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Abstract—The rise of sixth-generation (6G) technology has 

become increasingly necessary to meet the growing demand for 

high-speed internet and the continuous advancements in 

technology. The development of an optimal antenna design is 

crucial to attain the required performance and capabilities. 

Traditional electromagnetic modeling approaches for antenna 

design are, however, time-consuming and computationally 

intensive requiring long simulation time and high-end computing 

systems. Therefore, Machine Learning (ML) technology can be 

utilized to deal with these limitations in the context of Terahertz 

(THz) antenna design, which has not been done before. The main 

objective of this work is to develop an antenna that operates in 

the THz Band, which is the essential 6G band for the future 

infrastructure revolution, and to predict and optimize the 

antenna's return loss using ML models like K-Nearest Neighbour 

(KNN), Extreme Gradient Boosting (XG-Boost), Decision Tree, 

and Random Forest and Mean Squared Error (MSE) of 3.816. 

The findings show that all of these models perform accurately, 

particularly Random Forest having the highest accuracy of 82% 

in predicting the return loss. ML offers novel possibilities for the 

development of optimized and efficient 6G antennas for high-

speed communication. 
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I. INTRODUCTION 

erahertz (THz) antennas are unique antennas developed 

for the transmission and reception of terahertz 

electromagnetic waves [1]. This band of the 

electromagnetic spectrum falls between the microwave and 

infrared regions and has huge possibilities for a variety of 

applications such as communication, sensing, imaging, and 

spectroscopy [2]. THz antennas play an important role in these 

systems because they allow for optimal energy and 

information transfer between the source and the target [3]. 

THz antenna design and fabrication, on the other hand, can be 

challenging, which requires significant research towards novel 

antenna structures, materials, and development techniques. 

THz antennas offer exciting possibilities to revolutionize 

diverse fields, from medical imaging and wireless 

communication to environmental monitoring and security 
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screening [3], [4]. THz antennas are gaining interest in the 

development of sixth-generation (6G) communication systems 

due to their potential for high-speed data transfer and large 

bandwidths [4]. The 1 THz - 3 THz frequency band is used for 

various applications such as high-speed wireless 

communication, imaging, sensing, and spectroscopy. In high-

speed wireless communication, this frequency band is utilized 

for achieving high data transfer rates and low latency in future 

6G networks [5], [6]. THz imaging is useful for non-

destructive testing and imaging applications, such as detecting 

defects in materials, monitoring food quality, and medical 

imaging. THz sensing involves the detection of chemicals and 

gases, and it is useful in security and environmental 

monitoring applications. THz spectroscopy is used for the 

analysis of the molecular structure and composition of 

materials, and it has applications in chemistry, biology, and 

materials science [3], [7]. 

Surface roughness at THz frequencies significantly 

impacts the performance of THz antennas, contributing to 

increased ohmic and surface losses. Advanced manufacturing 

techniques like 3D printing [8] and Focused Ion Beam (FIB) 

[9] technology offer potential solutions to minimize losses and 

optimize antenna efficiency. 3D printing allows for rapid 

prototyping of waveguides, horn antennas, and THz lenses, 

offering cost-effective and precise miniaturization benefits. In 

contrast, FIB technology enables the manufacturing of 

complex antennas like spiral antennas, overcoming challenges 

associated with traditional lithography, and enabling the 

creation of smoother antenna surfaces. The new THz process 

technology encompasses conventional micro-mechanical 

methods, including lithography and laser milling, along with 

innovative approaches like electroforming, discharge, and 

thick photoresist applications [2]. Notably, electroforming 

involves depositing conductive materials onto antenna 

structures, reducing the impact of surface roughness on 

antenna performance. Harnessing these manufacturing 

techniques and process technologies holds promise for 

minimizing ohmic, surface losses and optimizing THz antenna 

performance, fostering the development of efficient and high-

performance THz communication systems for various 

applications [2], [7]-[8].  

THz antenna for 6G connectivity must have high 

efficiency and low loss via optimized design and materials. 

Wide bandwidth to support higher frequencies. Compact size 

for device integration and flexible deployment. Effective 

thermal management for sustained performance. Directional 

radiation with high gain enhances signal strength and 
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minimizes interference. Cost-effective manufacturing for mass 

production and commercial viability [2]-[6]. Overall, meeting 

these technical requirements as mentioned in Fig. 1 is crucial 

in developing THz antennas that can support the high-speed 

and high-capacity communication necessary for 6G systems. 

 
Fig. 1. Technical requirements for THz antennas. 

The iterative process of refining antenna designs based on 

testing and simulations, especially in the domain of THz 

antennas, poses significant challenges for antenna engineers 

[2], [4]. This challenge arises from the necessity to frequently 

conduct computational electromagnetic simulations to attain 

the desired performance. THz antennas typically function at 

high frequencies characterized by short wavelengths. 

Simulating these frequencies demands substantial 

computational resources, including precise spatial and 

temporal resolutions to accurately capture THz behaviors. The 

optimization procedure often entails making incremental 

adjustments to antenna parameters, conducting simulations, 

and assessing outcomes. This iterative sequence may need to 

be reiterated multiple times to achieve the desired 

performance, thereby extending the overall timeline for design 

refinement. Machine learning (ML) can indeed offer a 

valuable solution to the time-consuming and computationally 

intensive process of optimizing THz antennas. By integrating 

ML into the THz antenna design process, engineers can 

streamline optimization efforts, reduce the number of 

resource-intensive simulations, and expedite the development 

of efficient THz antennas [10]. ML-based optimization 

algorithms streamline the search for optimal antenna 

configurations, reducing iterative cycles. Predictive ML 

models offer real-time guidance to designers, expediting 

decision-making [11]. This not only saves time and 

computational resources but also enhances the overall design 

efficiency and performance, to develop cutting-edge THz 

communication systems for 6G and beyond. 

A. Machine Learning in Antenna Design 

Artificial intelligence (AI) stands as a revolutionary 

technology, acknowledged for its transformative potential. AI, 

serving as the overarching domain, encompasses tasks that 

traditionally rely on human intelligence, such as recognizing 

objects or sounds, comprehending natural language, and 

solving complex probabilistic problems [12]. Within AI, ML 

emerges as a vital subset, enabling computers to autonomously 

acquire knowledge and insights from data and experience, all 

without explicit programming [11]. In recent years, the 

application of ML algorithms in the design and optimization 

of antennas has become increasingly popular. It can help 

automate the antenna design process, reduce design time and 

costs, and improve antenna performance [13]-[17]. It can be 

trained to analyze and interpret data collected from antenna 

measurements [18]-[20]. By training an ML model on a large 

dataset of measurements, it is possible to identify patterns and 

anomalies in the data that would be difficult to detect 

manually [10]-[11]. When ML is integrated with neural 

networks, it is known as Deep Learning [21]. The relationship 

between Artificial Intelligence, Machine learning, and Deep 

Learning is shown in Fig. 2. There are three categories of ML 

[3]: Supervised learning is a type of ML where the algorithm 

learns from labeled data, meaning that it is provided with 

inputs and corresponding desired outputs to learn the mapping 

between them [22]. Unsupervised learning, on the other hand, 

is a type of ML where the algorithm learns from unlabeled 

data, meaning that it must find hidden patterns or structures in 

the data on its own [23]. In reinforcement learning algorithms 

learn through interaction with an environment, receiving 

rewards or penalties for actions [22], [23]. 

 

 
Fig. 2. Relationship between artificial intelligence, machine learning, and 

deep learning. 

B. Summary of Related Work Employing Machine Learning in 

Antenna Design 

Several researchers have explored the application of ML 

techniques to forecast antenna performance. In [13] authors 

proposed a multi-objective antenna design method that 

combines the use of Second-Order Gaussian Process 

Regression and Multi-Source Co-Training with Multi-

Objective Learning methods that achieve improved prediction 

accuracies and convergence speed in antenna designing. The 

paper [14] introduces a surrogate model-assisted differential 

evolution algorithm, which utilizes a Gaussian process 

machine learning approach to predict the function value and 

uncertainty of new points making it suitable for practical 

antenna synthesis and complex antenna design optimization.  

Another article [16] compares three ML algorithms for 

optimizing double T-shaped monopole antennas, highlighting 
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ML's potential to transform electromagnetic modeling. A 

separate paper [17] explores AI applications in antenna design, 

reviewing various AI approaches and advocating for future 

research in the evolving field. The author [18] introduces an 

intelligent antenna synthesis system based on ML, showcasing 

superior classification and prediction accuracy compared to 

traditional models. In the paper [19] optimizes a Coplanar 

Waveguide (CPW) fed band-notched monopole antenna using 

ML, with KNN achieving 98% precision. Reference [20] 

provides a comprehensive review of ML and deep learning in 

antenna design for various applications, emphasizing 

efficiency and problem-solving potential. In [24] authors 

proposed a model that simplifies the design process and 

optimization of structures for the specified frequency of 5G 

antenna, resulting in reduced time and greater simplicity of 

implementation. In [25] authors proposed efficient resonant 

frequency predictions of microstrip antenna using Gaussian 

Process Regression, In [26] reliable return loss (S11) 

predictions have been obtained using ML models for 

Dielectric Resonator Antenna. The author [27] introduced an 

intelligent ML model that combines a Fuzzy system and a 

Decision tree classifier, achieving a remarkable 99% accuracy 

in both antenna classification and geometric parameter 

prediction. In reference [28], the author introduced an ML-

driven generative optimization technique employing masked 

auto-encoders to enhance multi-objective antenna decoupling 

structures, achieving a minimum 6 dB improvement in 

antenna isolation. In [29], the author presents an ML-based 

framework for computing resonance frequency in 

reconfigurable antennas and investigates beamwidth control 

using PIN diodes as a cost-effective alternative to simulations. 

In [30], the author introduces an ML-based method for 

predicting resonance and directivity in a quasi-Yagi antenna, 

showcasing remarkable accuracy in directivity predictions 

with minimal error. 

These recent research papers demonstrate the potential of 

ML-based approaches for various antenna designs. As THz 

technology is still in its infancy and relatively unexplored, it is 

possible that ML techniques could offer new insights and 

solutions for optimizing antenna performance at these 

frequencies. THz antenna optimization with ML algorithms 

has not been explored as rigorously by previous researchers. 

The goal of this work is to explore the application of ML in 

optimizing THz antennas, with a focus on enhancing design 

efficiency and performance for advanced communication 

systems, as well as to conduct a comparative analysis of ML 

models for antenna design with return loss predictions.  

The rest of the article is organized as follows: In Section 2, 

the research work methodology for antenna development, and 

the implementation of ML were presented. Section 3 provides 

a comprehensive presentation of the results and discussions. 

Finally, Section 4 concludes the article. 

II. RESEARCH WORK METHODOLOGY 

The objective of this work is to design a THz antenna that 

operates in THz bands and applies ML to improve the process 

of optimization of a THz antenna return loss value, 

determining the most computationally efficient and accurate 

algorithm for predicting the behavior of THz antennas. By 

leveraging ML algorithms to analyze data and forecast 

parameters, the aim is to expedite design iteration cycles, 

enhance antenna performance, and minimize resource-

intensive simulations. 

A. Significance of Return Loss in the Antenna Domain 

Return loss is the measure of how well an antenna or 

transmission line is matched to the impedance of the system to 

which it is attached. It ensures that the antenna efficiently 

transfers power from the source to free space, which is 

essential for effective wireless communication. It is defined as 

the ratio of the power that is reflected to the source due to 

impedance mismatch to the power that is incident on the 

antenna or transmission line. Return loss is usually expressed 

in decibels (dB) and is a measure of the amount of power that 

is lost due to impedance mismatch, mentioned in (1) [31].  

𝑆11 = 10 𝑙𝑜𝑔10 (
𝑃𝑖𝑛

𝑃𝑟𝑒𝑓

) 𝑑𝐵 (1) 

A high return loss indicates that most of the power is being 

transmitted to the load, while a low return loss indicates that a 

significant amount of power is being reflected back to the 

source. In practical applications, return loss is crucial to ensure 

that the antenna performs optimally in terms of radiation 

efficiency, gain, directivity, and impedance matching. High 

return loss helps to minimize signal loss, increase the effective 

radiated power, and enhance the performance of the overall 

system. As a result, return loss is a critical parameter that must 

be considered during the design, testing, and optimization of 

antennas. Its significance concerning the antenna is shown in 

Fig. 3. 

 
Fig. 3. Significance of Return Loss in Antenna. 

B. Proposed Methodology 

Return loss is a critical parameter in antenna design and 

analysis because it directly relates to antenna performance, 

signal quality, and efficiency. It's important to note that, in this 

specific case, the Joule's Effect losses are not taken into 

account in the design process and are assumed negligible. This 

recognition highlights the unique considerations involved in 
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optimizing antenna performance for this specific application. 

Moreover, including Joule's Effect losses in the design process 

might demand significant computational resources, and 

incorporating them could introduce complexity to the analysis. 

For specific applications or scenarios, simplifying the model 

by omitting negligible factors can streamline the design 

process and facilitate easier analysis and optimization [32]. To 

predict return loss using ML, a dataset is created by varying 

dimensions with all these design parameters variation in the 

design and simulation of each antenna is done in Ansys High-

Frequency Structure Simulator (HFSS) [33], to train the ML 

model, the dataset is split into training and testing subset, in 

which the first 80% is used for training the model, and the 

remaining 20% is used for testing the model [34]. After that 

accuracy is checked, how well the model is performing 

through performance metrics like R square & mean square 

error, and a new design variation is given to the best model to 

see the prediction of return loss. Python programming [35] is 

chosen to execute these models due to its versatility, rich 

libraries, ease of use, and user-friendly nature.  The flowchart 

of the proposed methodology is shown in Fig. 4. 

 

 
Fig. 4. Proposed methodology flowchart. 

C. Antenna Dimensions & Development 

Fig. 5 and 6, show the proposed antenna structure along with 

its’ design iterations, which is planned to emit radiations at the 

THz frequency band of 1 THz - 3 THz, whose dimensions are 

mentioned in Table I. The length of the substrate is 100 μm, 

the width is 100 μm and the thickness is 10 μm. The substrate 

used for the proposed antenna is RT/Duriod6010 (ɛr=10.2) 

with a height of 10 μm. The radius of the concentric circular 

patch is 40μm which is 10 μm wide and divided into two 

halves as shown in Fig. 5. The microstrip feed line has a 

length of 10 μm and a width is 10 μm. Parasitic element of 

length 30 μm & width 4 μm. Ansys HFSS software has been 

used for the simulation and analysis of the antenna. 

 

   
(a) Design 1 (b) Design 2 (c) Design 3 

Fig. 5. Antenna Design iterations. 

 

  
(a) Front View (b) Back View 

Fig. 6. Dimensions of Design 4 (Proposed Antenna). 

TABLE I 

ANTENNA DIMENSIONS 

Parameters Dimensions in μm 

W1 30 

W2 4 

L1 4 

R1 40 

R2 30 

FL 10 

SL 100 

SW= GL= GW 100 

D. Implementation of Machine Learning Models 

The initial step in using ML to predict the return loss (S11) 

is to train a model. To do this, a dataset is created by varying 

the lengths of L1 and W2, which serve as input features to the 

ML algorithms, along with frequency (F) as an additional 

input feature. The resulting value will be a single parameter, 

return loss, which is referred to as a label, represented in (2). 

𝑓(𝐿1, 𝑊2, 𝐹) = 𝑆11 (𝑣𝑎𝑙𝑢𝑒𝑠) (2) 

L1 is varied from 1 μm to 9 μm with a step size of 1 μm, 

while W2 is varied from 1 μm to 9 μm with a step size of 1 

μm, For each antenna design generated through these 

parameter variations, simulations are run in HFSS to obtain 

the corresponding return loss values over a frequency range of 

1 THz - 7 THz, divided into 451 points. This process results in 

the generation of a dataset having 113,649 values, which are 

used to train and test the ML models. The next step is data 

preprocessing which is a crucial step in ML that involves 

cleaning, transforming according to relevant features, and 

organizing raw data to make it suitable for training ML 

models. The training set consists of 80% of the data, while the 



86                                                                                                                          IEEE LATIN AMERICA TRANSACTIONS, Vol. 22, No. 2, FEBRUARY 2024 

 

remaining 20% is used for testing the model [34], [36]. To 

extract patterns hidden in the training data, the next step is to 

obtain a relation between the input and output parameters that 

can be set up for prediction. Regression is a fundamental tool 

in supervised ML, particularly when dealing with problems 

that involve predicting continuous relationships between input 

features and the target variable [36]. It offers a clear and 

interpretable way to model relationships between variables 

and make predictions based on those relationships.  

The ML models that can do regression analysis employed in 

this work are addressed as follows: Decision Tree [37] is an 

ML model that indicates decisions and their potential 

outcomes in the form of a tree. In a decision tree, the complete 

data set is partitioned into subsets, and the output will belong 

to the subset where the input features fit. They are powerful as 

they are capable of handling non-linearity, feature 

relationships, and missing information. The random forest 

algorithm [38] is based on a decision tree algorithm. The 

decision tree algorithm employs only one tree, but the random 

forest technique uses a large number of trees to create a forest. 

The final prediction is made by combining predictions from all 

trees. The gradient boosting technique Extreme Gradient 

Boosting (XG-Boost) [39] is an intelligent ML algorithm. It is 

intended to improve predictive performance by adding weak 

learners (typically decision trees) to the model in a sequential 

manner while minimizing errors. XG-Boost is well-known for 

its effectiveness, adaptability, and excellent predicted 

accuracy. K-Nearest Neighbours (KNN) [40] is a relatively 

easy ML technique that may be utilized for both classification 

and regression tasks. It is a non-parametric learning method 

that produces predictions based on similarities between the 

new data point and its neighbours in the training dataset. 

Building an ML model typically begins with loading the 

dataset. Once the dataset is loaded, various ML models can be 

applied to it. Python programming is implemented through 

Google Colab [41] for ML model development and 

experimentation because it gives access to free cloud-based 

Graphical & Tensor Processing Unit (GPU/TPU) resources, 

which simplifies the setup process and enables developers to 

focus on modeling and experimentation rather than managing 

infrastructure. 

III. RESULTS AND DISCUSSIONS 

This section commences with a comprehensive analysis of the 

proposed THz antenna. Following this, an evaluation of 

various ML models utilized in the research is carried out, 

accompanied by a comparison using performance metrics. The 

section concludes with the presentation of comparative 

analyses featuring informative graphs, with a particular 

emphasis on return loss analysis. These analyses encompass a 

meticulous investigation into both simulated and predicted 

return loss for randomly generated variations in antenna 

design. This approach provides valuable insights into the 

effectiveness of ML revolutionizing THz antenna design. 

A. Analysis of Proposed THz Antenna 

From Fig. 5, Design 1 is a simple circular patch antenna 

having a THz band from 1.6 THz to 2.68 THz, resonating at 

2.1 THz with -15 dB return loss, and some small bands 

resonating at 3.5 THz, 4 THz, 4.4 THz, 4.8 THz, 5.2 THz with 

-16 dB, -17 dB, -19 dB,-17 dB, -17 dB return loss 

respectively. Further the n next modification i.e. Design 2, 

circular slot of radius 30 μm in which THz band occurs 

between 2.1 THz to 3.2 THz resonating at 2.7 THz & 3 THz 

with a return loss of -17.3 dB & -17.7 dB respectively along 

with some small THz bands resonating at 3.5 THz, 4 THz, 4.4 

THz with a return loss of -28 dB, -20.8 dB & -20.3 dB 

respectively. Further modified by inserting a vertical stub at 

the center of the concentric circular patch which gives the 

result two bands from 1.8 THz to 2.7 THz & 2.8 THz to 3.1 

THz resonating at 2.4 THz & 3 THz with a return loss of -20.4 

dB & -16 dB respectively also some small bands resonating at 

3.5 THz & 4.2 THz with a return loss of -33 dB & -22 dB 

respectively. In the final Design 4 as shown in Fig. 6, which is 

the proposed antenna that gives THz wideband from 1.8 THz 

to 3.3 THz resonating at 2.8 THz with a return loss of -24 dB 

along some small THz bands resonating at 3.7 THz, 4.1 THz, 

4.6 THz with return loss of -24 dB, -23 dB & -20 dB 

respectively, which can be seen in the comparison of return 

loss for Design 1 to Design 4 in Fig. 7. 

 
Fig. 7. Comparison of Return Loss for Design 1, Design 2, Design 3 & Design 

4 (Proposed antenna). 

The surface current distribution represents the primary 

electric current within the radiating patch induced by the 

electromagnetic field. This analysis helps examine the energy 

flow across the antenna structure, providing insights into the 

distribution of electromagnetic waves over the patch surface. 

By identifying potential losses and inefficiencies, it aids in 

optimizing the antenna system's performance. Fig. 8 presents 

the surface current distribution of the proposed design at 2.8 

THz, 3.7 THz, 4.1 THz, and 4.6 THz frequencies, highlighting 

the specific region of the radiating patch crucial for resonating 

the antenna at the desired frequency. 
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(a) 2.8 THz 

 

 
(b) 3.7 THz 

 
(c) 4.1 THz 

 
(d) 4.6 THz 

Fig. 8. Surface Current Distribution at (a) 2.8 THz, (b) 3.7 THz, (c) 4.1 THz, 

(d) 4.6 THz. 

B. Performance Metrics to Evaluate Machine Learning 

Models 

To evaluate the performance of these ML models, metrics such 

as Mean Absolute Error (MAE), Mean Squared Error (MSE), R-

square, Mean Absolute Percentage Error (MAPE), Fit Time (in 

seconds), and Prediction Time (in seconds) score were used [33]. 

The accuracy of the model based on the predictions made 

on the entire training dataset was determined using MSE as 

represented in (3). 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2
𝑛

𝑖=1
 (3) 

The determination of how effectively an ML model predicts 

observed outcomes can be achieved through the R-square 

value, as represented in (4). 

𝑅2 =  1 −  
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

 (4) 

On the other hand, the MAE, as shown in (5), corresponds to 

the mean of the absolute difference between the model 

prediction and the true value. 

𝑀𝐴𝐸 =  
1

𝑛
∑ |(𝑦𝑖 − 𝑦�̂�)|

𝑛

𝑖=1
 (5) 

The MAPE serves as a relative indicator of prediction 

accuracy, calculated as the average percentage difference 

between predicted and true values, as represented in (6). 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

(𝑦𝑖 − 𝑦�̂�)

𝑦𝑖

|
𝑛

𝑖=1
𝑋 100 (6) 

where n is the number of data points, 𝑦𝑖  is the true value, �̂�𝑖 

is the predicted value, and �̅�𝑖 is the mean of true values. 

Fit time “T_fit” is the amount of time required to train an ML 

model on a given dataset. Prediction time “T_predict” is the 

amount of time it takes for a trained ML model to make 

predictions. 

The performance metrics, including R-Square, MSE, MAE 

scores, Fit time, and Prediction time predicted by various ML 

algorithms are presented in Table II. It is noteworthy that all 

the models exhibit an accuracy level above 71%, indicating 

their potential usefulness, with minimal error. Random Forest 

attains the best predictive accuracy with the lowest MSE value 

of 3.816, although it requires the most time for predictions, 

with a Prediction Time of 0.8913 seconds. On the other hand, 

KNN stands out as the fastest to train, with a Fit Time of 

0.0165 seconds. Overall, Random Forest outperforms with the 

highest R-Square and lowest MSE, making it the top-

performing model, while KNN is the fastest model to train, 

but its performance is not as good as Random Forest, which 

can be seen in Fig. 9. 
TABLE II 

COMPARISON OF PERFORMANCE METRICS FOR DIFFERENT ML MODELS 

Model 
R-

Square 
MSE MAE MAPE 

T_fit 

(sec) 

T_predict 

(sec) 

Decision 

Tree 
0.715 6.257 0.987 0.104 0.353 0.009 

Random 

Forest 
0.826 3.816 0.861 0.094 0.891 0.058 

XG-

Boost 
0.807 4.262 1.110 0.122 4.181 0.016 

KNN 0.787 4.672 0.877 0.108 0.016 0.027 

Fig. 9 Comparison graph of performance metrics. 

C. Graphical Representation in Terms of Return Loss Analysis 

In Fig. 10, the graphical representation showcases the 

alignment between forecasted and factual return loss values for 

Decision Tree, Random Forest, XG-Boost, and KNN within the 

1 to 7 THz frequency span. This visual evidence substantiates 

the models' precise training, affirming the remarkable 

congruence between predicted and real values. Notably, these 

graphs were generated using Python programming in Google 

Colab with the Matplotlib library, demonstrating the versatility 

and utility of these tools in data visualization and analysis. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Actual values versus predicted values of Return Loss (a) Decision 

Tree, (b) Random Forest, (c) XG-Boost, (d) KNN. 

D. Simulated and Predicted Return Loss for Random New 

Variation in Antenna Design 

Innovative antenna design often requires extensive 

electromagnetic simulations to fine-tune performance, a 

process that can be resource-intensive and time-consuming. 

This study introduces a paradigm shift by leveraging ML to 

optimize antenna performance swiftly. After training ML 

models, to test prediction capability a new antenna 

configuration with a random variation (L1= 3.5 μm & W2=5.5 

μm) is used as input to the models, these values are not 

included in the training and testing of the model. Fig. 11 

illustrates a compelling outcome: the return loss values 

predicted by various ML models (a) Decision Tree, (b) 

Random Forest, (c) XG-Boost, and (d) KNN) closely align 

with those obtained from rigorous electromagnetic 

simulations. This impressive convergence signifies a 

breakthrough in antenna design efficiency. It means that 

antenna engineers can harness the predictive power of ML to 

rapidly optimize antenna parameters without the need for 

protracted electromagnetic simulations. By significantly 

reducing the iterative cycles required for optimization, ML not 

only expedites the design process but also conserves 

computational resources. This transformative approach 

facilitates the development of cutting-edge antennas with 

reduced time and effort, ultimately advancing the capabilities 

of various applications, from wireless communication to 

remote sensing and beyond.  
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(c) 

 
(d) 

Fig. 11. Simulated & Predicted Return loss for random new variation in 

antenna design (a) Decision Tree, (b) Random Forest, (c) XG-Boost, (d) 

KNN. 

IV. CONCLUSION 

In conclusion, designing an optimal THz antenna that meets 

the requirements of 6G communication is a challenging task 

due to the numerous design factors involved. In this work, ML 

models such as KNN, XG-Boost, Decision Tree, and Random 

Forest were used to predict the return loss of an antenna 

operating at the THz band, which is an essential 6G band for 

future infrastructure. With an accuracy exceeding 71%, the 

results demonstrate strong performance across all models, 

with the Random Forest model leading the pack at 82% 

accuracy. Additionally, the Random Forest model exhibits a 

minimal MSE of 3.816, indicating exceptional accuracy in 

minimizing the squared error between predicted and actual 

values. However, this advantage is associated with a slightly 

longer prediction time, approximately 0.8913 seconds. In 

contrast, KNN demonstrates the quickest fit time at 0.0165 

seconds but lags in performance compared to the Random 

Forest, which excels in R-Square and MSE values, making it 

the preferred choice. The work is distinctive as it is the initial 

effort to forecast the return loss of THz antennas using ML 

methodologies. This method differs from conventional ones 

that use simulation and analytical approaches for predicting 

antenna performance. It is a promising option for researchers 

and engineers working in the field of THz technology since it 

can significantly reduce the time and processing power needed 

for antenna design. 
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