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Assessing Human Settlement Sprawl in Mexico Via
Remote Sensing and Deep Learning
Antonio Briseño , Joaquı́n Salas , Member, IEEE, Ranyart R. Suarez ,

Elio Villaseñor , and Danielle Wood

Abstract—Understanding human settlements’ geographic
location and extent can support decision-making in resource
distribution, urban growth policies, and natural resource
protection. This research presents an approach to assess human
settlement sprawl using labeled multispectral satellite image
patches and Convolutional Neural Networks (CNN). By training
deep learning classifiers with a dataset of 5,359,442 records
consisting of satellite images and census data from 2010, we
evaluate sprawl for settlements across the country. The study
focuses on major cities in Mexico, comparing ground truth
results for 2015 and 2020. EfficientNet-B7 achieved the best
performance among various CNN architectures evaluated with
an ROC AUC of 0.970 and a PR AUC of 0.972. To assess
human settlement sprawl, we introduce an information-based
metric that offers advantages over entropy-based alternatives.
We demonstrate its application to major cities in Mexico as
examples.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8487

Index Terms—human footprint, settlements sprawl, urban
growth

I. INTRODUCTION

A ccording to the United Nations [1], the world population
is projected to reach 9.7 billion by 2050 and 10.9

billion by 2100, with varying growth rates across countries.
While sub-Saharan African countries are expected to maintain
population growth through 2021 and host over fifty percent of
global population increase through 2050, other regions such as
Eastern and South-Eastern Asia, Central and Southern Asia,
Latin America and the Caribbean, as well as Europe and
Northern America may reach a population peak and begin
to decline by 2100 [2]. This population growth will primarily
occur in urban areas [3]. Effective monitoring systems that
provide real-time information are crucial to support sustainable
policy development. With the increasing availability of remote
sensing data and advancements in machine learning (ML)
techniques, analyzing urbanization patterns can be efficiently
performed.

Deep Learning [4] is a leading approach for computer
vision, natural language processing, and ML tasks. Its ability
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to automatically extract features from data [5] reduces bias in-
troduced by feature engineering, resulting in high-performing
applications that can rival humans [6]. However, the returns
on performance improvement diminish as model complexity
increases [7]. Recent advancements in machine architectural
design show promise in surpassing large convolutional neural
networks (CNNs). In this research, to assess human settlement
sprawl dynamics on a large scale, we extensively evaluated
deep learning architectures in a classification task involving
millions of records.

Furthermore, in recent years, Earth observations and remote
sensing have become promising tools to measure and monitor
the Sustainable Development Goals (SDG) [8], [9]. Specifi-
cally, a human settlements layer has been found helpful as
input to estimate indicators associated with SDG 7 (Ensure
access to affordable, reliable, sustainable, and modern energy
for all) [10], SDG 11 (Make cities and human settlements
inclusive, safe, resilient and sustainable) [11] and SDG 15.3
(combat desertification, restore degraded land and soil, includ-
ing land affected by desertification, drought and floods, and
strive to achieve a land degradation-neutral world) [12].

This research introduces a novel approach for remote mon-
itoring of human settlement sprawl using Landsat satellite
images and a comprehensive collection of geolocated labels
(see Fig. 1). Using CNNs, we establish the correlation between
multispectral satellite images and reference occupancy labels
to analyze the longitudinal evolution of human settlements
sprawl in Mexico. The contributions of this research include

• an information-based methodology for evaluating the
evolution of the human settlement sprawl in Mexico.

• code and dataset publicly available, enabling other re-
searchers to verify the results and facilitating further
study in this area.

• evaluation of the dataset with CNN-based learning ma-
chines to assess their effectiveness in detecting human
settlements.

The manuscript offers valuable insights into remote monitoring
techniques and CNN-based learning machines for tracking
human settlement sprawl, with implications for urban planning
and policy-making. The remaining sections of the paper in-
clude a literature survey, dataset and methodology description,
presentation of results, detailed discussions of findings, and
future research directions.

II. RELATED WORK

This section provides a literature survey on human settle-
ment detection and sprawl dynamics assessment using remote
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Fig. 1. A model is trained to differentiate between inhabited and uninhabited areas using satellite images and public records, enabling a
temporal analysis of human sprawl.

sensing. We explore two main approaches: classical techniques
and deep learning (see Table I). Our focus is specifically on
assessing human settlement sprawl.

A. Human Settlements Detection

We provide a survey of literature on automatic human
settlement detection using remote sensing, covering classical
and deep-learning-based techniques.

Classical Approaches. Various methods have been proposed
for the automated detection of human settlements using re-
mote sensing data. Marconcini et al. [13] combine temporal
statistics from radar imagery and spectral indices from op-
tical imagery, employing a Support Vector Machine (SVM)
classifier. A study by Hoeck and Friedrich [14] focus on
small settlements and integrates four products with resolutions
ranging from 50 cm to 10 m per pixel. Rudiastuti et al. [15]
and Ayala et al. [16] utilize Sentinel-2 data to differentiate
buildings, roads, and houses to detect human settlements.
Departing from these methods, Gong et al. [17] propose
an algorithm based on the Normalized Difference Vegetation
Index (NDVI) and the Modified Normalized Difference Water
Index (MNDWI) for Landsat imagery, resulting in a time-
series human settlement layer spanning 40 years. Finally,
Tingzon et al. [18] generate time series of informal settle-
ments, employing Random Forests (RF) and SVM algorithms
for pixel-wise classification.

Modern Approaches. Several studies have explored CNNs
for remote sensing. Corbane et al. [19] and Qiu et al. [20]
used Sentinel-2 imagery and a CNN for pixel-wise classifica-
tion with the Global Human Settlement Layer as reference
labels. Rapuzzi et al. [21] used Sentinel-1 (SAR) imagery
to detect built-up areas with high and constant reflection.
Qiu et al. [22] performed multispectral imagery classification
with a ResNeXt CNN. Recent trends involve deep learning
with multiple sources. For example, Wu et al. [23] used a
semantic segmentation U-Net for built-up area detection from
SAR images. Zitzlsberger et al. [24] processed multispectral
and SAR images to monitor urban change using a CNN
and an RNN. Fibæk et al. [25] detected human structures
using a CNN with range, optical, and radar observations.
Some studies explored modifications to CNN architectures.
Ansari et al. [26] added contourlet for directional information
and wavelet-based image decomposition and reconstruction.

Ghaffarian et al. [27] implemented attention mechanisms to
improve remote sensing applications. Fan et al. [28] adopted
multimodal remote sensing, using VHR satellite imagery and
time series from population density data, applying a ResMixer,
PDNet, and a transformer encoder.

Osorio et al. [29] utilize remote sensing techniques like lidar
and photogrammetry to reveal significant ancient landscape
changes in prehispanic settlements in Colombia, challenging
the notion of these areas being pristine. Abate et al. [30] also
use similar technologies for analyzing medieval settlements
in Italy, focusing on producing detailed 3D and 2D data to
uncover and interpret hidden sites. Aamir et al. [31] apply the
U-net architecture, a deep learning framework, for segmenting
rural settlements in Morocco, demonstrating its utility in land
management. Crivellari et al. [32] explore using Generative
Adversarial Networks (GANs) to improve satellite image res-
olution for detecting unplanned urban settlements in Chinese
urban villages. In contrast, Alrasheedi et al. [33] emphasize
integrating local knowledge with remote sensing to identify
informal settlements accurately. These studies highlight the
importance of advanced techniques in understanding various
types of human settlements across different historical and
geographical contexts.

B. Human Settlements Sprawl Assessment

Unmanaged Human settlements sprawl is associated with
negative impacts, including increased costs for services such
as water, sewage, and waste management, reduced efficiency
due to strained infrastructure, higher traffic, air pollution,
loss of community sense, and decreased green spaces [35].
Researchers have employed remote sensing and ML tech-
niques to quantify these impacts. Some researchers [36]–
[38] employ land-use change alone to indicate settlement
sprawl, while others [39] focus on changes occurring radially
from the settlement center. In addition to remote sensing,
some researchers [40]–[42] have incorporated census informa-
tion [43]–[45]. However, defining human settlements sprawl in
terms of a single indicator may not capture the full complexity
of the phenomenon. Some studies have proposed using multi-
ple indicators and multivariate analysis to address this. For ex-
ample, Gielen et al. [35] introduced an independent component
analysis-based index constructed from 12 indicators, while
Chettry et al. [46] employed 11 descriptors and multivariate
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TABLE I
PERFORMANCE OF ML MODELS IN DETECTING HUMAN
SETTLEMENT SPRAWL: FCNN (FULLY CONVOLUTIONAL
NEURAL NETWORK), RF (RANDOM FOREST), NB (NAIVE

BAYES), XGB (EXTREME GRADIENT BOOSTING), NN
(NEAREST NEIGHBOR), SVM (SUPPORT VECTOR

MACHINES)

Paper Elements de-
tected

Pixel
resolu-
tion

Algorithms Accuracy

[22] settlements 80 m ResNeXt Attention 91.0%
[13] settlements,

water bodies
10 m SVM 89.3%

[19] settlements 10 m FCNN 87.5%
[34] settlements 0.5 m U-Net 95.0%
[20] settlements 20 m FCNN 90.1%

[15] roads, settle-
ments, water
bodies

10 m RF, NB, NN, XGB,
SVM

80%,
29.0%,
48.6%,
80.0%,
71.4%

[16] settlements,
roads

2.5 m U-Net + ResNet-34 54.4%

analysis. Other studies have used standardized Gi statistics
and urban expansion intensity index based on chi-square
analysis [47] to measure settlement sprawl. Bhattacharjee et
al. [48] study on identifying potential urban and rural growth
centers, illustrates the importance of employing diverse infor-
mation sources like hierarchical settlements, remote sensing,
and GIS for organized development of human settlements.
The study underscores the necessity of considering multiple
factors such as groundwater potential and land use to prevent
urban sprawl, promote sustainable development, and address
economic imbalances and rural migration.

Entropy is valuable for quantifying sprawl, capturing the
complexity and randomness of urban development patterns.
Shannon entropy has been employed by several authors [49]–
[51]. Additionally, Padmanaban et al. [52] have used Renyi
entropy, a generalization of Shannon entropy. While entropy
provides insights for static analysis, studying the dynamics
of urban sprawl requires divergence measurements like the
Jensen-Shannon divergence. With appealing properties such
as symmetry and the metric nature of the square root of
twice the Jensen-Shannon divergence, this measure is suitable
for comparing changes in urban development patterns over
time [53].

The literature on human settlement detection and sprawl
dynamics using remote sensing extensively covers various
detection methods and sprawl assessments but needs a focus
on using information-based metrics for comparative analysis of
sprawl over time. This gap highlights the need for integrating
metrics like Shannon and Jensen-Shannon entropy in a cohe-
sive framework to quantify and compare the dynamics of urban
sprawl across different periods and regions more effectively.

III. MATERIALS AND METHODS

Fig. 1 illustrates the methodological process of using satel-
lite imagery to identify urban sprawl. First a CNN deep
learning model is trained using administrative data and labeled

satellite imagery. To estimate urban sprawl in new areas, unla-
beled satellite images are divided into smaller image patches.
These patches are processed through the CNN deep learning
model that classifies them into inhabited or uninhabited areas.
The output is an estimated urban footprint, which discriminates
the spread of inhabited areas within a region (in the illustration
around Mexico City). The final part of the figure shows a
boxplot representing the sprawl dynamics for major cities in
Mexico over time, indicating the rate of urban expansion. This
section discusses the satellite imagery input, public dataset
labels used as output, and benchmarked CNNs for identifying
human settlements sprawl.

A. Satellite Imagery

This research utilizes the geomedian [54], an image incorpo-
rating statistical analysis to determine the intensities µ for each
pixel’s location. The geomedian is obtained by analyzing a
sequence of observations, specifically n multispectral samples
denoted as xi ∈ Rp, where i = 1, . . . , n, and corresponding to
the p-bands of a particular location. The geomedian is defined
as the point x that minimizes the expression

µ = argmin
x

n∑
i=1

||x− xi||. (1)

The geomedian image employed in this research is built from
multiple Landsat scenes captured over the same geographic
area, covering one year of observations. It results in a cloud-
free satellite imagery dataset comprising pixel time series. This
dataset ensures the preservation of geometrical and multispec-
tral relationships [55].

B. Inhabited Areas in Mexico

Since 1950, Mexico has conducted population and housing
censuses, defining housing as the “space delimited by walls
and ceiling made by any material used to live” [56], even if not
intended for lodging. The Mexican census classifies property
types for each residential block, including particular housing,
collective housing, particular housing with business premises,
active business premises, non-active business premises, public
plazas, schools, vacant lots, or buildings. In our dataset,
we summarize these registrations as the inhabited class. We
utilized the national grid used by the Mexican Institute of
Statistics and Geography (INEGI) [57], which divides the
territory into regular-sized tiles with unique identifiers. We
obtained the inhabited and uninhabited classes by intersecting
this grid with the shapefile published by INEGI as open data
from the 2010 national census. The inhabited class consists
of tiles derived from the 2010 census, while the uninhabited
class comprises the remaining regions, such as space-free
buildings, water bodies, scrub, jungles, and forestry. The
resulting inhabited and uninhabited sets contain 333,416 and
5,026,026 images, respectively. Note that the national grid
refers to a standardized geographic coordinate system used
to divide a region into smaller sections for mapping purposes.
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Fig. 2. Geomedian satellite imagery samples for inhabited (a) and uninhabited (b) classes were created using RGB patches from six bands.
HSV representation was used, and intensity values were adjusted through histogram equalization.

C. Architectures Employed

CNNs are highly effective in computer vision tasks like
image classification and object detection. This study employs
CNN architectures to detect human settlements in satellite
images. We start with ConvMixers [58], which have fewer
parameters but still perform well. Next, we explore larger and
more complex models: EfficientNet-B3 (10,787,695 param-
eters), EfficientNet-B7 (64,104,543 parameters), ResNet-200
(91,338,112 parameters), and an U-Net framework contructed
on an EfficientNet backbone for semantic segmentation. The
objective is to assess the effectiveness of different CNN
architectures in detecting human settlements and identify the
optimal approach for this task given the proposed dataset.

ConvMixer [58] combines the strengths of vision Trans-
formers [59] and Multi-Linear Perceptron (MLP) Mixers [60].
It operates on image patches, maintains resolution, and ex-
tracts channel-wise and spatial-wise features. However, Con-
vMixer achieves these operations using convolutions, lead-
ing to significant architectural optimization. It consists of a
patch-embedding layer, depth-wise and point-wise convolution
blocks with non-linear activation and batch normalization
layers. The network concludes with global average pooling
and a fully connected layer with softmax output.

ResNet was the pioneering architecture that demonstrated
the effectiveness of skip connections in improving network
performance [61]. Each residual function in ResNet consists
of three convolutional blocks: two with a 1 × 1 kernel size
to adjust image dimensions and one with a 3 × 3 kernel
size serving as an information bottleneck. Deeper ResNet
models have shown superior performance to shallow ones,
such as ResNet-101, outperforming ResNet-32 on the Ima-
geNet dataset. However, there is a depth limit, as demonstrated
by ResNet-1202, which exhibits overfitting [61]. The ResNet
family has been further enhanced through scaling strategies
and training methods, achieving faster speeds (1.7× - 2.7×)
than the EfficientNet family while maintaining accuracy [62].

EfficientNet [63] is an innovative architecture that achieves
state-of-the-art performance in various computer vision tasks.
Unlike traditional ConvNets, EfficientNet strikes a balance in
scaling network dimensions (width, depth, and resolution) to
achieve optimal trade-offs between accuracy and efficiency.
The width parameter increases the channels in the CNN,

making the network wider. The depth parameter determines
the number of layers in the model, enabling it to capture more
features, although deep architectures may face the vanishing
gradient problem during training. Lastly, resolution refers
to the input image’s dimensions (width × height). Higher-
resolution images enhance model performance but also require
more resources.

U-Net architectures [64] enable multiple simultaneous pre-
dictions. They consist of contracting and expanding layers,
with interconnections at corresponding feature resolution lev-
els. U-Net has demonstrated success in semantic image seg-
mentation and has been enhanced with advanced backbone
networks like EfficientNet. This study uses the Eff-UNet
architecture, which combines U-Net with the EfficientNet
backbone [65].

D. Sprawl of Human Settlements
Entropy in information theory quantifies the average level

of uncertainty. In the context of human settlements sprawl,
entropy can serve as a measure of their occurrence in random
locations. Lower entropy values indicate a more concentrated
distribution, while higher values signify dispersion. Shannon
entropy can be defined as

H = −
C∑

c=1

pc log pc, (2)

where p = [p1, . . . , pC ] represents the mass probability
function with individual probabilities pc, and C represents
the number of different classes. If the true probability mass
is inaccessible, we can approximate the values using class
frequencies, where pc ≈ nc/N , with nc denoting the oc-
currence of class c and N representing the total number of
possible locations. In some cases, the normalized entropy
Hn = H/ logC may be preferred, as it provides a value
between zero and one.

When evaluating human settlement dynamics, describing
the probability distributions p and q for two different time
instances in the same locality is important. The Kullback-
Leibler (KL) divergence can be used to measure the difference
between these distributions, defined as

DKL
(
p || q

)
=

C∑
c=1

pc log

(
pc
qc

)
. (3)
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The KL divergence is not symmetric, i.e., DKL
(
p || q

)
̸=

DKL
(
q || p

)
, and does not obey the triangle inequality [66].

However, the Jensen-Shannon divergence (JSD) is considered
for backward comparison. It is defined as

JSD
(
p || q

)
=

1

2
DKL

(
p || m

)
+

1

2
DKL

(
q || m

)
, (4)

where m = 1
2 (p+ q). Endres et al. [53] studied the square

of the Jensen-Shannon divergence, denoted as D2
pq, which is

twice the JSD, i.e.,

D2
pq = 2JSD

(
p || q

)
. (5)

They showed that Dpq is a metric. In the context of human
settlements sprawl, the distributions spread across images, and
thus, D2

pq provides a descriptor of distribution differences
interpreted in that bi-dimensional space.

IV. RESULTS

This section presents the performance of the various CNNs
analyzed in detecting human settlements in satellite images
and the assessment of sprawl for major cities in Mexico.

A. Dataset and Computing Resources

We compiled a comprehensive dataset containing 5,359,442
Landsat satellite images for this study. Each image covers an
area of 600 × 600 m2 at a resolution of 20 × 20 pixels. A
random sample of examples is illustrated in Fig. 2. The images
were obtained using the geomedian [55] from Landsat 5 and 7
images collected for 2010. The dataset comprises six spectral
bands: red (0.63-0.69 µm), green (0.52-0.60 µm), blue (0.45-
0.52 µm), near-infrared (0.77-0.90 µm), short-wave infrared
one (1.55-1.75 µm), and short-wave infrared two (2.08-2.35
µm).

Of the 5,359,442 images, 5,026,026 were labeled as un-
inhabited, and the remaining 333,416 images were labeled
as inhabited. To address the class imbalance, we randomly
sampled images from the uninhabited class to match the
number of images in the inhabited class. As a result, each
training iteration consisted of 666,832 images, with an equal
number of images (333,416) from both categories. The dataset
was split into three sets: 333,416 images for training (50%),
166,708 records for validation (25%), and 166,708 records for
testing (25%). This division ensured the model was trained on
a large and diverse set of images while avoiding overfitting.

This study used two high-performance computing systems
to train the models. The first system has an x86 64 architec-
ture, a 24-core Intel Xeon E-2650 v4 CPU, 503 GB DDR4
RAM, and four 12 GB Titan X (Pascal) GPUs. We employed
this system to train ConvMixer, and EfficientNet-B3. The
second system has an x86 64 architecture, a 24-core Intel
Xeon E3-1220 E5-2450 CPU, 334 GB DDR4 RAM, and eight
16 GB TPUs v3. We used this system to train EfficientNet-B7,
ResNet-200, and Eff-UNet.

B. Architectures Fine-Tuning

ConvMixer. To implement ConvMixer, we utilized Keras
and followed the description provided by Trockman and
Zico [58]. To explore the space of hyperparameters, we trained
145 models with distinct combinations. We systematically
searched over a range of values for each parameter to de-
termine the optimal hyperparameters. Specifically, we tested
different learning rates, including 5 × 10−3, 1 × 10−3, 5 ×
10−4, 1 × 10−4, 5 × 10−5, and 1 × 10−5. We also varied the
batch size, exploring 64, 128, 256, and 512. In addition, we
tried different kernel sizes, including 2×2, 5×5 and 10×10,
as well as different patch sizes, employing 2 × 2, 5 × 5,
and 10 × 10. Finally, we tested 10, 12, 15, and 20 blocks
for the filter’s depth. Our results indicate that starting at 15
blocks, the model increased its performance. Ultimately, the
best-performing hyperparameters were identified as a learning
rate of 5× 10−4 and a batch size of 128.

Other hyperparameters include twenty depth-wise and
point-wise convolutions blocks, which involve a GELU activa-
tion function, batch normalization, and a skip connection that
goes before applying the depth-wise convolution and finishes
after this operation. Regarding the patch-embedding process,
a kernel size of 5×5 and a patch size of 2×2 were used. The
resultant features were flattened in the last layers by applying
fully connected layers, with a softmax function on the last one
to obtain a probability distribution between the two classes.
The loss function employed was binary cross-entropy. The
Adam optimizer was utilized because it dynamically varies
the learning rate as training progresses. During the training
process we monitored the accuracy. This architecture had
5,108 parameters and took four hours to train. Initially, it was
supposed to train for 100 epochs, but we applied an early
stopping callback that monitored the validation accuracy to
improve at least 1% every 15 epochs. As a result, training
stopped on epoch 48. Both training and validation accuracy
curves follow a steady upward trend. The accuracy validation
curve did not present abrupt jumps and oscillated between
86% and 88%.

EfficientNet-B3. Another architecture analyzed in this
work was EfficientNet-B3, which involved implementing
transfer-learning with ImageNet [67] pre-trained weights.
Since EfficientNet requires images of 300 × 300 pixels or
larger, we up-sampled the 20× 20 pixels images using inter-
cubic interpolation. We also modified the architecture because
EfficientNet layers with ImageNet weights cannot receive six-
channel images. Therefore, we duplicated EfficientNet without
ImageNet weights and changed the first four layers to process
the six channels from the images. Additionally, we remove the
top layer, which consists of a Dense layer that converts the
1,280 features into the 1,000 ImageNet classes, and replace it
with a Global Average Pooling layer.

Continuing with the last layers, we added a Dropout layer
with a rate of 0.2 to reduce overfitting, followed by a Dense
layer with a softmax activation function to predict the prob-
abilities between the two classes. The hyper-parameters used
in this experiment were similar to ConvMixer. The learning
rate of 1 × 10−6, and a batch size of 64. We utilized the
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(a) ROC Curves (b) PR Curves

Measure ConvMixer EfficientNet-B3 EfficientNet-B7 RestNet-200

ROC AUC µ 0.957 0.968 0.970 0.960
σ 2.0× 10−4 1.5× 10−4 n/a n/a

PR AUC µ 0.958 0.969 0.971 0.962
σ 1.8× 10−4 1.0× 10−4 n/a n/a

(c)
Fig. 3. CNN statistical performance on the task of detecting human settlements. Performance curves of 14 tests were evaluated using a
dataset of 666,832 images from both uninhabited and inhabited samples. ConvMixer, and EfficientNet-B3 models were trained with different
data splits. A t-test reveals that the performance is statistically different with a p-value < 0.01. EfficientNet-B7 and ResNet-200 were only
run twice due to their heavy computational burden, and we found no benefit in repeating the training process given the observed result.

Adam optimizer with binary cross-entropy as the loss function.
The EfficientNet-B3 with modified architecture had a total
of 10,787,695 parameters. It took 33 epochs, or roughly 108
hours, to finish the training, considering that early stopping
concluded it. The validation curve initially presented higher
accuracy than training but converged to an accuracy of 90%
as the epochs progressed.

EfficientNet-B7. This model used pre-trained weights from
ImageNet for its 64,104,543 parameters that are distributed
across 813 layers. To achieve better results, we rescaled the
images to a size of 600 × 600 pixels. Following a similar
approach to EfficientNet-B3, we modified the architecture by
removing the final layers and replacing them with a Global
Average Polling layer. We also added a Dropout layer to
prevent overfitting and a Dense layer with a softmax function
for the final classification step.

To facilitate comparison between different CNN architec-
tures, we adopted a standardized approach. We used the Adam
optimizer with a learning rate of 1 × 10−6 and a batch
size of 64. Binary cross-entropy served as our loss function.
We trained the model for 70 epochs, implementing early
stopping and saving the model after each epoch. After 29
training epochs, we obtained the best model, which achieved
a validation accuracy of approximately 91.1%.

ResNet-200. This model has 91,338,112 trainable parame-
ters and requires an input image size of 256×256. We modified
the architecture to ensure consistency and enable performance
comparison across models. For instance, we adjusted the first
three layers to accommodate the six channels of our dataset
and utilized pre-trained ImageNet weights. We also replaced
the fully connected layers with a Global Average Pooling
layer and incorporated a softmax activation function. To train
the model, we reused the hyperparameters from previous
experiments, including a batch size of 64, a learning rate of
1× 10−6, and binary cross-entropy as the loss function. After
70 epochs, we achieved the best weights at the 26th epoch,
with a validation accuracy of 89.9%.

U-Net. For this model, we constructed mosaics by aggre-
gating multispectral patches of size 20 × 20 pixels and their
corresponding labels in a semantic segmentation manner. This
strategy resulted in a multispectral mosaic of 520×520 pixels,
containing the labels inhabited and uninhabited in mosaic
patches of size 26 × 26 pixels. To align with the Eff-UNet
architecture, we resized the input to 512 × 512 pixels and
evaluated the performance on corresponding 25 × 25 pixel
labels. We generated 2,519 images from the area where the
initial 5,359,442 image patches were extracted.

We used the EfficientNet-B7 backbone, the best-performing
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classifier in our experiments, to implement the U-Net architec-
ture. As before, we loaded the pre-trained ImageNet weights
to the EfficientNet-B7 architecture. However, we made some
modifications to the backbone, including changing the input
size to accept the six bands and adapting the decoder to
generate a 26 × 26 pixel output, which we passed through
a softmax activation function in the final layer. For the
hyperparameters, we set the loss function to binary cross-
entropy with a learning rate of 10−5 and a batch size of 16.
To account for class imbalance, we replaced accuracy with the
intersection over union (IoU) metric as a better performance
indicator. We trained the model for 250 epochs but employed
early stopping to save the best-performing weights obtained at
epoch 122. The final IoU performance of the architecture was
83%.

C. Human Settlement Detection Results

The results demonstrate that the CNN architectures accu-
rately classify whether an image belongs to an uninhabited or
inhabited area. EfficientNet-B7 achieved the best performance
with a ROC AUC of 0.970 and a PR AUC of 0.971, followed
by EfficientNet-B3 with a ROC AUC of 0.968 and a PR AUC
of 0.969 . By comparison, ResNet-200 was above ConvMixer
with a ROC AUC of 0.960 and a PR AUC of 0.962 against a
ROC of 0.957 and a PR AUC of 0.958.

To assess the classifiers’ uncertainty , we trained each archi-
tecture 14 times using a subset of inhabited images sampled
randomly without replacement while keeping the set of unin-
habited images constant. This procedure resulted in a dataset
of 666,832 records for each iteration. During each iteration,
ROC and PR curves were generated for each architecture, and
their performance was evaluated (see Fig. 3). EfficientNet-B7
outperformed EfficientNet-B3, which surpassed ResNet-200,
while ResNet-200 outperformed ConvMixer. A t-test, with a
p-value < 0.01, confirmed that models’ performances differ
statistically.

We conducted an experiment to demonstrate the effec-
tiveness of the EfficientNet-B7 classifier, the best-performing
classifier (see Fig. 4). We evaluated every 600 × 600 m2

of the national grid that contained at least one pixel inside
the territorial limits of Mexico City, Guadalajara, and Mon-
terrey, the three largest cities in Mexico. Correspondingly, we
predicted their land use for the years 2010, 2015, and 2020.
While the year 2010 contained observations employed during
the training process, the datasets for 2015 and 2020 contained
unseen images. We evaluated the model’s performance against
publicly available census information to obtain ground truth
for these years. The results are summarized in Fig. 5. We
achieved ROC AUC above 0.984 and PR AUC above 0.975 for
these cities, indicating better performance than for the country
of Mexico.

We characterized the human settlement footprint for each
city over the observed period (see Fig. 5). However, establish-
ing a precise threshold for the ML inference process can lead
to false positives and false negatives. Therefore, a trade-off
is required to identify the optimal threshold and associated
costs. Different cutoff values can be applied to evaluate

the classifier’s overall performance, resulting in a different
proportion of occupied settlements. The resulting distributions
can be represented as boxplots, where the interquartile range
(IQR) extremes Q1 and Q3 correspond to the 25th and 75th
percentiles, respectively.

The analysis of the results revealed interesting insights
about each city’s settlement patterns. For instance, the IQR
extremes for Mexico City indicate a proportion of inhabited
areas between 0.7 to 0.75 in 2010. The median value slightly
decreased by 2015 but returned to a similar proportion in 2020.
In contrast, Monterrey started in 2010 with a ratio between
0.66 and 0.68 for the extremes at Q1 and Q3, and it increased
in 2015, being 0.69 in Q1 and 0.72 in Q3. Then, in 2020,
the extremes defined by Q1 and Q3 corresponded to 0.69 and
0.73. Finally, Guadalajara already had a high proportion of
inhabited areas in 2010, with the IQR ranging from 0.964 to
0.969. However, by 2015, it decreased, changing the IQR from
0.963 to 0.966. In 2020, the IQR was from 0.961 to 0.968,
indicating that settlements continued to occupy most of the
area.

D. Human Settlement Sprawl Results

Our formulation enables the analysis of the dynamics of
urban sprawl in urban settlements. To estimate this, we com-
puted Dpq for Mexico City, Monterrey, and Guadalajara. To
calculate it, we randomly sampled the distribution correspond-
ing to the respective proportion of area with settlements for
one period, compared it with another random sample from
the second period, repeated this process 1,000 times, and
eventually estimated the resulting distributions (see Fig. 5(b)).
The results revealed that for the three cities, Dpq grew more
in the period 2010-2015 relative to the period 2015-2020. The
Dpq distribution IQR for Mexico City was between 0.012 and
0.0186 from 2010 to 2015 and 0.009 to 0.0117 from 2015
to 2020. Monterrey showed an IQR 2010-2015 with Q1 =
0.0321 and a Q3 = 0.0429. On the other hand, the IQR for
2015 to 2020 was bounded by Q1 = 0.0027 and Q3 = 0.0047.
Guadalajara, the city with the most significant proportion of
area with settlements, had an IQR for 2010-2015 bounded by
Q1 =0.0083 and Q3 =0.0175, while from 2015-2020, the IQR
had Q1 =0.005 and Q3 =0.0143.

We used a t-test to compare the urban sprawl distributions
of the three cities for the periods 2010-2015 and 2015-2020
to determine if there were significant differences between
the two periods. Monterrey showed a remarkable change rate
resulting in a t-value of 46.44 and p-value approaching zero.
While in Mexico City, there is no significant change from
one period to another, as shown in Fig. 5(b). In contrast, we
found a substantial difference for Guadalajara with a t-value
of 6.18 and p-value approaching zero for both periods. The
results show that Monterrey and Guadalajara had significantly
different urban sprawl distributions between 2010-2015 and
2015-2020.

V. DISCUSSION

Given the rapid growth of urban human settlements [3],
and the pressing need to address climate change [8], extensive
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uninhabited
2010 - 2020 2015 - 2020 2020

inhabited
2010 - 2020 2015 - 2020 2020

(a) Mexico City (b) Guadalajara (c) Monterrey

(d) ROC curve (e) PR curve

Fig. 4. Human Settlements Detection. To assess the detection performance, settlements were detected in the three largest cities (Mexico City
(a), Guadalajara (b), and Monterrey (c)) using the EfficientNet-B7 classifier. The classifier was trained on the 2010 dataset and tested on
information from images captured in years 2015 and 2020. The colored areas (red/blue) represent uninhabited/inhabited regions in 2010,
2015, and 2020. Yellow regions were uninhabited in 2010 but inhabited in 2015 and 2020, while orange regions were uninhabited in 2010
and 2015 but inhabited in 2020. Green areas were inhabited in 2010 but uninhabited in 2015 and 2020, and pink regions were inhabited in
2010 and 2015 but uninhabited in 2020. We evaluated the model’s performance on unseen 2020 data from the three largest cities and plotted
the performance curves (d) and (e).

research is being done to develop monitoring techniques to
assess their impact. While some methods still rely on classical
techniques, such as SVM and RF [13], [18], our approach fol-
lows the recent trend of employing deep learning techniques.
However, in contrast to some recent studies [24], [25] that
employ techniques with multiple remote sensing sources such
as multispectral images, range, and radar, our approach uses
a large dataset of multispectral images.

Our approach discriminates between inhabited and uninhab-
ited classes without aiming to refine inferences into subclasses
such as houses, roads, and buildings [16] and our architec-
ture to semantically segment the area under analysis [23]

provided limited results. We rely on a publicly available,
large dataset that systematically covers the entire country of
Mexico, ensuring that data limitations do not constrain us as
some researchers have been [20]. The related works, which
employ other solution strategies, confirm that our results are
outstanding within the state-of-the-art framework [13], [15],
[16], [19], [20], [22].

To evaluate sprawl, most researchers follow a two-stage
approach where the land usage problem is solved first, and then
the sprawl is characterized. The human settlement detection
stage is pursued using classical methods [37], [41], [43]–
[46], [49], [50] (with techniques such as maximum likelihood,
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(a) Settlements area (b) Human settlements sprawl dynamics

City Tiles PR AUC ROC AUC area change Dpq

Mexico City 3,945 0.987 0.976 0.7% 0.0115
Guadalajara 360 0.999 0.997 0.311% 0.0201
Monterrey 781 0.991 0.983 2.89% 0.0187

(c)

Fig. 5. Human settlement sprawl. Comparison of results from Guadalajara, Monterrey, and Mexico City. (a) Proportion of municipal territory
occupied by human settlements. (b) Human settlement sprawl (Dpq) for the top three Mexican cities. (c) Summary of results. Tiles correspond
to 600 × 600 m2 neighborhoods. Training is carried out on the 2010 dataset. The ROC AUC and PR AUC performance here is obtained
with the 2020 dataset. Settlements sprawl is the difference from 2010 to 2020.

decision trees, SVM) or modern ones [16], [19]–[27], [34],
[68], [69]. Regarding the human settlement problem, our
research distances itself, offering a comprehensive evaluation
of deep-learning-based methods and establishing a baseline
for a dataset that is ample and covers most of Mexico. In the
assessment of human settlements sprawl, researchers routinely
employ the change of land use alone [37], [38], combined
with other descriptors [39]–[42], or an ad hoc sprawl index,
sometimes the result of multivariate analysis [35], [46], [47],
[70]. These assessments describe aspects that may provide
information about the features considered. Some researchers
have used the Shannon entropy [49]–[51] as a principled,
information-theory-based alternative. While appropriate to de-
scribe a snapshot, our approach fills the gap and enriches the
characterization with an information-based description of the
inter-period human settlement sprawl dynamics with the added
value of being a metric.

In contrast to focused studies that examine niche aspects of
human settlements like ancient sites [29], [30], rural areas [31],
and informal settlements [32], [33], this paper presents a
comprehensive analysis of human settlement dynamics across
Mexico. By covering a country with diverse settlement scenar-
ios, this study offers an inclusive and varied understanding of
settlement patterns, developing strategies applicable to various
countries with different geographical contexts.

This line of research will enable government planning
agencies to make more frequent and detailed maps of urban
sprawl with increased temporal resolution, bridging the gap
between census years. These maps would allow more effi-
cient monitoring of current sprawl trends, making predictive

estimates about future urban development, and assessing the
impact of past policy changes on sprawl dynamics, thereby
aiding in sustainable urban planning and policy formulation.

VI. CONCLUSION

Given the rapid growth of human settlements, it is crucial to
have effective mechanisms for monitoring and tracking their
sprawl. This paper introduces a novel approach to assessing
human settlement sprawl in Mexico using multispectral satel-
lite image patches and Convolutional Neural Networks (CNN).
By leveraging on an information-theory-based metrics, we
achieve objectivity, standardization, and accuracy, which are
characteristics that are further enhanced by the efficiency
and predictive capabilities of deep learning. The performance
attained in this task highlights the potential of this approach.

The study presents a methodology using remote sensing
and deep learning to assess human settlements sprawl across
Mexico. It utilizes and makes publicly available a large-
scale dataset of labeled multispectral satellite images. The
study’s findings demonstrate the effectiveness of deep learning
architectures, particularly EfficientNet. Future research will
delve into ConvMixers as a promising, less complex alternative
for detecting human settlements sprawl. This work sets a new
standard in the use of deep learning and information-based
metrics for large-scale human settlements analysis and may
serve as a stepping stone for sustainable urban management.

Code and Data Availability Statement: Publicly
available datasets were analyzed in this study. This
data and code can be found at https://git.inegi.org.
mx/laboratorio-de-ciencia-de-datos/human settlements
dynamics.
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