
22 IEEE LATIN AMERICA TRANSACTIONS, VOL. 22, NO. 1, JANUARY 2024

Code Smell Detection Research Based on
Pre-training and Stacking Models

Dongwen Zhang,Shuai Song,Yang Zhang*,Haiyang Liu,Gaojie Shen

Abstract—Code smells detection primarily adopts heuristic-
based, machine learning, and deep learning approaches. However,
to enhance accuracy, most studies employ deep learning methods,
but the value of traditional machine learning methods should not
be underestimated. Additionally, existing code smells detection
methods do not pay sufficient attention to the textual features in
the code. To address this issue, this paper proposes a code smell
detection method, SCSmell, which utilizes static analysis tools
to extract structure features, then transforms the code into txt
format using static analysis tools, and inputs it into the BERT pre-
training model to extract textual features. The structure features
are combined with the textual features to generate sample data
and label code smells instances. The REFCV method is then
used to filter important structure features. To deal with the issue
of data imbalance, the Borderline-SMOTE method is used to
generate positive sample data, and a three-layer Stacking model
is ultimately employed to detect code smells. In our experiment,
we select 44 large actual projects programs as the training and
testing sets and conducted smell detection for four types of code
smells: brain class, data class, God class, and brain method. The
experimental results indicate that the SCSmell method improves
the average accuracy by 10.38% compared to existing detection
methods, while maintaining high precision, recall, and F1 scores.
The SCSmell method is an effective solution for implementing
code smells detection.

Index Terms—Code Smell, Pre-training Model, Textual Fea-
tures, Stacking Model.

I. INTRODUCTION

R e factoring techniques can eliminate code smells without
changing the code’s external behavior. By detecting code

smells, researchers can effectively reveal code design flaws
and determine specific locations that need to be refactored.
The projects of this technique can significantly improve code
quality and maintainability [1].

Early automated code smell detection tools rely heavily
on structure features and heuristic rules [2] to identify code
smells. Typically, this method selects specific metrics and
rules, and judges whether the code structure complies with
these metrics and rules through manually set thresholds in
order to detect whether there are code smells. Popular code
smell detection tools, such as JDeodorant [3] and iPlasma [4],
mainly used heuristic rule methods and judge code smells

* corresponding author: zhangyang@hebust.edu.cn
The authors are with the School of Information Science and Engineering,

Hebei University of Science and Technology, Shijiazhuang, Hebei, China,
050018; Dongwen Zhang and Yang Zhang are also with Hebei Technology
Innovation Center of Intelligent IoT, Shijiazhuang, Hebei 050018, China.

The authors would like to thank the insightful comments and suggestions of
those anonymous reviewers, which have improved the presentation. This work
is partially supported by the Natural Science Foundation of Hebei under grant
No.F2023208001, and the Oversea High-level Talent Foundation of Hebei
under grant No.C20230358.

based on set thresholds. However, the different thresholds
used by different tools result in a high false positive rate
in detection results. Therefore, to overcome the limitations
of heuristic rule methods and address these problems, many
researchers have turned to machine learning methods. For
example, Fontana et al. [5] demonstrated the effectiveness
of machine-learning methods in detecting code smells by
utilizing multiple machine-learning techniques for detection.
Fabiano et al. [6] compared the performance of heuristic rule
methods and machine learning methods in detecting code
smells, and pointed out that the detection accuracy of both
methods needs to be improved.

More and more researchers are applying deep learning
technology to code smell detection due to its continuous
development. Wang et al. [7] detected various code smells in
the same dataset by combining method-level and class-level
code smells using backpropagation neural networks. Liu et al.
[8] proposed a method to automatically generate a code smell
dataset and utilized deep learning techniques for code smell
detection.

Current code smell detection methods have achieved some
results, but there are still several areas that need to be further
improved: First, existing machine learning-based code smell
detection methods are relatively single and need to fully utilize
the advantages of multiple machine learning models; Second,
there are few publicly available code smell datasets in existing
work, and most of them only contain structure features,
ignoring textual features; Finally, the structure features in most
work ignores the relationship between different code smells,
and only some effective strurture features are selected.

This paper proposes a code smell detection method called
SCSmell, which is based on pre-training and stacking models.
The method uses static analysis tools to extract structure
features from the code. The code is then converted into txt
format and input to a BERT [9] pre-training model to extract
textual features. The extracted structure features and textual
features are combined to generate sample data and label code
smell instances. These instances are then input to a three-layer
Stacking model [10]. The experiment constructed a training set
and a test set using 44 large-scale real-world projects to detect
four types of code smells: data class, brain class, god class,
and brain method. By evaluating the effectiveness of code
smell detection through answering four research questions, the
experimental results demonstrate that SCSmell improves the
average accuracy by 10.38% compared to existing detection
methods. Furthermore, this method maintains high precision,
recall, and F1 values, highlighting its effectiveness.

This paper has the following three contributions:



ZHANG et al.: CODE SMELL DETECTION RESEARCH BASED ON PRE-TRAINING AND STACKING MODELS 23

1) A dataset was constructed by selecting 44 large-scale
real-world projects from different domains, and extract-
ing the structure features and textual features for each
projects.

2) A method for detecting code smells is proposed using
pre-training and stacking models.

3) SCSmell was compared with six existing machine learn-
ing models and six deep learning-based code smell
detection methods, and the effectiveness of SCSmell was
validated.

II. CODE SMELL DETECTION METHOD

This paper proposes a research method for code smell
detection that enhances precision by utilizing pre-training
and stacking models. Fig. 1 displays the framework of the
suggested method.

A. Overview of SCSmell

The code smell detection method SCSmell framework bases
on pre-training and stacking models is shown in Fig. 1. First,
static analysis tools extract structure features from 44 large-
scale projects. Then, the code is converted to txt format and
input to a BERT pre-training model to extract textual fea-
tures.The textual features is reduced to 1 dimension using the
LDA dimensionality reduction technique, and combined with
the structure features to generate data samples and label code
smell instances. Then, the RFECV method was used to select
the features on a merit basis, and the top 10 features were
selected according to their scores, and then the dataset was
expanded by adding positive samples using the Borderline-
SMOTE [11] method, which is used as input to a three-
layer stacking model. The model is trained multiple times on
the training set to obtain a well-trained classifier, which is
then tested on the test set to evaluate the performance of the
classifier and provide code smell detection results.1

B. Data Collection

We conduct research by collecting 44 real projects from
GitHub. Twelve of the projects have more than 10KLOC.
Table I shows the projects and their configurations, where
NOC represents the number of classes, NOM represents the
number of methods, and LOC represents the number of code
lines.

C. Textual Features Extraction

To analyze the textual features extracted from the source
code, we adopt a two-step process. First, the code is converted
into a txt format using static analysis tools. Next, the converted
code is processed using a pre-training model BERT. The
SentenceTransformer class from the sentence_transformers
library is utilized to load the pre-training BERT model and
encode the input code text. This ensures that the encoding
format used during model training is maintained. The model’s
word vector extraction function is then employed to obtain

1https://github.com/Lansforever/SCSmell.git/

TABLE I
PROJECTS AND CONFIGURATIONS

Project Name Purpose or Usage NOC NOM LOC
Cayenne Open Source Persistence Framework 2928 16997 135020
Cobertura Java Code Coverage Reporting Tool 165 1156 14723

SPECjbb2005 Java Application Server Testing 76 747 12713
Javacc Parser Generator 180 1487 20861

JSmooth Executable Wrapper 101 886 10411
RxJava Reactive Extension of Java Virtual Machine Implementation 736 4181 41273
Fitjav Open Source Testing Program 61 456 2916
Xomoj JMX Specification Implementation 29 266 3392

JGroups Group Communication Tool 273 2235 15587
JBoss Application Server 612 5269 75513
Job Distributed Task Scheduling Framework 46 227 1638

Batik Java-based Application Toolkit 1682 16247 166673
Xalan XSLT Processor 968 10413 171427

Jadventure Java Text-based Game 36 145 1215
JUnit Unit Testing 462 3960 20645

HSQLDB Database 548 11043 190614
Rhino Interpreter 270 6781 79406

Blueblock Java Text-based Game 13 88 1178
Cassandra Row Storage with Partitioning 1066 10640 83001
JavaStud Java Example Series Project 218 459 4229
Mmseg4j Chinese Analyzer for Java 16 97 716
Mybaits3 Test Code 224 1003 5183
Redomor Java Text-based Game 55 463 3359
Anthelion Nutch Plugin for Centralized Semantic Data Crawling 357 2480 32756
Argouml UML-based Visualization Tool 1953 17456 160295

Three 3D Engine 232 799 10542
Pixi HTML5 2D Drawing 88 610 9513

Freecs Open Source Testing Program 139 1404 20720
Freedomotic Secure Internet of Things Framework 501r 3867 33857

Mylyn Tool 2762 16470 276401
Hadoop Distributed System Infrastructure 1340 13464 158560
Itext7 Powerful PDF Toolkit 1518 12771 124562
Jedit Text Editor 584 7376 103503

Maven Project Management Tool 712 4008 23435
Nutch Java-based Search Engine 366 1983 23036

Parallelcolt Java-based High-Performance Scientific Computing Tool 1130 14527 216685
Pmd Source Code Analyzer 2166 9902 50510

Xerces XSLT Processor for Converting XML Documents 964 10359 188637
Displaytag Open Source Suite for Custom Markup 262 945 9019

Freecol Turn-based Strategy Game 344 3066 30581
Brackets Integrated Development Environment 160 4740 35154
Freemind Top Free Mind Mapping Software Written in Java 532 7303 65866

Gantt Desktop Project Scheduling and Management Tool 685 5848 40009
Drjava Lightweight Java Programming Environment 1145 16920 147284

Total 28798 252340 2827762

the word vector for each input vocabulary. By performing
a forward pass, the corresponding hidden state vector from
the final hidden layer is extracted. To consolidate all word
vectors into a single fixed-length vector, average pooling is
applied to the entire sequence of word vectors. Finally, the
768-dimensional vector is reduced to one dimension using the
LDA dimensionality reduction technique. This enables us to
obtain the vector representation required for this paper.

D. Structural Features Extraction

We use iPlasma to select multiple structure features to detect
code smells. Structure features are extracted from methods
and classes in specific projects, and 24 metric standards are
selected to evaluate the negative characteristics of coding
for BrainClass, DataClass, and GodClass, while 21 metric
standards are selected to evaluate the negative characteristics
of coding for BrainMethod. The selected metrics are shown
in Table II, these metrics, including the base class usage ratio
(BUR), CC, CM, etc., are commonly utilized in code smell
detection.

E. Feature Selection and Sample Integration

We addresse the issue of overfitting on training data and
poor generalization on new data by utilizing the RFECV
method for feature selection. Initially, the original feature set
is fed into the model, followed by partitioning the dataset
and training the model. RFECV assesses the importance of



24 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 1, JANUARY 2024

Fig. 1. Overview of SCSmell

TABLE II
METRIC

Class-level Method-level
Metric Description Metric Description
AMW Average Method Weight ALD Attribute to Local Data ratio
ATFD Access to Foreign Data ATFD Access to Foreign Data
BOVM Base Class Overriding Method CALIN Coupling Between Associated Classes
BUR Base Class Usage Ratio CC Cyclomatic Complexity
CBO Coupling Between Object CCL Cohesion among Class Attributes
CC Cyclomatic Complexity CDISP Coupling Dispersion
CM Class Methods CEXT Coupling Between External classes

CRIX Change Risk Index CINT Coupling Between Internal classes
DAC Data Abstraction Level CM Class Methods
DIT Depth of Inheritance Tree CYCLO Cyclomatic Complexity

FANOUT Fan-Out FANIN Fan-In
FDP Foreign Data Providers FANOUT Fan-Out

GREEDY Global access ratio EDDY FANOUTCLASS Fan-Out for a Class
LOC Lines of Code FDP Foreign Data Providers
NAS Number of Accessed Services LAA Locality of Attribute Accesses
NDU Number of Declared Used LOC Lines of Code
NOA Number of Attributes MAXNESTING Maximum Nesting Level

NOAM Number of Overridden Accessor Methods NOAV Number Of Accessed Variables
NOD Number of Overridden Methods NOEU Number of Executed Units
NOM Number of Methods NOLV Number Of Local Variables
NOPA Number of Public Attributes NOP Number Of Parameters
TCC Tight Class Cohesion

WMC Weighted Methods per Class
WOC Weight of a Class

each feature to the model by utilizing the recursive feature
elimination algorithm, which involves training the model mul-
tiple times and calculating the feature’s importance score.
This process allows for a more accurate evaluation of feature
subsets and reduces potential risks by selecting the best feature
subset through cross-validation in each fold and repeating the
process. Ultimately, the top 10 structure features are selected
based on their scores. The selected structure features are
presented in Table III.

After feature selection, the method-level dataset has over
300,000 samples, and the class-level dataset has over 20,000

TABLE III
FILTERED METRICS

Code Smell Metrics

BM ALD ATFD CALIN CC CCL CDISP CEXT CINT CM CYCLO

DC AMW ATDF BOVM BUR CBO CC CM CRIX DAC DIT

GC AMW ATDF BOVM BUR CBO CRIX DAC DIT FANOUT FDP

BC AMW ATDF BOVM BUR CBO CC CM CRIX DAC DIT

samples. The final dataset contains approximately 42% posi-
tive samples.

F. Positive Sample Generation

To solve the problem of low positive samples in the training
data, we employ the Borderline-SMOTE method to balance the
dataset. Borderline-SMOTE, an improved version of SMOTE,
prioritizes the optimization of boundary samples by leverag-
ing SMOTE and effectively handles minority class boundary
samples. The application of the Borderline-SMOTE method
results in an increase in the dataset’s positive samples from
22% to 42%.

G. Machine Learning Model

Fig. 2 illustrates the structure of a machine learning model.
This model improves upon the traditional two-layer Stacking
model and implements a three-layer Stacking model with
feature selection from the RFECV method. It includes primary,
intermediate, and advanced models to validate the model.
The primary model selects three basic models: model1 is an
SVM, model2 is a Logistic, and model3 is a Random forest.
The intermediate model chooses model2 and model4, where
model2 is a Random forest from the first layer and model4



ZHANG et al.: CODE SMELL DETECTION RESEARCH BASED ON PRE-TRAINING AND STACKING MODELS 25

is a model aggregator. The advanced model selects the model
aggregator from the second layer.

The Stacking model is designed in a way that each basic
model is trained separately using different algorithms and
hyperparameters. The output of each basic model is saved
for later use. Next, the evaluation of each basic model’s
performance is conducted on the test set. Subsequently, the
test result is incorporated as an additional feature into the
intermediate model. The output of the intermediate model
is then fed into the advanced model, which uses it to make
predictions on new samples and produces the final prediction
result. By combining multiple algorithms, the Stacking model
is able to minimize errors caused by algorithm selection and
effectively capture various prediction features offered by the
basic models.

1) Selection of Base Model Classifiers: To validate the
superiority of the selected primary model classifiers, we con-
ducte experiments using six combinations of primary model
classifiers. The experimental results are shown in Table IV.
SLR represents SVM [12]+Logistic [13]+Random forest [14],
KRA represents KNN [15]+Random forest+Adaboost [16],
SLA represents SVM+Logistic+Adaboost, SKR represents
SVM+KNN+Random forest, SRA represents SVM+Random
forest+Adaboost, and KLR represents KNN+Logistic+Random
forest.

According to the data in table IV, the SLR set performs
slightly better on all metrics. This is because different fea-
tures of the datasets and different datasets have different
feature distributions and class distributions, which may affect
the performance of the underlying model. On BM and BC
datasets, so the recall of KRA combination is better than SLR
combination. However, to better utilize the advantages of each
base classifier, we choose the SLR combination.

2) Selection of Model Layer Number: We demonstrate
through experiments that a three-layer stacking model is
superior to a two-layer stacking model, with all base models
being SLR. The experimental results are shown in Table V.

The data analysis from Table V indicates that the three-layer
stacking model outperforms the two-layer stacking model in
all evaluation metrics. Thus, we can confidently assert that
the three-layer stacking model is better suited for effectively
detecting code smells and identifying them.

III. EXPERIMENTAL VERIFICATION

This section introduces the experimental setup, research
questions, evaluation metrics, and experimental results.

A. Setup

All experiments were conducted on a workstation with a
5.0 GHz Intel(R) Core(TM) i9-13900HX 4060 processor and
16GB of RAM running 64-bit Windows 11. Python version is
3.7, sklearn version is 1.0.2, numpy version is 1.21.5, pandas
version is 1.4.2.

Table VI shows the parameters of all methods used in the
experiments, including the degree of the polynomial kernel
function (degree), the stopping criterion (tol), the amount of
memory specified for training (cache_size), etc. The values of

the parameters of the machine learning model were selected by
their own manual adjustment, and the parameters of the deep
learning model were fine-tuned based on the values derived
from previous work.

B. Research Questions

We evaluate the effectiveness of the SCSmell method by
addressing the following research questions (RQ):

RQ1: How effective is SCSmell at detecting code smells?
RQ2: Is the performance of the model trained by a dataset

with structural and textual features better than that with barely
structural or textual features? RQ3: How effective is SCSmell
at detecting code smells compared to traditional ML models?

RQ4: How effective is SCSmell at detecting code smells
compared to DL models?

RQ5: How does SCSmell perform in detecting bad code
flavors for each part of the time performance?

C. Evaluation Metrics

We assess the efficiency of SCSmell by computing accuracy,
precision, recall, and F1-score using formulas (1)-(4).

Accuracy is the ratio of the number of correct predictions
to the total number of predictions and is calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

True Positive (TP) represents the number of positive sam-
ples that are correctly classified as positive. False Positive (FP)
represents the number of negative samples that are incorrectly
classified as positive. True Negative (TN) represents the num-
ber of negative samples that are correctly classified as negative.
False Negative (FN) represents the number of positive samples
that are incorrectly classified as negative.

Precision represents the probability of correctly predicting
positive samples among the samples predicted as positive and
is calculated as follows:

Precision =
TP

TP + FP
(2)

Recall represents the probability of correctly predicting
positive samples among the actual positive samples in the
original dataset and is calculated as follows:

Recall =
TP

TP + FN
(3)

The F1-score is the weighted average of precision and
recall, with values ranging from 0 to 1. A higher F1-score
indicates a balance between precision and recall, with both
being maximized. It is calculated as follows:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4)

In the experimental results table, Accuracy is abbreviated as
Acc, Precision is abbreviated as Pre, and Recall is abbreviated
as Rec.

D. Experimental Results

This section presents the experimental results.



26 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 1, JANUARY 2024

Fig. 2. Machine Learning Model

TABLE IV
RESULTS OF SELECTION OF BASE MODEL CLASSIFIERS(%)

Combination BM DC GC BC
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

SKR 97.86 97.58 96.96 97.27 97.15 97.08 96.24 96.66 97.25 97.17 97.04 97.10 97.11 97.36 97.00 97.18
SLA 98.14 98.24 98.47 98.35 98.68 98.61 97.88 98.24 96.69 96.89 96.71 96.80 97.17 97.25 96.94 97.09
SRA 97.59 98.16 98.15 98.16 96.24 96.56 95.47 96.01 96.45 96.56 95.44 96.00 95.69 95.49 95.48 95.48
KRA 99.07 98.86 99.13 98.99 98.41 98.28 98.04 98.16 97.89 98.04 97.94 97.99 97.85 98.11 98.40 98.25
KLR 97.58 97.47 98.01 97.74 96.58 96.42 95.84 96.13 96.11 96.20 95.89 96.04 96.60 97.07 96.45 96.76
SLR 99.17 99.31 98.97 99.14 98.34 98.83 96.66 98.74 98.23 98.76 98.42 98.59 98.47 99.07 98.25 98.66

TABLE V
RESULTS OF SELECTION OF MODEL LAYER NUMBER(%)

Layers BM DC GC BC
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Two Layers 98.88 99.11 98.45 98.78 97.58 97.88 96.84 97.36 97.49 98.07 97.82 97.94 97.77 97.82 96.87 97.34
Three Layers 99.17 99.31 98.97 99.14 98.36 98.83 98.66 98.74 98.23 98.76 98.42 98.59 98.47 99.07 98.25 98.66

TABLE VI
MODELS AND CONFIGURATIONS

Model Hyperparameters Value

SVM
degree 3

tol 0.001
cache_size 200

Random forest n_estimators 100

Logistic
penaltye 12

tol 0.0001
max_iter 100

Adaboost learning_rate 0.05
n_estimators 40

BP Number of units(Dense) 3
GRU GRU_units (1,2)

ResNet Filters in convolution layer (64,128,256,512)
Kernel size in convolution layer (3)

DeepFM
Dimensionality of embedding layer (256)

Number of units(Dense) (32,64,128,256)
LSTM units (12)

DeepSmell

GRU (768,256)
LSTM (256,256)
CNN (12,32,128)

Attention (256,256)
Linear_1 (256,2)

DeleSmell

Filters in convolution layer (32,64,128,256,512)
Kernel size in convolution layer (6,10)

GRU units (1,2)
Number of units(Dense) (128,256)

1) Results for RQ1: To answer RQ1, seven representative
large programs, Batik, Xalan, HSQLDB, Argouml, Mylyn,
Parallelcolt, and Xerces, selected by SCSmell were used as

the sample programs for this experiment. The experimental
results are shown in Table VII.

Table VII shows the individual and average detection results
for the seven programs. The last row indicates the overall
average detection results for all seven programs.

The results in Table VII demonstrate that our method,
SCSmell, achieve high accuracy, precision, recall, and F1
scores of 99.51%, 99.38%, 98.12%, and 98.75% respectively
on the Xerces program for BM code smell. Nevertheless, there
are noticeable variations across programs, possibly attributed
to the significant sample size differences. In the case of BM
code smell in the Xalan program, all metrics are approximately
2.15% (=98.86%-96.71%), 1.51 %(=99.29%-97.78%), 1.66%
(=98.51%-96.85%), and 1.59% (=98.90%-97.31%) lower than
the averages, respectively. This discrepancy can be explained
by the scarcity of BM code smells in Xalan. The lower metrics
observe for Xalan in DC code smell and HSQLDB in GC code
smell can be attributed to the same cause. On the other hand,
our method exhibites strong performance for other code smells
and programs.

The experimental results indicate that SCSmell has high
accuracy in detecting code smells and can accurately detect
code smells.

2) Results for RQ2: To answer RQ2, we construct three
datasets for four types of code smells in the experiment:
datasets containing textual features, datasets containing struc-
ture features, and datasets containing two features.



ZHANG et al.: CODE SMELL DETECTION RESEARCH BASED ON PRE-TRAINING AND STACKING MODELS 27

TABLE VII
EXPERIMENTAL RESULTS FOR RQ1(%)

Program BM DC GC BC
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Batik 98.55 99.27 98.57 98.92 98.64 98.71 97.94 98.32 98.54 99.17 98.68 98.92 98.40 99.05 98.08 98.56
Xalan 96.71 97.78 96.85 97.31 97.72 98.66 98.84 98.75 98.52 98.67 98.61 98.64 99.20 99.51 99.18 99.34

HSQLDB 99.75 99.92 99.52 99.72 98.62 99.59 98.12 968.85 97.48 97.53 97.34 97.43 98.92 99.74 98.52 99.13
Argouml 99.83 99.88 99.60 99.74 98.92 99.48 99.08 99.28 98.71 98.62 97.18 97.89 98.60 99.46 98.61 99.03
Mylyn 98.82 98.92 97.95 98.43 98.04 98.51 98.11 98.31 99.17 99.38 98.81 99.09 99.12 99.16 99.09 99.12

Parallelcolt 98.88 99.87 98.97 99.42 99.07 99.22 98.53 98.87 98.73 99.36 98.49 98.92 98.39 98.18 98.11 98.14
Xerces 99.51 99.38 98.12 98.75 98.93 99.04 98.87 98.95 98.61 98.51 98.31 95.41 98.12 98.10 98.29 98.19
Mean 98.86 99.29 98.51 98.90 98.56 99.03 98.50 98.76 98.54 98.75 98.20 968.47 98.68 99.03 98.55 98.79

The metrics of the dataset containing two types of features
are significantly higher than those containing only one type of
features, as shown in Table XI. For the detection of the four
code smells, the recall of the dataset containing two features
are 18.28% (=98.97%-80.69%), 21.05% (=98.66%-77.61%),
20.01% (=98.42%-78.41%), and 17.11% (=98.25%-81.14%)
higher than that containing textual features. For BC code
smell, the metrics of the dataset containing only structural fea-
tures are 96.53%, 95.64%, 95.73%, and 95.68%, respectively.
These values are 1.94% (=98.47%-96.53%), 3.43% (=99.07%-
95.64%), 2.52% (=98.25%-95.73%), and 2.98% (=98.66%-
95.68%) lower than those of the dataset containing two fea-
tures. This indicates that textual features plays a crucial role
in SCSmell’s prediction results, surpassing the contribution of
textual features. Furthermore, it is worth noting that SCSmell’s
metrics at the method level slightly outperform those at the
class level when detecting the four code smells. This can be
attributed to the larger dataset available at the method level,
which allows for better model training in this paper.

According to the experimental results, we draw the con-
clusion that models trained with only single feature cannot
detect code smells more effectively. Datasets with two kinds
of features are more suitable for detecting code smells.

3) Results for RQ3: To answer RQ3, we compare the
performance of SCSmell with six machine learning models:
Random forest [14], Decision Tree [17], KNN [15], SVM
[12], Logistic [13], and Adaboost [16]. To ensure experiment
accuracy, we employe five-fold cross-validation.

The experimental results are shown in Table IX, and the
overall performance of SCSmell on the test program is the
best. For BM code smell, the accuracy rate of KNN is
89.87%, which is 9.44% (=99.31%-89.87%) lower than that of
SCSmell. The KNN obtains a higher recall rate at the cost of
reducing the accuracy rate. For DC code smell, the indicators
of SCSmell are 48.8% (=98.34%-49.54%), 40.16% (=98.83%-
58.67%), 33.09% (=98.66%-65.57%) and 36.81% (=98.74%-
61.93%) higher than SVM. For GC code smell, the accuracy
rate, recall rate and F1 value of SCSmell are 98.23%, 98.42%
and 98.59% respectively, which are 3.16% (=98.23%-95.07%)
and 7.73% (=98.42%-90.69%), 3.84% (=98.59%-94.75%),
however, the accuracy of Decision tree is 0.42% (=99.18%-
98.76%) higher than SCSmell. Decision trees achieve higher
precision at the cost of lower recall. For BC code smell, it is
not difficult to find that the indicators of Logistic are all low,
and the recall rate is 86.43%, which is 11.82% (=98.25%-

86.43%) lower than SCSmell.
The experimental results show that SCSmell performs sig-

nificantly better than existing methods in detecting BM, DC,
GC, and BC code smells. Although Adaboost performs well
in identifying code smells, its computational complexity is too
high, and it takes a long time to process the dataset.

4) Results for RQ4: To answer RQ4, we compare the
SCSmell model with existing deep learning models, including
BP [18], GUR [19], ResNet [20], DeepFM [21], DeepSmell
[22]and DeleSmell [23]. All models were trained on the dataset
collected in this paper to ensure a fair comparison.

Table X presents the experimental results. For BM code
smell, SCSmell exhibites precision, recall, and F1 scores of
99.31%, 98.97%, and 99.14% respectively, which are 18.8%,
18.85%, and 18.83% higher than BP’s corresponding scores
of 80.51%, 80.12%, and 80.31%. In addition, when compares
to GRU, SCSmell improvements in accuracy, precision, recall,
and F1, elevating the scores from 83.66%, 85.01%, 84.52%,
and 84.76% to 99.17%, 99.31%, 98.97%, and 99.14% respec-
tively. Furthermore, compares to DeepFM, SCSmell achieves
a substantial increase in precision, soaring from 82.53% to
99.31%. On the other hand, for DC code smell, DeepSmell
attaines a recall rate of 87.20%, but fell short in accuracy
and precision with scores of 81.47% and 80.31% respectively,
which are 16.87% (=98.34%-81.47%) and 18.52% (=98.83%-
80.31%) lower than SCSmell. Turning to GC code smell
detection, DeleSmell yieldes higher overall metrics, yet its
accuracy and precision scores are 1.16% (=98.23%-97.07%)
and 1.08% (=98.76%-97.68%) lower than SCSmell. Lastly, in
comparison to ResNet, SCSmell displayes a 7.21% (=98.25%-
91.04%) enhancement in recall for BC code smell.

From the data in Table X, it can be seen that SCSmell
has better overall performance than other deep learning meth-
ods in detecting these four code smells, which proves that
SCSmell is more effective than the other six deep learning
methods.The reason why the three-layer stacking model works
better than deep learning in code bad taste detection may be
because the stacking model effectively reduces overfitting and
improves the generalization ability of the model. In addition,
stacking models can also improve detection by integrating the
prediction results of multiple base learners. In contrast, deep
learning models may suffer from problems such as overfitting
and underfitting, leading to poor detection results.

5) Results for RQ5: To answer RQ5, we evaluated the
time performance of SCSmell on detecting the bad taste of



28 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 1, JANUARY 2024

TABLE VIII
EXPERIMENTAL RESULTS FOR RQ2(%)

Features BM DC GC BC
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

With structural features 97.11 97.97 96.76 97.36 96.22 95.65 95.86 95.75 96.88 95.98 95.11 95.54 96.53 95.64 95.73 95.68
With textual features 92.53 91.64 80.69 85.82 90.59 91.04 77.61 83.79 91.05 90.69 78.41 84.10 91.13 89.92 81.14 85.30

With two features 99.17 99.31 98.97 99.14 98.34 98.83 98.66 98.74 98.23 98.76 98.42 98.59 98.47 99.07 98.25 98.66

TABLE IX
EXPERIMENTAL RESULTS FOR RQ3(%)

Model BM DC GC BC
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

Random forest 88.28 87.59 87.45 87.52 87.22 88.14 85.34 86.72 88.18 90.15 86.54 88.31 86.48 88.49 88.29 88.39
Decision tree 95.52 98.77 86.81 92.40 94.54 98.65 89.07 93.62 95.07 99.18 90.69 94.75 94.15 97.59 88.46 92.80

KNN 92.48 89.87 96.75 91.80 93.07 94.85 93.71 94.28 95.15 93.26 95.09 94.17 94.63 92.59 95.14 95.85
SVM 57.51 68.29 61.84 64.91 49.54 58.67 65.57 61.93 50.15 59.15 65.48 62.15 51.09 58.26 62.95 60.51

Logistic 92.41 91.18 91.85 91.51 91.81 90.76 89.65 90.20 90.17 93.48 91.59 92.53 88.81 89.91 86.43 88.14
Adaboost 94.24 93.81 95.08 94.44 96.47 96.07 95.11 95.60 96.13 95.91 96.08 95.99 95.55 95.78 95.41 95.59
SCSmell 99.17 99.31 98.97 99.14 98.34 98.83 98.66 98.74 98.23 98.76 98.42 98.59 98.47 99.07 98.25 98.66

TABLE X
EXPERIMENTAL RESULTS FOR RQ4(%)

Model BM DC GC BC
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

BP 86.34 80.51 80.12 80.31 81.65 82.15 82.59 82.37 82.05 83.50 83.15 83.32 83.69 83.47 83.28 83.37
GRU 83.66 85.01 84.52 84.76 85.66 86.42 83.24 84.80 96.11 87.14 83.09 85.07 86.66 88.01 82.49 85.16

ResNetA 94.29 94.59 94.29 94.44 92.54 96.58 92.47 94.48 92.16 95.68 93.41 94.53 92.08 95.49 91.04 93.21
DeepFM 85.69 82.53 89.13 85.70 91.68 96.54 83.45 89.52 90.45 93.47 84.48 88.75 91.51 97.58 82.41 89.36

DeepSmell 84.28 84.68 84.81 84.74 81.47 80.31 87.20 83.61 88.69 89.04 90.11 89.57 86.51 84.72 85.15 84.93
DeleSmell 98.51 99.01 98.62 98.81 97.16 98.51 98.08 98.29 97.07 97.68 97.49 97.58 97.61 98.96 97.56 98.26
SCSmell 99.17 99.31 98.97 99.14 98.34 98.83 98.66 98.74 98.23 98.76 98.42 98.59 98.47 99.07 98.25 98.66

the brain method code, and recorded the time consumed by
SCSmell on the whole detection of the bad taste of the brain
method, as shown in Table 8. As can be seen from Table 8,
the total time spent by SCSmell on detecting the bad taste
of brain method code is 121 minutes, with an average of
2 minutes and 45 seconds per item.The SCSmell test is the
most time-consuming, accounting for more than 40% of the
overall detection time. This is mainly due to the large amount
of data and the more complex and time-consuming operation
process. The total time for text information generation is 8min
(about 11s per project on average, of which Blueblock takes
the shortest time of only 2s, and Mylyn takes the longest
time of 58s), and obtaining the feature information through
the static analysis tool takes 39min, with an average of 53s
per project.

E. Threats to Validity

This section discusses the validity threats that may affect
the test results in the experiment. The first internal validity
threat is that high code complexity may lead to high time costs
for the code smell detection tool to analyze and detect code
smells. The second external validity threat is that the dataset
used to detect code smells in this paper is quite large, which
may increase the computational and storage resource require-
ments of code smell detection methods, thereby affecting the
performance and efficiency of detection. For internal validity

TABLE XI
EXPERIMENTAL RESULTS FOR RQ5(MIN)

Step name Time
Text Information Generation 8

Metrics Generation 39
Data Set Creation 23

Data Preprocessing 2
SCSmell Testing 49

Total 121

threats, the subsequent work will use modularized design to
decompose the code into multiple modules, which can reduce
the coupling and complexity of the code. For external validity
threats, the subsequent work can use distributed computing,
which distributes the dataset on multiple nodes for processing,
which can improve the efficiency of computation and storage
and shorten the detection time.

IV. CONCLUSIONS

In this paper, we propose a new code smell detection
method called SCSmell. The method combines static analysis
and textual features to detect code smell instances. Firstly,
code structure features are obtained from multiple applications



ZHANG et al.: CODE SMELL DETECTION RESEARCH BASED ON PRE-TRAINING AND STACKING MODELS 29

using a static analysis tool, and these instances are labeled
as code smell. Then, the textual features are transformed
into word vectors using a BERT pre-training model. The
structure features and textual features are combined to create
the data samples for this study. The data samples are then
evaluated using a three-layer Stacking model. Experiments
are conducted on 44 large-scale open-source applications,
comparing the performance of SCSmell with existing code
smell detection methods. The experimental results demonstrate
a 10.38% improvement in average precision with SCSmell,
while maintaining high precision, recall, and F1 values. These
findings indicate that SCSmell effectively implements code
smell detection. Future work will involve the verification of
this method’s utility in detecting other code smells, as well as
further improvements to enhance its performance. In future
work, we will create visual charts or examples to better
understand the test results.

REFERENCES

[1] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the diffuseness and the impact on maintainability of
code smells: a large scale empirical investigation,” in Proceedings of the
40th International Conference on Software Engineering, pp. 482–482,
2018.

[2] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[3] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
pp. 1037–1039, 2011.

[4] R. Marinescu, “Measurement and quality in object-oriented design,”
in 21st IEEE International Conference on Software Maintenance
(ICSM’05), pp. 701–704, IEEE, 2005.

[5] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Com-
paring and experimenting machine learning techniques for code smell
detection,” Empirical Software Engineering, vol. 21, pp. 1143–1191,
2016.

[6] F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia, “Comparing
heuristic and machine learning approaches for metric-based code smell
detection,” in 2019 IEEE/ACM 27th International Conference on Pro-
gram Comprehension (ICPC), pp. 93–104, IEEE, 2019.

[7] S. Wang, Y. Zhang, and J. Sun, “Detection of bad smell in code based
on bp neural network,” Computer Engineering, vol. 46, no. 10, pp. 216–
222, 2020.

[8] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,”
in Proceedings of the 33rd ACM/IEEE international conference on
automated software engineering, pp. 385–396, 2018.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[10] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[11] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-smote: a new over-
sampling method in imbalanced data sets learning,” in International
conference on intelligent computing, pp. 878–887, Springer, 2005.

[12] S.-i. Amari and S. Wu, “Improving support vector machine classifiers by
modifying kernel functions,” Neural Networks, vol. 12, no. 6, pp. 783–
789, 1999.

[13] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning, vol. 4. Springer, 2006.

[14] T. Łuczak and B. Pittel, “Components of random forests,” Combina-
torics, Probability and Computing, vol. 1, no. 1, pp. 35–52, 1992.

[15] Y. Liao and V. R. Vemuri, “Use of k-nearest neighbor classifier for
intrusion detection,” Computers & security, vol. 21, no. 5, pp. 439–448,
2002.

[16] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[17] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE transactions on systems, man, and cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[18] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[19] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[21] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-
machine based neural network for ctr prediction,” arXiv preprint
arXiv:1703.04247, 2017.

[22] Z. Y, D. CH, L. H, and G. CY, “Code smell detection approach based
on pre-training model and multi-level information,” Journal of Software,
vol. 33, p. 1551, 05 2022.

[23] Y. Zhang, C. Ge, S. Hong, R. Tian, C. Dong, and J. Liu, “Delesmell:
code smell detection based on deep learning and latent semantic analy-
sis,” Knowledge-Based Systems, vol. 255, pp. 109–737, 2022.

Dongwen Zhang received the Ph.D degree from the
Department of Automation Control in Beijing Insti-
tute of Technology. She is currently a professor with
the School of Information Science and Engineering,
Hebei University of Science and Technology. Her
research interests include software refactoring for
parallelism and parallel programming.

Shuai Song is currently pursuing his master’s degree
in the School of Information Science and Engineer-
ing, Hebei University of Science and Technology.
His research interests include parallel programming
and software refactoring.

Yang Zhang received the Ph.D degree from the
School of Computer, Beijing Institute of Technology.
He is currently a professor with the School of
Information Science and Engineering, Hebei Uni-
versity of Science and Technology. His research
interests include software refactoring for parallelism
and parallel programming.



30 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 1, JANUARY 2024

Haiyang Liu is currently pursuing his master’s
degree in the School of Information Science and En-
gineering, Hebei University of Science and Technol-
ogy. His research interests include software testing
and software refactoring.

Gaojie Shen Obtained a bachelor’s degree in elec-
tronic information from Anhui University of Tech-
nology, and now studies computer science at Hebei
University of Science and Technology. The research
direction is software refactoring and parallel pro-
gramming design.


	Introduction
	Code Smell Detection Method
	Overview of SCSmell
	Data Collection
	Textual Features Extraction
	Structural Features Extraction
	Feature Selection and Sample Integration
	Positive Sample Generation
	Machine Learning Model
	Selection of Base Model Classifiers
	Selection of Model Layer Number


	Experimental Verification
	Setup
	Research Questions
	Evaluation Metrics
	Experimental Results
	Results for RQ1
	Results for RQ2
	Results for RQ3
	Results for RQ4
	Results for RQ5

	Threats to Validity

	Conclusions
	References
	Biographies
	Dongwen Zhang
	Shuai Song
	Yang Zhang
	Haiyang Liu
	Gaojie Shen


