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Abstract—It is essential to have enough sleep for a healthy
life; otherwise, it may lead to sleep disorders such as
apnea, narcolepsy, insomnia, and periodic leg movements.
A polysomnogram (PSG) is typically used to analyze sleep
and identify different sleep disorders. This work proposes a
novel convolutional neural network (CNN)-based technique for
insomnia detection using single-channel electroencephalogram
(EEG) signals instead of complex PSG. Morlet wavelet-based
continuous wavelet transforms and smoothed pseudo-Wigner-
Ville distribution (SPWVD) are explored in the proposed
method to obtain scalograms of EEG signals of duration 1s
along with convolutional layers for features extraction and
image classification. The Morlet transform is found to be a
better time-frequency distribution. We have developed Morlet
wavelet-based CNN (MWTCNNet) for the classification of
healthy and insomniac patients using cyclic alternating pattern
(CAP) and sleep disorder research centre (SDRC) databases
with C4-A1 single-channel EEG derivation. We have used
multiple cohorts/settings of the CAP and SDRC databases to
analyse the performance of proposed model. The proposed
MWTCNNet achieved an accuracy, sensitivity, and specificity
of 98.9%, 99.03%, and 98.66%, respectively, using the CAP
database, and 99.03%, 99.20%, and 98.87%, respectively, with
the SDRC database. Our proposed model performs better than
existing state-of-the-art models and can be tested on a vast,
diverse database before being installed for clinical application.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8382

Index Terms—Insomnia Diagnosis, Sleep Disorder Classifica-
tion, Signal Processing, EEG Analysis, Sleep Disturbance, Image
Classification.

I. INTRODUCTION

S leep is a physiological process carried out by the brain
to maintain our physical and mental well-being. During

sleep, the human body repairs and rebuilds itself, eliminating
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metabolic waste that accumulates during awakeness [1], [2]. In
addition, reorganization and promotion of long-term memory
is also done by good sleep. Due to the numerous advantages
of sleep in our daily lives, it is essential that an individual
receive an adequate amount of sleep. Furthermore, several
sleep problems, including nocturnal frontal lobe epilepsy, peri-
odic limb movement disorder, rapid eye movement behavioral
disorder- bruxism, apnea, and insomnia seriously affected
human lives. Recent studies on the rapid identification and
treatment of sleep problems have captured the interest of
several scientists [3].

Insomnia is a most common sleep disorder along with a
paramount public health concern. According to AASM (Amer-
ican Academy of Sleep Medicine), insomnia is characterized
by not able to initiate, maintain sleep or get enough sleep [4].
Insomnia can last for a short time (acute) or a long time
(chronic), or it can also be occasional. Some signs of insomnia
are feeling sleepy during the day, tired, grumpy, difficulty in
concentrating or remembering things, and in falling asleep [5].
The research on various sample data compiled from various
nations revealed that approximately 30% of individuals with
insomnia symptoms are recognized [6]. This disorder may
cause conditions such as stroke, asthma attacks, impaired im-
mune system, seizures, depression, diabetes mellitus, cardio-
vascular disease, anxiety, obesity, and hypertension. Mazzotti
et al. [7] also showed a crucial relation between the mortality
rates and insomnia, in five Latin American countries.

Generally, the cure for insomnia is difficult for medical
practitioners. They typically diagnose insomnia based on pa-
tients’ sleep patterns. Sometimes doctors advocate study on
sleep stages. For the study of sleep, a patient is taken to a
sleep laboratory for a night-long PSG screening containing
multi-channel and multi-modal data such as EEG, electromyo-
gram (EMG), electrooculogram (EOG), and electrocardiogram
(ECG) [8] are explored. Recordings of PSG are used when the
initial inquiry is insufficient because of the existence of behav-
ioral or pharmacological disturbances of sleep [8]. The study
of EEG signals performed by doctors during sleep is hectic,
time-consuming, and error-prone. Monitoring a single-channel
EEG signal is the most promising method for identifying sleep
disorders, given that the gold standard for understanding sleep
stages is EEG [9]–[13]. Therefore, it becomes crucial to score
sleep automatically with artificial intelligence methods.

Recently, researchers have been developing models to detect
insomnia automatically. Aydin et al. [14] used artificial neural
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Fig. 1. Proposed MWTCNNet model for automated detection of insomnia using 1-sec single-channel EEG signal.

Fig. 2. Typical normal and insomnia 1-second EEG (C4-A1) signals
of CAP database where amplitude is in micro-volt and time is in
second.

Fig. 3. Typical normal and insomnia 1-second EEG (C4-A1) signals
of SDRC database where amplitude is in micro-volt and time is in
second.

networks to detect insomnia with a 14.5% error rate. Abdullah
et al. [15], [16] employed multi-model PSG signals, achieving
an 18.7% error rate by combining characteristics from sleep-
related EEG and ECG signals. Hamida et al. [17] used Hjorth
parameters and a k=means classifier to classify normal and
insomniac subjects, achieving a sensitivity of 91.6% and a
kappa value of 0.83, but on a small dataset. Sharma et
al. [5] developed a model using an antisymmetric biorthog-
onal wavelet filter bank and L-1 norm, achieving 97.87%
classification accuracy with ECG signals during REM sleep.
Malik et al. [18] achieved 94.03% accuracy using RR-time
series and EEG signals with a deep neural network. Shahin et
al. [19] compared a deep learning-based classifier’s accuracy
for identifying insomnia in two scenarios, obtaining 92% for
recordings with only insomniac patients and 86% for those
with insomnia and at least one other sleep disorder.

It is advisable to train and test deep learning models using
two or more databases or a single large-volume database [20],
for a classification task. The standard practice has been in-
creasing and generalizing the ability of models by including

more variation in the training and testing datasets. However,
there has been no study on the automatic detection of insomnia
using multiple databases. The proposed MWTCNNet is a
novel model developed for identifying insomnia using wavelet
transform and CNN using two diverse databases for cross-
examination. The main objective of this paper is to study
the performance of wavelet transform such as Morlet and
SPWVD with deep neural network in automated identification
of insomnia. Also, we wanted to explore that single channel
EEG can identify insomnia accurately. Our CNN based deep
neural network has outperformed state-of-the-art architectures.

II. METHODOLOGY

This work presents a unique technique to detect insomnia
via EEG signals. The method involves collecting the available
open source datasets, selecting an appropriate channel to ac-
quire the data, pre-processing the data, decomposing wavelets,
and classifying insomnia using deep learning techniques (as
shown in Fig. 1).

A. Data Description

In this paper, two publicly available databases: (i) CAP-
sleep [21] and (ii) SDRC [22], have been used for the
experimentation.

1) CAP Database: It was developed at the Ospedale Mag-
giore sleep disorder facility in Parma, Italy, which has 108
PSG recordings, nine insomniac, and 16 normal subjects.
These PSG recordings include multimodal signals such as
EEG with at least three channels, EOG with two, ECG, and
respiratory signals (SpO2, abdominal and thoracic effort, and
airflow) solely during sleep recorded from handheld mobile
devices with activities <=3. This study uses only the C4-A1
channel of EEG signal from this database, which has been
recorded at 256Hz and 512Hz sampling frequencies. This
study utilizes a total of 13 database recordings of the database.
SThere are six normal and seven insomniac EEG recordings
are sampled at 512 Hz with an average subject age of 46.6
years andwith a 10.53 standard deviation. The average duration
of the EEG recordings is 33710.8 seconds.

2) SDRC Database: It consists of PSG recordings of 60
people referred to the Sleep Disorders Research Center, Ker-
manshah, Iran. The study included 11 healthy volunteers and
11 psychophysiological insomniac patients. The aim of this
study is to emphasize insomnia detection, so we have utilized
only 22 individuals. The data was sampled at 256 Hz and
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Fig. 4. Scalograms using Morlet wavelet of 1-sec EEG signals from two databases: (a)Normal (b)Insomniac (CAP, fs*=512Hz), and (c)Normal
(d)Insomniac (SDRC, fs*=256Hz). * fs=sampling frequency. Here (x,y) axis of the above plots refers to the width and height of the scalogram
images.

(a) (b) (c) (d)

Fig. 5. SPWVD wavelet, of 1-sec EEG signals from two databases: (a)Normal (b)Insomniac (SDRC, fs*=256Hz), and (c)Normal (d)Insomniac
(CAP, fs*=512Hz). **SPWVD=smoothed pseudo wigner-wille distribution,*fs=sampling frequency.

contains 8 EEG, 6 EOG, and 3 EMG channels recorded from
handheld mobile devices. Among these 22 recordings, with
an average age of 43 years and a standard deviation of 15.38
years. The average duration of of EEGthese recordings is
28870.72 seconds.

B. Data Pre-processing and Segmentation

The databases recordcontains recording of various signals
through polysomnography (PSG), including respiratory, EOG,
EEG, and ECG signals. In our experiment, we focused on
extracting EEG signals specifically from the C4−A1 channel
in the PSG recordings. To reduce the processing time and
increase the accuracy of detection, we have segmented the
whole signal into 1 sec. duration [23] and converted these sub-
signals into RGB images using continuous wavelet transform
with Morlet mother wavelet functions and SPWVD. The EEG-
C4−A1 signals, extracted from CAP and SDRC database and
sample C4-A1 channel recording, are shown in Figs. 2 and 3,
respectively with one-second duration. Dividing the signals
into such small divisions helps the CNN to analyze the features
of EEG signal features quickly, and accurately.

C. Scalogram Generation

The scalogram of the signal is extracted using Morlet
CWT (Continuous wavelet transform). The deep convolutional
neural network component of the proposed methodology uses

CWT coefficients as features. This work evaluates the per-
formance of the proposed method on Morlet wavelet func-
tions and Smoothed pseudo wigner-wille distribution based
scalograms. Calculating the coefficients scales is done on the
1sec segment of each signal. Then scalograms are retrieved
and scaled using bi-cubic interpolation following the specifi-
cations. Figs. 4 and 5 show illustrations of a scalogram images
created using the Morlet wavelet transforms and SPWVD,
respectively. These images are then fed into deep CNN to
develop the model.

1) Continuous Wavelet Transform: EEG signals are chal-
lenging to evaluate due to their highly oscillating variable
frequency components and amplitudes [24]. To have complete
understanding of the signals, it is necessary to explore them
in different domains. Transformation methods enable simul-
taneous capture of time-domain signal data in the frequency
domain as well. The time-frequency representation measures
the temporal and spectral variation of a signal. This research is
carried out on the continuous wavelet transform (CWT) with
the Morlet and SPWVD wavelet functions to transform the
signal representation into the time-frequency format [24].

The wavelet is a finite-energy, zero-average-function oscil-
lating bandpass filter. CWT of a signal s(t) is represented
as [25]-

Wφ,ϕ[s(t)] =

∫ ∞

−∞
s(t)ψ∗

(
t− ϕ

φ

)
dt (1)



KUMAR et al.: TIME FREQUENCY DISTRIBUTION AND DEEP NEURAL NETWORK FOR AUTOMATED IDENTIFICATION 189

where φ controls the scaling of the function ψ((t− ϕ)/φ)
with time-shift ϕ. Continuous Wavelet Transform has the
advantage as its ability to alter the size of the window. The
flexibility of window size is the main benefit of CWT. A
wide window is useful for analyzing low-frequency compo-
nents, whereas a narrow window is useful for analyzing high-
frequency ones. The typical scalogram images obtained for
normal and insomniac EEG signals (1sec duration) belonging
to the two databases are shown in Figs. 4 and 5.

D. Transfer Learning

Large annotated dataset, time, and high computing resources
are required for training a CNN from scratch than using
a CNN that has been pre-trained on a huge database [26].
There are two primary transfer learning scenarios: freezing
and fine-tuning the layers of CNN architecture. In fine-tuning,
the weights and biases of a CNN that has already been
trained are used instead of random initialization, followed by
a normal training procedure on the unseen dataset. However,
in another scenario, the pre-trained CNN layers are considered
to be fixed feature extractors. In this case, the fully connected
layers are tweaked across the target dataset and number of
defined classes whereas the biases and weights of our ideal
convolutional layers remain fixed. The frozen layers are not
restricted to convolutional layers alone. Frozen layers may
be fully connected layers or any subset of convolutional;
nevertheless, it is usual practice to freeze the more superficial
convolutional layers. In our study, we have used the freezing
method by freezing all the CNN layers and re-trained the last
three fully-connected layers with number of output classes
as two for last layer of AlexNet [27], GoogLeNet [28],
VGG16 [29], ResNet50 [30], and MobileNetV2 [31], using
the same training pipeline used for the proposed method and
compared the performance of these models with our proposed
MWTCNNet model for classification between normal and
insomniac scalogram.

E. Convolutional Neural Network

Traditional approaches to categorization and feature ex-
traction need quantitative and qualitative analysis to make
decisions. Due to the ability of CNN to automatically extract
and classify deep features, CNN has become a popular DL
approach. CNN employs convolutional operations instead of
matrix multiplication and finds distinct characteristics that
distinguish one class from another [32]. A total of 12 layers of
feature maps are used to organize the convolution layers [33].
As shown in the Fig. 6, the last layer of the fully linked
network is the SoftMax layer; the output is an N-dimensional
vector, where N is the desired number of classes. The first
layer is created by convolving the input layer, i.e., layer-1,
with a kernel size of three. Then each feature map is fed into
a second convolutional layer of the same kernel size and given
into a max-pooling size 1. The max-pooling process results in
extracting the feature map from the previous layer. The layer
4 feature map is created by convolving the layer 3 feature map
with a kernel size 3. Each feature map is again subjected to a
max-pooling of kernel size 2, which reduces the feature map

TABLE I
DESCRIPTION OF EACH CONVOLUTIONAL LAYER USED IN

THIS WORK

Layer (type) Output Shape Param
Conv2D (None, 510, 510, 32) 896
Conv2D (None, 508, 508, 32) 9248
MaxPooling2D (None, 254, 254, 32) 0
Conv2D (None, 252, 252, 64) 18496
Conv2D (None, 250, 250, 64) 36928
Conv2D (None, 248, 248, 64) 36928
MaxPooling2D (None, 124, 124, 64) 0
Conv2D (None, 122, 122, 128) 73856
Conv2D (None, 120, 120, 128) 147584
Conv2D (None, 118, 118, 128) 147584
MaxPooling 2D (None, 59, 59, 128) 0
Conv2D (None, 57, 57, 256) 295168
Conv2D (None, 55, 55, 256) 590080
Conv2D (None, 53, 53, 256) 590080
MaxPooling2D (None, 26, 26, 256) 0
Conv2D (None, 24, 24, 512) 1180160
Conv2D (None, 22, 22, 512) 2359808
Conv2D (None, 20, 20, 512) 2359808
Conv2D) (None, 18, 18, 512) 2359808
MaxPooling2D (None, 9, 9, 512) 0
Conv2D (None, 7, 7, 1024) 4719616
Conv2D (None, 5, 5, 1024) 9438208
Conv2D (None, 3, 3, 1024) 9438208
Dropout (None, 3, 3, 1024) 0
Flatten (None, 9216) 0
Dense (None, 1024) 9438208
Dense (None, 1024) 1049600
Dense (None, 1024) 1049600
Softmax (None, 2) 2050

by 2. And the output is further fed into the next convolutional
neural layers, and a similar set of multiple units forms the
complete architecture. Then, after the max-pooling dropout
layer is followed, which reduces the number of neurons for
this work, we have to reduce 20% of neurons. Finally, The
Dense layer connects all the neurons completely, two output
neurons are connected between the last layer and the bottom
layer. Further, layer-by-layer analysis is presented in Table I.

F. Training and Testing pipelines

In this work, a typical backpropagation with a batch size of
24 is carried out. The learning rate is chosen to be 0.001. To
achieve the best performance, this parameter is tuned appropri-
ately. The NVIDIA-RTX A4000 was employed as the graphics
processing unit (GPU) in this study for training purposes.
It has 64 gigabytes of total random access memory and 24
gigabytes of dedicated memory, and it executed each epoch
on average in 5 minutes. Based on the model’s performance
throughout these iterations, we trained it for 100 epochs and
measured the performance based on the following metrics-

Specificity(SPC) =
TN

TP + FP
(2)

Sensitivity(SEN) =
TP

TP + FN
(3)

Accuracy(ACC) =
TP +TN

TP +TN + FP + FN
(4)
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TABLE II
PERFORMANCE OBTAINED FOR PROPOSED MWTCNNET MODEL FOR AUTOMATED INSOMNIA DETECTION USING CAP

AND SDRC DATABASES USING MORLET WAVELET FUNCTIONS AND SPWVD WITH DIFFERENT DATA SPLITTING
STRATEGIES

Training Validation Testing Performance with Morlet Performance with SPWVD
Database CAP SDRC CAP SDRC CAP SDRC Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
Data Splitting 80% 0% 20% 0% 0% 100% 97.39% 97.46% 97.32% 95.43% 96.31% 96.78%

70% 0% 15% 0% 15% 0% 98.90% 99.03% 99.27% 96.85% 96.11% 97.33%
0% 70% 0% 15% 0% 15% 99.03% 99.20% 98.87% 97.80% 97.55% 96.32%
0% 80% 0% 20% 100% 0% 97.40% 97.67% 97.22% 95.12% 96.47% 95.46%

TABLE III
SUMMARY OF RESULTS OBTAINED FOR AUTOMATED

INSOMNIA DETECTION USING MORLET WAVELET-BASED
SCALOGRAMS AND OTHER CNN ARCHITECTURES WITH

CAP AND SDRC DATABASES

CAP database
Model Accuracy Sensitivity Specificity

AlexNet 96.60% 95.13% 96.13%
GoogLeNet 95.76% 94.55% 92.10%
VGG16 93.99% 93.05% 93.06%
ResNet50 91.55% 91% 92%
MobileNetV2 91.30% 91% 92.21%
MWTCNNet 98.9% 99.03% 99.27%

SDRC database
AlexNet 94.55% 93.44% 94.24%
GoogLeNet 93.64% 93.15% 92.88%
VGG16 91.10% 91.55% 90.76%
ResNet50 90.45% 90.32% 91.25%
MobileNetV2 89.30% 89.45% 90.13%
MWTCNNet 99.03% 99.20% 98.87%

where TN , TP , FN , and FP represent True Negatives, True
Positives, False Negatives, and False Positives, respectively.

Table II shows that four combinations of the CAP and
SDRC datasets were used for training, validation, and testing
purposes. We chose variable ratios for dividing the whole
datasets to train the CNN model and its later assessment or
testing. Internal bifurcation of each class, normal and abnormal
for each subset, was carried out using the Tensorflow in-build
attribute shuffle, randomly selecting the proportion of all the
available classes. This attribute ensures that the MWTCNNet
is not biased towards any of the defined classes and equally
focuses on the features of all types. Training and validation
curves of MWTCNNet is shown in Fig. 7 for all four database
settings.

III. RESULTS

We performed the experiments and verified the perfor-
mances using the confusion matrix, overall accuracy (Accu-
racy), sensitivity, and specificity parameters.

The confusion matrix drawn from the prediction of healthy
(or normal, label "0") and abnormal (or insomniac, label "1")
detection are shown in Fig. 8. This depicts the testing results
obtained using CAP and SDRC databases. The following
conclusions can be drawn based on Fig. 8-

• Fig. 8a: When the proposed model was trained on CAP
database (80%-training, 20%-validation) and tested on
SDRC dataset (100%-testing), as shown in column-1 of

Table II, MWTCNNet miss-classified only 0.0261% of
the images which shows the reliability of the model for
training on one dataset and testing on another dataset.

• Fig. 8b: For the cohort described in column-2 of Table II,
the model showed 0.01104% error rate, which supports
the robustness of the model for training and testing on
the same dataset.

• Fig. 8c: MWTCNNet showed 99.04% accuracy and
0.00963% error rate for column-3 of Table II implying
that the proposed model performs better on SDRC dataset
compared to CAP when trained and tested on the equal
sampled unseen dataset.

• Fig. 8d: When the model is trained on the SDRC dataset
and tested on CAP dataset, the proposed model shows
significantly higher False Positives (near to double the
False Positive), i.e., the model is classifying a higher
number of ’normal’ samples as ’insomniac’ samples.
This might be because of training on low frequency
(SDRC dataset), and the model might not have adapted
the features of higher frequency insomniac samples (CAP
dataset).

The above analysis shows that the model performs better
when trained on CAP (higher frequency samples) and used for
generalization on unseen datasets (train on 512 Hz and test on
256 Hz). However, the SDRC dataset or low- frequency sam-
ples are good for testing on the equivalent sampled datasets,
training on 256 Hz, and testing on unseen 256 Hz samples,
for -example.

Further, the confusion matrices (Eqs. 2, 3, 4) were computed
for this study next. Table III provides an overview of the
performance rate obtained using CAP and SDRC databases.
Using CNN with a scalogram-based technique, it is possible
to reach average accuracy, sensitivity, and specificity values
of 98.9%, 99.03%, and 98.66%, respectively. Additionally,
for the SDRC database, the maximum average accuracy of
97.39%, sensitivity of 97.46%, and the specificity of 97.32%
are obtained.

IV. DISCUSSION

Previous efforts in the state of the art have shown per-
formance advances with their proposed methods, however,
such studies have worked on a specific signal captured from
polysomnography of a single database, and none of them
worked on the further processing of these signals for their pos-
sible conversions such as scalograms and spectrograms [38]
(as shown in Table IV). Our method employed the conversion
of a signal into an image for identifying hidden features by
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Fig. 6. Proposed CNN architecture for automated insomnia detection.

(a) Training on CAP. (b) Training on SDRC.

Fig. 7. Training (blue) and Validation (red) accuracy in each epochs of MWTCNNet on CAP and SDRC database. Where x-axis represent
number of epochs and y-axis represent the accuracy

(a) (b) (c) (d)

Fig. 8. Testing confusion matrices obtained for automated insomnia detection using Morlet wavelet-based scalograms with MWTCNNet
model: (a)Trained with CAP and Tested with SDRC, (b)Trained and Tested with CAP, (c)Trained and Tested with SDRC, (d)Trained with
SDRC and Tested with CAP.

using the CNNs. As shown in Table IV, the proposed method
obtained the highest accuracy on both the databases.

Our developed method is compared with the pretrained
deep neural networks such as AlexNet, GoogLeNet, VGG16,
ResNet50, and MobileNetV2, because the designed architec-
ture is able to capture the subtle changes from the scalograms
converted from C4-A1 EEG signal. Moreover, using less
number of features in the last dense layers of the architecture
to consider the important features and the dropout layer further
drops the less important features based on the calculated
weights.

These results imply that the proposed MWTCNNet is effi-
cient in identifying sleeplessness by scoring the highest accu-

racy over the well-established methods. The major outcomes
of this work are as follows:

• The method used to convert a two-dimensional signal into
an RGB image is completely independent of the type of
signal, PSG channel, and the data length, which makes
it universally applicable for the use of any physiological
signal for insomnia detection.

• Comprehensive analysis helps to understand the working
of this deep learning model easily.

• The proposed model yielded the best performance on both
databases as compared to the transfer learning methods.

• As shown in Table V, the proposed method is faster and
easy to -understand, implement, and integrate with other
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TABLE IV
COMPARISON OF OUR SUGGESTED MODEL WITH OTHER CUTTING-EDGE TECHNIQUES FOR AUTOMATED INSOMNIA

DIAGNOSIS BUILT UTILISING THE CAP AND SDRC DATABASES

CAP database
Studies Signal(s) Method Segment

size (sec.)
Accuracy (%)

Sharma et al. [5] ECG (ECG1-ECG2) Norm features; Classifier- kNN, SVM 30 97.87%
Widasari et al. [34] ECG (ECG1-ECG2) sleep quality parameters and Spectral features;

Classifier- Ensemble Bagged trees
30 86.27%

Sharma et al. [35] EEG (F4-C4 and C4-A1) Hjorth parameter; Classifier- Ensemble Bagged trees 30 96.5%
Hamida et al. [36] EEG (C3) Principal Component Analysis 30 91%
Proposed EEG (C4-A1) Classifier- MWTCNNet 1 98.9%

SDRC database
Wei et al. [37] EEG (C4-A1) Classifier- LSTM 30 90.9%
Proposed EEG (C4-A1) Classifier- MWTCNNet 1 99.03%

TABLE V
COMPARISON OF TUNING PARAMETERS USED FOR VARIOUS CNN ARCHITECTURES FOR AUTOMATED INSOMNIA

DETECTION USING CAP AND SDRC DATABASES

Parameters MWTCNNet AlexNet ResNet50 VGG16 MobileNetV2 GoogLeNet
Convolutional Layers 18 5 50 16 27 51
Dense Layers 3 3 1 2 1 2
Filter size 3 11,5,3 7,3,1 3 3,1 7,5,3,1
Strides 1 1,4 2,1 1 2,1 2,1
Trainable Parameters (in Million) 45.342 61 25.5 198 3.47 6.8

systems because it is built with open-source frameworks
that are readily available to collaborate with a wide range
of other frameworks and devices.

Additionally, the limitations of the proposed method are
listed below-

• Large number of intermediate layers (21) increases the
total number of trainable parameters which makes this
model bulky.

• The performance of the proposed method varies for
different sampling frequencies (256Hz, and 512Hz).

• MWTCNNet is a typical CNN, considering only images
as input obtained by including an additional step of
converting EEG signal into its scalogram.

In the future, we may develop the CNN or some other deep
learning techniques with only EEG signals as the input signal
instead of scalogram plots. Our future work also focus on real-
time detection of insomnia. The current method utilizes only
one EEG channel, we would like to look for the possibility
of heart rate variability (HRV) or electrocardiogram (ECG)
signals as it uses less bandwidth as compared to the EEG sig-
nals [39], [40]. We also plan to develop a portable home-based
smart device for real-time monitoring of an insomniac patient
to prevent hazardous consequences and aid the caretakers in
managing the patients.

V. CONCLUSION

In this paper, we introduced the MWTCNNet, a pioneering
approach for the detection of insomnia utilizing single-channel
C4-A1 EEG signals. Notably, our work stands as the first to
leverage EEG signals from both the CAP and SDRC databases
to identify insomnia, solely relying on a single-channel one-
second EEG recording. Demonstrating the effectiveness of our

model, we achieved remarkable accuracy rates of 98.9% and
99.03% with the CAP and SDRC databases, respectively.

However, it is crucial to acknowledge a notable limitation
in our methodology. The conversion of EEG epochs into
corresponding images, followed by their utilization in the CNN
model, introduces computational intensity and time-consuming
processes. Moving forward, to address this limitation and
enhance efficiency, we propose future research directions that
involve developing a deep learning model specifically tailored
for automatic insomnia detection, utilizing single-channel EEG
signals. This strategic refinement aims to optimize both com-
putational resources and overall model performance, paving
the way for more streamlined and effective diagnostic tools in
the field of insomnia detection.
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