RESULTS AND DISCUSSION

This study aims to mitigate the impact of COVID-19 by ex-
ploring correlations between dataset characteristics and patient
outcomes, with a particular focus on identifying predictors
of mortality. Figs. 3a and 3b show initial data analysis that
demonstrates these relationships.

From the figures, we can see that, for example, Pneumo-
nia_NO has a very high correlation with the class, indicating
that not having pneumonia is strongly related to being alive.
Similarly, Intubation_NO also shows a significant correlation
with survival, meaning that patients who do not require
intubation tend to survive more. Conversely, their presence
is related to the probability of not surviving. As observed,
all comorbidities are correlated with this fact in both winter
periods.

In this study, a comprehensive analysis was performed to
evaluate the performance of the Random Forest classifier when
it is applied to data from COVID-19 positive patients. As we
can see in Table III, the classifier shown suboptimal perfor-
mance on geometric mean, which can mainly be attributed
to the presence of class imbalance problem. Specifically,
survivals occurred significantly more frequently than deaths.

From results in Table III, the classifier demonstrates better
performance during the first winter season (2020-2021) com-
pared to the subsequent winter (2021-2022). This difference in
performance is associated with the less evident class imbalance
observed in the first winter period (see in Table I). The latter

5https://shap.readthedocs.io/en/latest/

TABLE III
OUTCOMES IN RANDOM FOREST EVALUATION

Winter-season Geometric Mean F1-score macro
2020-2021 67.02% 75.09%
2021-2022 42.79% 63.15%

could be due to the fact that mass vaccination campaigns began
in 2021, which could have caused a decrease in infections, as
well as deaths due to the disease, as documented by Camacho
et al. [31]. Both metrics (geometric mean and macro F1-score)
show a consistent and proportional decrease, reinforcing the
observation that the model performed worse in the second
season due to fewer cases of died. The following tables IV
and V show the average confusion matrix across the 10-fold
cross-validation for 2020-2021 and 2021-2022 winter seasons,
illustrating predictive model performance.

TABLE IV
AVERAGE CONFUSION MATRIX ACROSS FOLDS ON

2020-2021

Classified as Survived Classified as Died

Actual Survived 20636 433
Actual Died 887 754

TABLE V
AVERAGE CONFUSION MATRIX ACROSS FOLDS ON

2021-2022

Classified as Survived Classified as Died

Actual Survived 4727 13
Actual Died 54 13

From Table IV, the sensitivity and specificity values are ap-
proximately 97.94% and 45.95%, respectively. These suggest
that the performance of identifying as survived is high. How-
ever, the performance on identifying as dead is significantly
lower, at only about 46%. Therefore, while the model is highly
effective in identifying Survived, its ability to identify as dead
correctly is relatively poor. This pattern is consistent with
Table V, where the sensitivity reaches approximately 99.73%
and specificity stands at roughly 19.40%. This suggests that,
although the model is effective at identifying survivors, its
performance in detecting death is significantly inadequate.

Explainable Artificial Intelligence (XAI) facilitates the in-
terpretability of classification models, and in the context of
this study, it provides the facilities to identify the determining
characteristics of presenting COVID-19 disease. Historically,
winter seasons have demonstrated a strong correlation with
respiratory ailments. Nonetheless, in the era of COVID-19,
discerning specific attributes that signal survival among the
infected people becomes imperative.

For this reason, by using the SHAP method it was pos-
sible to identify the 20 most prominent characteristics that
contribute to the differentiation of classes within the model.

https://shap.readthedocs.io/en/latest/
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(a) Winter 2020-2021

(b) Winter 2021-2022

Fig. 3. Analysis of Feature-Class Correlations.

Fig. 4 illustrates the most consequential features for the winter
season spanning 2020-2021.

Fig. 4. SHAP Summary Plot for Survival Predictions, Winter 2020-
2021.

From Fig. 4 some interesting aspects can be drawn. The
findings underscore that age emerges as a critical determinant,
particularly for individuals aged 60 and above. Furthermore,

pneumonia is identified as a significant feature influencing
predictions of survival and mortality. Additionally, the use
of intubation during this particular season is noted as an
informative characteristic for predicting survival outcomes.

For the winter season spanning 2021-2022, Fig. 5 re-
veals that age persists as the paramount feature analogous
to observations from the prior winter period, particularly for
individuals exceeding 60 years. In addition, the manifestation
or absence of pneumonia also persists as a significant attribute
in determining the likelihood of surviving a COVID-19 infec-
tion. Contrarily, compared to the preceding winter, the factor
of intubation did not emerge as a distinctive characteristic
predictor of survival. The latter could be due to the fact that
by this period, a large part of the population in Mexico had
already received at least one dose of vaccine.

Something important to note in this winter period is the role
of underlying health conditions, which has increased its pre-
dictive relevance. In particular, the presence of chronic kidney
complications has been identified as a relevant characteristic
within the model, suggesting that their presence correlates with
a higher probability of survival.

Throughout both winter seasons, the prevalence of hyperten-
sion, diabetes and obesity can be observed. These conditions,
commonly are categorised as comorbidity, have long been
identified as determining factors that can aggravate many
diseases. Age groups such as 20, 30, 50, and 40 years old
emerge as significant features for the model during both winter
periods. However, interestingly, the Adult40 age group is
ranked towards the lower end of the feature ranking, implying
that it has a relatively lesser impact on the model.

Segments of this age cohort had received vaccination against
COVID-19 or had acquired immunity naturally due to previous
infection, as reported by Bello-Chavolla et al. [32]. Moreover,
they highlight the effectiveness of the vaccines decreased in
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Fig. 5. SHAP Summary Plot for Survival Predictions, Winter 2021-
2022.

adults over 60 years of age. The connection between this
age group and health outcomes suggests that vaccination
campaigns targeting these age groups were more effective or
that the group was more receptive to the immunity produced
by them. Notably, most vaccinated cases were within the 30 to
59 age group [32]. While the dataset used in this study does
not allow for precise tracking of vaccinated or unvaccinated
individuals, this could be another reason age ranges influence
the model.

When decision tree models are applied to data from various
winter periods, there are noticeable differences in the maxi-
mum magnitude of SHAP values. For instance, the maximum
SHAP value for the 2020-2021 model is around 0.06, whereas
for the 2021-2022 model, it is 0.014. These changes can be
attributed to seasonal fluctuations in patient populations, ad-
vancements in public health interventions, natural variability,
and data biases, particularly due to class imbalance in the
dataset.

Figs. 6 and 7 illustrate the importance and impact of
different features on predicting the Survived class. In this
case, a high and positive SHAP value for a feature would
indicate that the presence of that feature significantly increases
the probability of survival. Conversely, a high and negative
SHAP value would indicate that the presence of that feature
significantly decreases the probability of the class of interest.

In both winter seasons, the model demonstrates a clear
difference in the influence of pneumonia. These features
decrease the probability of survival, as indicated by red points

Fig. 6. SHAP values on Survied from the impact of the random forest
model for winter 2020-2021.

tending towards the left. At the same time, the absence
increases the probability of being alive, as evidenced by blue
points shifting towards the right. However, starting from the
fourth impactful characteristic, it is observed that for the first
period, intubation was determined to decrease the probability
of survival compared to the second period, where chronic
kidney disease is a characteristic that has a more significant
impact. For the age of 20 years, the probability of survival
is higher. After this feature, we can see that, in general, the
presence of comorbidities decreases the probability of survival;
this aligns with medical understanding [25].

V. CONCLUSIONS

The COVID-19 pandemic caused by SARS-CoV-2 has
affected the entire world, emphasising the need for rapid
action and global cooperation. Machine learning has become
an indispensable tool to address related challenges, assist
detection, tracking, and create solutions in multiple fields. This
study was focused on data from two particular winter seasons,
concentrating on Mexico City and Mexico State due to the
high mortality rates reported during the study periods, mainly
in 2021.

Our findings highlighted the performance of the random
forest classifier in the two winter seasons studied. Although
there was a significant class imbalance issue, the classifier
performed better in the first winter season. The difference in
performance is due to the result of the vaccination campaigns
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Fig. 7. SHAP values on Survived from the impact of the random
forest model for winter 2021-2022.

carried out during the years 2021 and 2022, since the number
of survivors increased.

With XAI, it was possible to discern the characteristics that
most influence the appearance of COVID-19 during the winter
seasons. The results suggest that age, specifically for people
aged 60 years and older, and the manifestation or absence of
pneumonia were dominant determinants of survival outcomes.
However, the role of intubation diminished last winter, and
chronic kidney complications emerged as a higher factor.
Hypertension, diabetes and obesity constantly appeared as co-
morbidities that aggravate the disease. One observation was the
distinctive susceptibility or resilience to COVID-19 in the 30-
50 age group during the winter of 2021-2022, suggesting the
potential effectiveness of vaccination campaigns in this area. It
is essential to highlight the importance of vaccination tracking
in COVID-19 during winter seasons. However, the current
database does not permit adequate tracking. We acknowledge
this limitation and the need for improved data systems for
future research.

In summary, this research highlights the critical role of
machine learning in understanding the complexities of the
COVID-19 pandemic. It also offers insights into the potential
protective effect of vaccination during the studied winter
seasons in Mexico. The findings from this study could be
instrumental in guiding public health decisions and providing
valuable insights for future pandemic alerts. Future research
will address the class imbalance using data-level preprocessing
methods and refine our model using insights from highlighted

features. It will involve a comprehensive tuning process using
grid search techniques to explore various parameter settings.
Additionally, comparisons with models like Support Vector
Machines and Neural Networks will be conducted to expand
insights and validate findings across different algorithmic
approaches.
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