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A Comparison of Modern Deep Neural Networks
Architectures for Cross-section Segmentation in

Images of Log Ends
Felipe Alfredo Nack , Marcelo Ricardo Stemmer , and Maurício Edgar Stivanello

Abstract—The semantic segmentation of log faces constitutes
the initial step towards subsequent quality analyses of timber,
such as quantifying properties like mechanical strength,
durability, and the aesthetic attributes of growth rings. In the
literature, works based on both classical and machine learning
approaches for this purpose can be found. However, more
recent architectures and techniques, such as ViTs or even the
latest CNNs, have not yet been thoroughly evaluated. This
study presents a comparison of modern deep neural network
architectures for cross-section segmentation in images of log
ends. The results obtained indicate that the networks using the
ViTs considered in this work outperformed those previously
evaluated in terms of both accuracy and processing time.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8585

Index Terms—CNNs, Deep neural networks, Segmentation
Transformers, Wood log ends.

I. INTRODUCTION

The processing of wooden log faces allows for the ex-
traction of features from processed trunks within the

timber industry. These features can be employed to estimate
the quality of the logs. As elucidated in [1], the quality of
a wooden log is delineated by several attributes, including
mechanical strength, aesthetic appeal, resistance to fungi and
insects, among others. Apart from quality assessment, another
pivotal endeavor intrinsic to the process routinely embraced by
the timber industry pertains to the determination of the volume
or dimension of the logs. This information is indispensable in
ascertaining the yield of derivatives that each log is capable
of yielding.

Among the important stages in this context, lies the mea-
surement of cross-sectional profiles of the timber logs. Fre-
quently, this stage is executed manually. In this case, the
process becomes labor-intensive, time-consuming, and the
derived measurements are subject to imprecision [2]. For this
rationale, in recent years, systems have been proposed to
mechanize the associated activities.

Computer vision has emerged as a pivotal tool in the
development of automated systems for this purpose. In this
approach, cameras are employed to capture images of the
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wooden log faces, which are subsequently subject to analysis
by a processing system. The most crucial phase of a process-
ing system in this context is the semantic segmentation of
the log faces, which constitutes the preliminary step toward
subsequent quality analyses of the timber. The outcome of the
segmentation stage is an image with an indication of which
pixels are part of the surface of a given log. Thus, its out-
come directly influences subsequent analysis processes such
as the quantification of properties like mechanical strength,
durability, and aesthetic attributes of the growth rings, which
are examples of factors that determine the quality of a given
log.

In the literature, works based on both classical [3]–[5] and
machine learning approaches [1], [2] for this purpose are
found. Among these, it is possible to observe that the methods
that employ machine learning approaches outperform those
based on classical processing techniques in terms of results.
It is observed, however, that despite the good results already
achieved, more current architectures or techniques, such as
vision transformers (ViTs) or even more current convolutional
neural networks (CNNs), have not yet been evaluated in this
application domain.

Since the increase of precision in the segmentation process
can improve the performance of automatic analyzes of wood
logs, then it is important to evaluate the performance of
modern artificial neural networks in this scope of application.
In this sense, the present work presents a comparison of
the most current segmentation techniques, confronting the
results obtained by these with those previously found in the
literature. In general, this work aims to deliver the following
contributions:

• Employing modern deep neural networks in the segmen-
tation of wood log faces;

• Compare the results obtained with previous works found
in the literature;

• Make the implementation and image dataset available to
the academic community.

In section II, approaches found in the literature for wood
segmentation using computer vision are described. Section
III presents modern architectures of artificial neural networks
used in the developed work. Section IV describes the evalua-
tion method used. Section V presents the experimental results
obtained. Section VI presents conclusions and suggestions for
future work.
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II. LITERATURE APPROACHES TO WOOD SEGMENTATION

As the main focus of this work is deep learning architec-
tures, we focused on analyzing publications from the last five
years, making few exceptions for some classic techniques. The
survey of related works was carried out generally following the
systematic methodology proposed in [6]. The defined research
questions were:

• Which articles involve some research in the topic of
semantic segmentation of log ends?

• Which deep neural networks are mostly used in the task
of semantic segmentation?

The searches were conducted mainly on the Google Scholar
and IEEE Xplore platforms. We selected a few keywords for
this search: "Semantic Segmentation", "Log Ends", "Review",
"CNN" or "Convolutional Neural Networks", "Transformers"
and "Classic". Initially we searched for the terms "Semantic
Segmentation of Log Ends" and "Semantic Segmentation
review" to understand how progress is being made in this task.
Then we searched for the terms "Semantic Segmentation with
CNN", "Semantic Segmentation with Transformer" and "Clas-
sic Semantic Segmentation" to evaluate the options available in
the field of semantic segmentation. Similar variations of these
search strings were also used to broaden the results. Following
the directions stablished by [6], several works were selected
for reading based on the response of searching platforms and,
finally, the works were filtered by the relevance of their ab-
stract to the theme proposed here. Mainly, the inclusion criteria
were: (1) works written in English, Spanish or Portuguese, (2)
deep neural networks proposed between 2015 and 2023, (3)
papers using CNN, Transformers or classical techniques for
segmentation and (4) papers presenting deep neural networks
widely adopted in the semantic segmentation task.

Initially, 33 papers were selected through the initial steps of
the systematic review. Then, using the exclusion and inclusion
criteria, 17 papers remained, were [1] was found to be the most
correlated one. Among the remaining papers, neural networks
were chosen as follows:

1) Best performing network on [1] based on our proposed
evaluation metrics;

2) Widely adopted CNN for semantic segmentation;
3) Best performing Transformer reviewed;
4) Second best performing Transformer reviewed;
5) Fastest Transformer reviewed.
Some works found in the literature already contemplate at-

tempts to carry out the segmentation process for the described
application. In general, we can divide the approaches found
into two broad categories: those based on classical computer
vision techniques and those based on the use of artificial neural
networks.

A. Approaches Based on Classical Computer Vision

In [3] we find an example of an approach based on classical
image analysis techniques to perform wood segmentation. The
images of wood trunks are submitted to a selection in the HSV
color space, whose main objective is to isolate only pixels with
tones similar to that of the wood. The result of this selection

is used as input for some morphological erosion and dilation
operations, which eliminate noise and close possible holes in
the wood. Finally, the result of the morphological operations
is used as input for an algorithm that calculates the smallest
possible convex envelope of the remaining pixels, resulting in
the final segmentation mask. Despite obtaining good results in
very controlled environments, this technique is not accurate for
other environments, whether outdoors or environments where
there are different species of wood. Another classic technique
found in the literature is the one used by [4], where we verify
the use of the circular Hough transform together with several
other manipulations in color spaces. Finally, a third approach
can be found in [5], this one using a cluster growth technique,
which presents excellent results within what is expected among
classical techniques.

B. Approaches Based on the Use of Artificial Neural Networks

Semantic segmentation approaches involving artificial neu-
ral networks are generally new. In [2] it is possible to verify
the use of a convolutional neural network called VGG-16
[7] to perform the segmentation of wood trunks. In this first
work, the accuracy found by the authors was 0.97. [1] presents
an extensive comparison between different techniques for
segmentation, mainly using artificial neural networks. In this
work we can find a modified version of the U-Net architecture
[8], an implementation of the Mask R-CNN architecture [9], an
implementation of the RefineNet architecture [10], an imple-
mentation of the SegNet architecture [11], an implementation
of the K-means method [12] and finally an implementation of
the active contour technique (snake) [13]. The work carried
out by [1] corresponds to an extensive comparison between
artificial intelligence techniques in a series of databases and
was able to achieve excellent results. These results will be
used as a basis for comparison in this work.

III. ARCHITECTURES

Five deep neural networks were selected for evaluation
based on the method exposed in Section II. Clearly, FastFCN
[14] and UNet [8] were selected for being the most popular
CNNs in semantic segmentation task, UNet was also used
by [1]. SegFormer [15], Swin [16] and Twins [17] were
selected as representatives of Transformers-based networks.
Transformers-based networks are here considered what we call
modern networks, due to their application being relatively new
to the task of semantic segmentation in general and specifically
in the task of segmentation of log ends. All five selected
networks showed, during the literature review, great relevance
and wide adoption in the topic of semantic segmentation.

A. FastFCN Architecture

The first evaluated deep neural network was proposed
by [14]. The original FCN (Fully Convolutional Network)
typically performs the downsampling process through convo-
lutional layers and pooling layers, resulting in a very small
feature map when compared to the original image. This small
feature map ends up not being able to represent information
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Fig. 1. Simplified FastFCN architecture [14].

related to the edges of the segmented objects. Alternatively,
networks such as DeepLab [18] propose to replace the last
downsampling layers of the original FCN with dilated con-
volution layers. This tradeoff allows the final feature map to
have higher resolution. However, the computational cost of this
new network becomes high, preventing its use in situations that
require real-time processing.

In this sense, the FastFCN architecture has as main objec-
tive to achieve performance similar to that found in similar
networks using only a fraction of the computational cost.
Therefore, in their work, the authors propose to reduce the cost
of dilated convolution operations through a new upsampling
module. The module in question is called JPU (Joint Pyramid
Upsampling). In short, the method uses the original FCN as
backbone and sequentially applies the JPU module to augment
the final feature map. In Fig. 1 the architecture of FastFCN is
presented in a simplified way. This network performs well on
benchmark datasets such as Pascal Context (53.13% mIoU).
The network implemented in this work is a variation of the
one proposed by the original authors. We used a ResNet-50
network as a backbone, we kept the JPU module and finally
we used an Encode Head.

B. Simplified U-Net Architecture

The second deep neural network used is known as U-Net
and was initially proposed by [8] to perform the semantic
segmentation of images focused on medical problems. U-Net
is a network well known for learning quickly, providing good
results and being able to work with smaller datasets. This
network is composed of a contraction path that is responsible
for capturing the context and an expansion path, symmetrical
to the contraction path, which allows the precise location of
the class of each pixel. The U-Net implementation used in this
work is very similar to the one found in the original article.
We use a U-Net network with 5 stages, however, there is a
relevant change which is the size of the input images, now
with 2048x1024 pixels.

C. SegFormer Architecture

The third deep neural network used was proposed by [15]
and is called SegFormer. According to the authors, SegFormer
is a network designed to perform semantic segmentation in
images through the unification of Transformers with Multi
Layer Perceptrons (MLPs) of low computational cost for
decoding. Fig. 2 presents a simplified proposal for the Seg-
Former network. The first functionality that the SegFormer

Fig. 2. Simplified SegFormer architecture [15].

network implements is a Transformer-type encoder layer that
delivers multi-scale characteristics. This encoder layer does
not need positional coding, avoiding the problem known as
"interpolation of positional codes" which, in short, affects
the network performance when the inputs in the training and
testing phases have different sizes. The second feature that
this network presents is the use of simple decoders, or low-
cost MLPs, which according to the authors is a key feature
for the good results achieved.

The SegFormer architecture, at the time of publication,
achieved state-of-the-art performance on the ADE20k bench-
mark dataset (51% mIoU). The authors of this network end up
developing 5 variants, with SegFormer-B0 being the lightest
version, with fewer parameters, and SegFormer-B5 being the
most robust version, with many more parameters. In this article
we will be performing the implementation of the SegFormer-
B0 network.

D. Swin Architecture

The fourth deep neural network used in this work was
proposed by [16] and is called by the authors Swin Trans-
former. This architecture is proposed to function as a general
purpose backbone for tasks involving computer vision. Swin
Transformer’s main objective is to overcome the problems
encountered in conventional Transformers, such as the ViT
proposed by [19], which are: handling high resolution images,
capturing global and local contexts, computational efficiency
and preservation of spatial information. The solution to these
problems is through a hierarchical Transformer that uses the
concept of displaced windows. As seen in Fig. 3, each layer
adopts shifted windows to perform the selt-attention process,
which allows the windows of layer l to get connections to each
other in later layers ( l+1, l+2, ..., l+n).

The implementation of this work uses the Swin Transformer
as a backbone and the UperNet [20] as a segmentation method.
As the Swin Transformer managed to achieve, at the time of
publication, results similar to the state of the art, it was chosen
as a modern network to have its performance tested in this
application domain.

E. Twins Architecture

The fifth deep neural network used was proposed by [17]
and is called Twins by the authors. The Twins architecture tries
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Fig. 3. Swin Transformer Window Shift Mechanism [16].

to tackle the same problems posed by the Swin Transformer
[16] authors mentioned earlier. However, in their article, the
authors indicate that the Swin Transformer architecture still
has a field of perception that is limited by windows, in
addition to the fact that its unequal-sized windows make
implementations difficult in ONNX and TensorRT.

Taking these problems into account, the authors conclude
that the solution lies in the design of the spatial attention
mechanism. As a proposal, the authors propose the use of
two attention mechanisms- (i) locally-grouped self-attention
(LSA) and (ii) global sub-sampled attention (GSA), where the
LSA is responsible for capturing specific information and short
distance and the GSA is responsible for capturing global and
long distance information.

In this sense, the Twins backbone was also chosen as a
representative of modern networks to be evaluated in this
application domain. Specifically, this work uses the Twins-
SVT-L backbone implementation together with the UperNet
method to perform dense prediction.

IV. EVALUATION METHOD

This section describes the method and tools used to evalu-
ate experimental results. All implementation files and image
datasets are available in the following GitHub repository [21].

A. Image Dataset Description

The image dataset used to obtain the experimental results
corresponds to a subset of the base provided by [1]. In
this image base there are samples of Norwegian spruce and
Douglas fir. There are a total of 2342 images of straight
sections of wood logs, and for each of them there is an
image with masks indicating which of the pixels correspond
to the straight section of the wood. The base is divided into 5
smaller sets, grouped according to acquisition characteristics:
Sbg_TS3, Sbg_TS12, Lumix, Huawei and Ane.

In Fig. 4 there are some sample images of each subset. From
the original base, the set called Sawmill, mentioned by the
authors of the referred work but not available, was not used.
In Table I more details are presented for each set, including
information on the equipment used in the acquisition. Each
image has a manually created ground truth equivalent.

B. Evaluation Metrics

Two metrics were used to evaluate the performance of deep
neural networks: Mean Pixel Accuracy and Mean Intersection

over Union. These metrics are widely used to evaluate the
performance of neural networks in the semantic segmentation
task [1] [15] [16] [17] [18] [22] [23] and therefore were
selected.

Mean Pixel Accuracy (mAcc) is the percentage measure
of how many pixels were classified correctly. Let TPi be the
number of pixels classified correctly for the class i and Pi the
total number of pixels in the class i, the mAcc (Mean Pixel
Accuracy) metric is calculated as:

mAcc =

∑i
n=1

TPi

Pi

i
(1)

Mean Intersection over Union (mIoU) is a measure that
relates the intersection between the network prediction and
the ground truth with the area of union between the network
prediction and the ground truth. For any prediction with i
classes, take OAi as the intersection area of the i class and
take Ui as the union area of the i class, then calculate the
metric mIoU as:

mIoU =

∑i
n=1

OAi

Ui

i
(2)

C. Implementation and Training of the Nets

The necessary developments for surveying the experimental
results were made using the MMSegmentation toolbox [24].
MMSegmentation is an open source framework implemented
on top of PyTorch aimed at image segmentation. It provides a
variety of pre-trained models and tools for training new image
segmentation models.

This framework provides implementations of several image
segmentation models, from classic models to more recent and
advanced architectures. Users can even train custom segmenta-
tion models with their own datasets using available tools. The
framework offers performance evaluation metrics to measure
the effectiveness of trained models in segmentation tasks. After
training, the models can be used to perform inference on
new images for object segmentation. It was designed to be
flexible and extensible, allowing users to customize and adapt
settings as needed for their own applications. Using this tool,
the networks described in Section III were implemented and
configured.

Two training strategies were adopted to evaluate the per-
formance of the networks. In the first one, each network was
trained for each subset of images individually. In the second,
all subsets were grouped into a single image database, and then
each of the networks was trained using all images at once.

The image base used underwent a data augmentation pro-
cess and, therefore, it was necessary to carefully divide the
images into training and validation groups to avoid network
bias. As described by [1], the augmentation techniques em-
ployed were: scaling, rotation, vertical and horizontal shift,
zooming and shearing. Each image generated as augmentation
was a random combination of these techniques. On average,
each original image wields another 10 augmented versions
of itself. In this sense, the training and validation sets were
divided manually, with a proportion of about 70% of the

https://github.com/NackFelipe/ModernWoodSegmentation
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Sbg_TS3 Sbg_TS12 Lumix Huawei Ane

Fig. 4. Samples from the image dataset.

TABLE I
DATASET INFORMATION

Subset Name Camera Number of Images Image Size Wood type
Sbg_TS3 Canon EOS 70D 1504 1368 x 912 Norwegian spruce
Sbg_TS12 Canon EOS 5D Mark II 768 2048 x 1365 Douglas fir

Lumix Panasonic DMC-FZ45 37 4320 x 3240 Douglas fir
Huawei Huawei PRA-LX1 22 3968 x 2976 Norwegian spruce

Ane Huawei ANE-LX1 11 4608 x 3456 Douglas fir

images being used for training and the rest for validation.
For training, inference and testing purposes, all images were
resized to 2048x1024.

In training, the U-Net and FastFCN networks used the
SGD optimizer while the others used the Adam optimizer.
All training was carried out until it was not possible to detect
advances in minimizing the losses of each network.

Training was conducted on an AWS EC2 model
g4dn.2xlarge virtual machine with the following configuration:

• GPU: 1x Nvidia Tesla T4
• CPU: 8x vCPU (Intel(R) Xeon(R) Platinum 8259CL CPU

@ 2.50GHz)
• RAM: 32GB
• Storage: 256GB SSD

V. EXPERIMENTAL RESULTS

The Table II presents the inference results of all networks
for each subset of images and also for the complete set. In Fig.
5 the segmentation results are presented for an image of each
subset compared with the respective ground truth. White pixels
correspond to correct predictions of the wood, black pixels
correspond to correct predictions of the background and red
pixels correspond to incorrect predictions of any of the classes.

The FastFCN network showed the best performance in
subset ane and excellent result in subset Sbg_TS12. As can
be seen in Fig. 5, the network presents good accuracy both in
terms of pixel estimation and in format and size, although it
is possible to verify errors located at the edge of the wood for
some of the sets (Lumix, Sbg_TS3, All), in addition to distant
wood noises for other cases (Huawei).

The U-Net network presented, in general, the worst per-
formance among all networks. When trained on the Ane
dataset, U-Net was able to surpass the SegFormer by 0.49
points on the mIoU metric and was also able to surpass the
SegFormer and Twins by 0.24 and 1.32 on the mAcc metric,
respectively. When trained on the Sbg_TS12 dataset, U-Net

was able to only surpass FastFCN by 2.61 points on mIoU
and 3.17 points on mAcc. The metrics also indicate that in
these subsets U-Net was able to have good pixel accuracy and
good accuracy in predicting the shape of the wood, despite
presenting small flaws in the background. On the other hand,
in the other subsets it is verified that both the prediction of
pixels and format was greatly impacted. The U-Net results, in
general, show several flaws in the inner region of the wood log
(Huawei, Lumix, All) and also classify many lateral noises as
wood (Huawei, Lumix). In the subset Sbg_TS3, U-Net only
presented the problem of underdimensioning the size of the
wood, maintaining a format similar to that expected.

The SegFormer network achieved results considered good
and consistent. In all training cases his pixel accuracy was
above the 90% mark, while his mIoU measure remained
above 85%. The inference images clearly demonstrate that
this network does not present major problems with noise or
even with the shape of the segmented object, that is, it only
presents some slight deformation at the edges of the wood.
In general, their metrics are very promising and indicate that
modern networks provide greater stability in their inference.

The Swin network presented results with the highest overall
quality in this work. All pixel precision metrics were above
95%, while the mIoU metric remained above 90%. Consider-
ing the size of the image sets, these results are very promising
and highlight again the advances of modern architectures using
the transformer mechanism. The inference results produced
by Swin are very similar to those produced by SegFormer,
however, they are more accurate.

The Twins network generated the worst results among the
networks that use the transformer mechanism. On Ane dataset,
Twins was able to outperform SegFormer by 0.51 points at
mIoU metric, but lost all other comparisons to Swim and
SegFormer. Regarding its performance against CNN-based
models, it outperformed both U-Net and FastFCN, at mIou
and mAcc, on Sbg_TS12, Sbg_TS3 and All. For Ane, it lost
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TABLE II
RESULTS OF ALL PROPOSED ARCHITECTURES

Source Ane Lumix Huawei Sbg_TS3 Sbg_TS12 All
Metrics mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU
FastFCN 97.58 95.10 89.72 78.46 94.20 88.76 83.50 67.79 92.30 87.04 83.23 64.06
U-Net 96.31 93.09 84.04 70.91 83.76 74.00 70.06 49.33 95.57 89.65 73.37 53.50
SegFormer 96.07 92.60 92.78 85.62 96.32 90.87 94.05 86.52 99.12 98.13 95.86 90.71
Swin 97.17 94.83 95.33 90.98 96.92 93.20 96.75 93.42 99.26 98.43 97.49 93.82
Twins 94.99 93.12 89.43 81.45 88.94 84.53 89.98 78.99 98.10 95.74 94.21 87.37

Fig. 5. Result of the inference of networks on an image from each set of images base.

on mAcc to U-Net (1.32 points) and FastFCN (2.59 points) and
on mIoU it lost to FastFCN (1.98 points). For Lumix, it lost for
FastFCN at mAcc (0.29 points) and won other comparisons.
For Huawei, it lost both comparisons to FastFCN and won
both comparison from U-Net. Considering these results, it is
possible to argue that Twins outperforms FastFCN and U-Net
in most cases. Similar to Swin, Twins results are also quite
similar to those produced by SegFormer, both in format and
pixel precision. The only exception here is the result seen
on the Huawei subset which had major glitches related to
confusion with the background and edges of the image.

In general, we can separate the results into two broader
categories: networks based on CNNs (U-Net and FastFCN)
and networks based on Transformers (SegFormer, Swim and

Twins). The metrics results make it clear that Transformer-
based architectures achieve better results the proposed task.
This difference is due to the attention mechanism in networks
based on Transformers, which allows capturing global and
local contexts simultaneously, enabling both good pixel-level
accuracy and good shape-level accuracy (IoU). CNNs, on the
other hand, have limited attention-windows due to the size
of their kernels and network depth, which do not efficiently
capture these more complex contexts. In this specific case, we
are not only attempting to segment wood but specifically the
central wood log in the image. The results show that CNNs
faced difficulties mainly in these cases.

Among the modern Transformer-based networks, the Swim
architecture seems to perform better in this task due to its com-
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plexity, primarily because of its Spatially Variant Attention.
On the other hand, the Twins architecture demonstrates good
processing efficiency owing to its innovative design, which
suggests processing data through different pathways. Lastly,
SegFormer appears to be a good tradeoff, offering moderate
speed and delivering good results.

The average inference time of each of the proposed net-
works can be seen in Table III. Unlike the training, the
inferences were performed on a personal computer, without the
use of graphics cards. For that, a Ryzen(R) 7-4800H processor
together with 16GB of RAM memory @ 3200MHz was used.
We adopted this approach to assess the speed of networks in
production, where GPUs are often not available.

TABLE III
AVERAGE INFERENCE TIME FOR EACH ARCHITECTURE IN

SECONDS (SEC)

FastFCN U-Net SegFormer Swin Twins
Inference (s) 6.7 9.1 5.1 7.2 2.7

Evaluating the results of Table III together with the results
present in Table II it is evident that the computational complex-
ity of networks does not imply their performance in a given
task. In this work, it is possible to verify that the network
with the worst segmentation results (U-Net) also presents the
worst results related to speed. Furthermore, it is important to
point out that networks that use the transformer mechanism
will not necessarily be slow, given the example given by the
Twins network in this work, reaching by a large margin the
highest speed among all for inference on a CPU.

When the results of this paper and the results presented by
[1] are compared, it is possible to notice a slightly increase
of the mAcc and mIoU metrics. Nonetheless, the biggest
improvement noticed was in the consistency of the networks
across the different datasets. As shown in Table II, the Swin
architecture was able to produce consistent results across
all datasets, unlike RefineNet in [1]. Finally, the results of
this paper indicates that new deep neural networks, specially
Transformer based, are preferred over old ones in this specific
task.

VI. CONCLUSIONS

In this work, we evaluated different deep neural network
architectures tuned for segmentation of images of log ends.
All networks were able to successfully perform the task of
segmenting the straight section of wood logs. Networks that
use convolution as a basis (U-Net and FastFCN) and that had
already been evaluated in previous works for the proposed
application presented the worst general results in this work.
On the other hand, the networks that use the transformer block
considered in this work presented the best results overall.

Even with the small size of some subsets, it was possible
to achieve high performance in semantic segmentation. It is
important to point out that the computational cost of networks
that use the transformer grows rapidly according to the size of
the images and, therefore, in this work we chose to reduce the
images before training. Anyway, it is concluded here that the

Swin transformer is the most suitable network when we are
looking for precision in this task, while the Twins transformer
is the most suitable network when we are looking for speed.

In order to enhance the study focused on segmenting wood
logs, there are several potential strategies to consider. Firstly,
expanding the dataset size beyond the existing images could
be beneficial, as larger datasets often lead to improved model
generalization. Likewise, an interesting evaluation could also
be the assessment of these networks in the task without the use
of data augmentation. Additionally, addressing any imbalance
or unequal distribution among the different wood log classes
within the dataset may help in achieving more accurate and
unbiased model predictions. Furthermore, exploring a broader
spectrum of evaluation metrics beyond the ones previously
employed, such as the Dice coefficient, precision, and recall,
may provide a more comprehensive assessment of model effec-
tiveness. Lastly, experimenting with alternative architectures
or novel approaches in addition to the present architectures
might uncover better-suited models for this specific segmen-
tation task. Implementing these measures should bolster result
reliability and contribute to a more nuanced understanding of
the performance exhibited by each model in the context of
segmentation of log ends.
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