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Novel Range Wise Optimization of the Exponential
Bounds on the Gaussian Q Function and its

Applications in Communications Theory
Aditya Powari , Garv Anand and Dharmendra Sadhwani

Abstract—This paper presents a novel and highly effective
method for improving the accuracy of approximations for the
Gaussian Q function. By rigorously optimizing the coefficients
of the approximations using the interior point optimization tech-
nique, significantly tighter bounds are achieved with simplicity in-
tact. The proposed approach, which is applicable to a wide range
of scenarios, focuses on enhancing the simple exponential bounds
proposed in the literature. Through a comprehensive analysis
based on the relative error, the superiority of the optimized
coefficients compared to the existing bounds and approximations
available in the open literature is demonstrated. Moreover, an
insight into the generic applicability of the optimized coefficients
is provided, which exhibits excellent performance in terms of the
absolute error as well. The Gaussian Q function plays a crucial
role in evaluating the performance of diverse wireless communi-
cation systems under various challenging fading distributions.
Therefore, the proposed research significantly contributes to
advancing the accuracy of the approximations of the Gaussian
Q function, enabling improved error performance for coherent
digital modulation techniques. The findings presented herein
offer valuable contributions to the state-of-the-art and set a new
standard for accuracy in the work related to Gaussian Q function
approximations.

Index Terms—Optimization algorithm, Gaussian Q function,
Wireless communication systems, Performance evaluation, ap-
proximate computing, Digital modulation techniques, Fading
channels, Bit-error rate, Symbol-error rate

I. INTRODUCTION

In exact form, the Gaussian Q function 1 plays a vital role
in performance analysis of wireless communication systems

over additive white Gaussian noise and fading channels [1].
However, this form is not tractable when it comes to compute
the key metrics like symbol error probability (SEP) of several
coherent digital modulation schemes like filtered multitone
modulation [2] over complex fading distributions like: Fluc-
tuating Beckmann fading [3], κ−µ shadowed fading channel
[4], cascaded double κ− µ shadowed fading channel [5] and
Log-normal distribution [6], resulting into cumbersome double
definite integrals. Hence, it is necessary to simplify the exact
form of the Gaussian Q function into some tractable forms. To
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meet this requirement, several approximations/bounds of the
Gaussian Q function are available in the literature [7]–[24].

The analysis corresponding to the accuracy and the tractabil-
ity of all the aforementioned approximations is a topic of
interest. For example, the authors in [8] derived an approx-
imation which is tight for the lower values of x; whereas its
accuracy deteriorates as the value of x increases. Moreover,
the approximation [8] is also not tractable enough due to the
presence of intractable forms of the algebraic and exponential
functions. The intractability of [8] is somewhat handled in
[9] where one of the exponential terms of [8] is expanded
using Taylor’s series method yielding an approximation whose
accuracy is dependent on the number of terms i.e. only a
certain level of accuracy is achieved in [9] that too with a large
number of terms (higher computational complexity). Hence, it
is evident that if one tries to improve the accuracy, the price to
be paid is increased computational complexity and the vice-
versa. Apart from this, in the literature it has been observed
that the approximations often yield accurate results for one
particular range of x, due to which the accuracy at other values
of x is compromised; which can be seen in [19]. Noteworthy,
the authors in [19] optimized an already existing approxima-
tion of the Gaussian Q function on the basis of absolute error
(AE) and the relative error (RE) but it has been observed that
while optimizing the RE, the AE increases which further limits
the significance of [19] as the optimized coefficients should
be versatile in nature i.e. they must yield desired results for
both the AE and the RE. Further, using the trapezoidal rule
of integration, the authors in [17] have proposed accurate yet
simple exponential based approximations of the Gaussian Q
function. Since the approximations are expressed as the sum of
simple exponentials, they prove to be significant while solving
the cumbersome SEP integrals of various digital modulation
schemes over intractable fading statistics. It should be noted
that although the trapezoidal rule of numerical integration is
considered as a fairly accurate method, the approximations
obtained in [17] do not yield desired results particularly for
very low values of x i.e. x ≤ 0.5 and for a higher range x ≥ 3.

In view of the above stated challenges, optimization meth-
ods based on Interior point algorithm prove to be significant.
These are a class of optimization algorithms which are used to
solve constrained optimization problems [25]. These methods
have been widely used in various fields like sparse signal
reconstruction [26], network constrained security control prob-
lem [27], optimal power flow problems [28], quantile regres-
sion [29], localization problem of wireless sensor network [30]
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and optimization of the exponential bounds on the Gaussian
Q function [31].

Motivated by this, in this paper, a generic methodology is
developed which performs rigorous range wise optimization
on the already existing simple exponential bounds on the
Gaussian Q function. For demonstration purpose, in this paper,
the bounds proposed by the authors in [17] are optimized.
Precisely, the RE for various ranges of x is optimized to
obtain more accurate optimized approximations in terms of the
new optimized coefficients. To do so, Non-Linear Multivariate
Optimization technique based on the interior-point algorithm
is implemented.

II. MATHEMATICAL BACKGROUND ON OPTIMIZATION
USING INTERIOR POINT ALGORITHM

In interior point optimization, the objective is to find the
optimal solution within the feasible region of a problem while
satisfying the constraints.The key idea behind interior point
methods is to transform the constrained optimization problem
into an unconstrained problem by introducing a barrier or
penalty function that penalizes solutions outside the feasible
region. The generalized mathematical background for the
interior point algorithm is elaborated below:

• Defining the objective function for the problem, and list-
ing the constraints involved 2(both equality and inequality
constraints), as shown below:

min
x∈R

RE(x)

such that g(x) ≥ b,

h(x) = 0,

(2)

where RE(x) is the relative error which serves as an
objective function, g(x) is the inequality constraint, and
h(x) is the equality constraint.
The motive is to minimize the RE(x), which is defined
as:

RE(x) =
|erfc(x)− F (x)|

erfc(x)
, (3)

where F (x) denotes new optimized approximated func-
tion, erfc(x) is the complementary error function evalu-
ated for each element of x.

• After defining the general non-linear problem as de-
scribed in (2), the formulation is converted into a general
form using slack variables. The final set of objective
functions and constraints can be represented as follows:

min
x∈R

RE(x)

such that c(x) = 0,

for x ≥ 0.

(4)

• Once the general form (4) is obtained, a barrier function
needs to be defined to eliminate the inequality constraints.
This barrier function introduces a penalty term that pe-
nalizes solutions outside the feasible region, effectively

2The proposed method does not have any set of constraints

transforming the constrained optimization problem into
an unconstrained one. This can be illustrated using the
equations provided below:

min
x∈R

RE(x)− µ

n∑
i=1

ln(xi),

such that c(x) = 0.

(5)

The typical choice for the Barrier is a log barrier. Natural
log barrier terms have been specified for inequality con-
straints, where µ represents the weight associated with the
barrier. This replaces the hard inequality constraints with
a smoother objective function. As xi −→ 0, ln (xi) −→∞,
so a very small value of µ will lead to convergence very
close to the constraints. From Fig. 1, it can be clearly
seen that as the value of µ decreases, a smoother curve
is obtained.
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Fig. 1. The barrier function vs x.

• In order to solve the barrier functions, the
Karush–Kuhn–Tucker conditions (KKT), which are
first derivative tests (sometimes referred to as first-
order necessary conditions) for a solution in nonlinear
programming to be deemed optimal, provided that
certain regularity conditions are satisfied. The KKT
conditions for the barrier function (5) are as follows: min

x∈R
RE(x)− µ

n∑
i=1

ln(xi)

such that c(x) = 0

=⇒


∇RE(x)+

∇c(x)λ−

µ

n∑
i=1

1

xi
= 0

where λ denotes the Lagrangian multiplier. Now replac-
ing zi =

µ
xi

and solving the modified version of the KKT
conditions, we have

∇RE(x) +∇c(x)λ− z = 0, (6)
c(x) = 0, (7)

(X · Z · e)− (µ · e) = 0. (8)
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Eq. (8) is obtained by the replacement of zi = µ
xi

,where,
e is column matrix of all ones i.e.

1
1
...
1


n

• Solving the barrier function, i.e finding KKT solution
with Newton Raphson method (to find the search direc-
tion will be the next step): Wk ∇c(xk) −I

∇c(xk)
T 0 0

Zk 0 Xk

 ·

dxkdλk
dZk


= −

∇RE(xk +∇c(xk)λk − zk
c(xk)

Xk · Zk.e− µj · e

 , (9)

where Wk is the second derivative of the Lagrangian
and is denoted by Wk = ∇2

xxL(xk, λk, zk) =
∇2

xx(RE(xk) + c(xk)
Tλk − zk),

Zk =

z1 0 0

0
. . . 0

0 0 zn


and

Xk =

x1 0 0

0
. . . 0

0 0 xn

 .

• The process involves re-arranging the system into a
symmetrical linear form (A · X = B). This matrix can
then be solved using a linear symmetric solver capable
of handling matrices in the form of A ·X = B, as[

Wk +
∑

k ∇c(xk)
∇c(xk)

T 0

]
·
[
dxk
dλk

]
= −

[
∇RE(xk +∇c(xk)λk

c(xk)

]
,

where
∑

k = X−1
k Zk.

• Solve for dZk after the linear solution to dxk and dλk with
explicit solution:

dzk = µX−1
k e− zk −

∑
k

dxk.

• Step Size: The determination of step size is a critical
step in the optimization process. After obtaining the
search direction, it’s essential to identify the appropriate
step size. There are two main approaches to assessing
progress. The first approach involves minimizing the ob-
jective function, while the second focuses on minimizing
constraint violation. Additionally, two popular strategies
can be employed: decreasing the merit function and
using the filter method. Once the approaches have been
considered, the next step is to adjust the variables x, λ,

and z based on the determined step size. This involves
updating them according to the following equations:

xk+1 = xk + αkd
x
k, (10)

λk+1 = λk + αkd
λ
k , (11)

zk+1 = zk + αkd
z
k. (12)

Here, (xk+1, λk+1, zk+1) and (xk, λk, zk) represent the
values of x, λ, and z at the k + 1 and k iterations
respectively. The parameter αk denotes the step size.

• Convergence Criteria: Convergence is achieved when
the KKT conditions are satisfied within the specified
tolerance, and the desired values of minima are attained.

max{|∇RE(x) +∇c(x)λ− z|} ≤ ϵtot, (13)
max{c(x)} ≤ ϵtot, (14)

max{|(X · Z · e)− (µ · e)|} ≤ ϵtot, (15)

where ϵtot denotes the acceptable tolerance (defined as
per requirement).
A detailed flow diagram of the interior points algorithm
has been shown in Fig. 2.

 Initialization

Check for convergence

Compute the search direction with the
linearized Barrier problem.

Backtracking Linear
Search

Yes
Optimal Solution

No

Determine     by decrease Merit function 
or  with filter method

Fig. 2. Flowchart of Interior Points Algorithm

III. NOVEL RANGE WISE OPTIMIZATION AND NEW
OPTIMIZED COEFFICIENTS USING INTERIOR POINT

ALGORITHM

Using the trapezoidal rule of numerical integration, for three
(n = 3) and four (n = 4) subintervals, the authors in [17] have
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proposed tight exponential bounds on the complementary error
function respectively defined as:

F (x) ≈ 1

6
exp(−x2) +

1

3
exp(−4x2) +

1

3
exp(−1.33x2)

(16a)
and

F (x) ≈ 1

8
exp(−x2) +

1

4
exp(−2x2) +

1

4
exp(−6.67x2)

+
1

4
exp(−1.176x2). (16b)

The coefficients of the exponential terms of (16) viz.[
1
6 ,

1
3 ,

1
3

]
for n = 3 and

[
1
8 ,

1
4 ,

1
4 ,

1
4

]
for n = 4 are not

providing optimum results for a considerable range of x. This
is evident by the occasional ’dips’ seen in the RE curve of the
original approximations over a range x ∈ [0, 5] as shown in
Fig 3. The RE is calculated as:

RE(x) =
|erfc(x)− F (x)|

erfc(x)
, (17)

where

F (x)(n=3) ≈ α exp(−x2) + β exp(−4x2) + ζ exp(−1.33x2)
(18a)

and
F (x)(n=4) ≈ α′ exp(−x2) + β′ exp(−2x2)+

ζ ′ exp(−6.67x2) + δ′ exp(−1.176x2). (18b)
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Fig. 3. RE Plot for original approximation (16).

Referring to Fig. 3, the region around which these ’dips’
occur basically signifies the regions where the original co-
efficients yield accurate results as the RE is getting reduced
in those regions. However, the RE rises considerably in the
regions which lie beyond these ’dips’. The frequency of these
’dips’ is very low which implies that the original set of
coefficients are not performing well for quite a considerable
range of x. This motivates the authors in the present work
to carry out range-wise optimization of the original approx-
imation (16) by defining a new set of coefficients for the
exponential terms as α, β, ζ for n = 3 and α′, β′, ζ ′, δ′

for n = 4; giving rise to new optimized approximations. The
idea here is to carry out range-wise optimization of (16) i.e.
for each specific range of x the best optimum coefficients were
obtained for the exponential terms which further enhances
the performance of (16) by reducing the RE even further.
Moreover, the proposed range-wise optimization technique
is not affected by the widely recognized problem which is
minimization algorithm getting stuck in a local − minima

rather than the global − minima. Hence, the total range of
x (which is to be optimized) is divided into several smaller
ranges, effectively avoiding this problem. For each new range
of x, the best optimal coefficients were obtained. This division
has been done by getting an understanding of the regions in
which the original coefficients are not performing well which
is quite evident from Fig. 3. Furthermore, for each different
value of x, the behavior of the exponential terms used in (16)
will change accordingly and hence it is imperative that the
coefficients should also be updated in such a way as to get the
best possible optimum results for any value of x taken. In the
proposed investigation, ϵtot, denoting the acceptable tolerance,
is construed as a parameter subject to user specification.
Specifically, the initial coefficients, as derived from the work
of [17], yielded an error of 10−1 which is 10% for n = 3.
However, in pursuit of heightened precision and an error rate
of less than 1%, the proposed work judiciously adjusted the
tolerance to approximately 10−2 . Noteworthy, the values of
the optimized coefficients and the corresponding ranges of x
have been listed in Table I and Table II.

Fig. 4 elaborates on the detailed working of the algorithm
in the context of finding the optimal coefficients for (16).

TABLE I
OPTIMIZED COEFFICIENTS FOR n = 3

Range α β ζ

x∈[0,0.04338) 0.2222 0.3889 0.3889
x∈[0.04338,0.1602) 0.1919 0.3578 0.3585
x∈[0.1602,0.2903) 0.1665 0.3332 0.3332
x∈[0.2903,0.6007) 0.1594 0.3299 0.3266
x∈[0.6007,0.7575) 0.1664 0.3333 0.3333
x∈[0.7575,1.135) 0.1703 0.3335 0.3359
x∈[1.135,1.335) 0.1667 0.3333 0.3333
x∈[1.335,1.795) 0.1643 0.3333 0.3322
x∈[1.795,1.959) 0.1667 0.3333 0.3333
x∈[1.959,2.096) 0.1675 0.3333 0.3335
x∈[2.096,2.646) 0.1693 0.3333 0.3336
x∈[2.646,2.887) 0.1669 0.3333 0.3333
x∈[2.887,3.654) 0.1624 0.3333 0.3331
x∈[3.654,5] 0.1285 0.3333 0.3332

Figs. 5a and 5b show the performance of the optimized
coefficients for n = 3 and n = 4 in terms of the RE against
the original Sadhwani−Yadav−Aggarwal bounds [17]. The
’sharp points’ in the optimized plots basically indicate the
change of optimization range owing to which the values
assigned to the optimized coefficients changes and hence
the path traced by the optimized approximation changes. It
is evident that the optimized approximation outperforms the
original bounds. Moreover as evident from Figs. 5a and 5b,
the frequency of the ’dips’ occurring in the RE plot for
optimized approximation is high as compared to the original
bounds. This indicates that the fluctuation in the RE is smaller
in magnitude as well as shorter in the range of x; over
which they occur as compared to the original bounds. Due
to these characteristics, the optimized approximation has a
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Defining the objective function

Define the barrier function: In
this case, since there are no
explicit constraints, we may
not need a barrier function

Initialization: Choose an initial
feasible solution within the feasible

region. This can be done by
selecting an appropriate starting

value for the optimization variables.
The initial coefficients were chosen

from [17].

Defining the Lagrangian function

 

: It is the objective function i.e which is the
relative error

:It is the Lagrangian Multiplier

:It represents the constraints

Determining the search
direction as per the eq(9)

Choosing the step size

: Choose an appropriate step size
to update the solution along the

search direction.

Updating the solution i.e
moving closer to the

optimal point

Checking the convergence
If the value found is below the tolerance,

then the optimization algorithms stops, as
per the eq (13),(14) and (15).
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Fig. 4. Flow chart to find the optimized coefficients as per (16).
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Fig. 5. Accuracy Comparison of the proposed optimized approximation (18) over the original (16) in terms of RE and AE.

TABLE II
OPTIMIZED COEFFICIENTS FOR n = 4

Range α′ β′ ζ′ δ′

x∈[0,0.04338) 0.1562 0.2812 0.2812 0.2812
x∈[0.04338,0.1368) 0.1348 0.2597 0.2593 0.2598
x∈[0.1368,0.2102) 0.1250 0.2500 0.2500 0.2500
x∈[0.2102,0.4505) 0.1213 0.2465 0.2474 0.2464
x∈[0.4505,0.5306) 0.1235 0.2488 0.2496 0.2485
x∈[0.5306,0.6040) 0.1250 0.2500 0.2500 0.2500
x∈[0.6040,0.8343) 0.1263 0.2507 0.2500 0.2511
x∈[0.8343,0.9377) 0.1256 0.2503 0.2500 0.2505
x∈[0.9377,1.198) 0.1250 0.2500 0.2500 0.2500
x∈[1.198,1.340) 0.1253 0.2500 0.2500 0.2502
x∈[1.340,1.518) 0.1264 0.2501 0.2500 0.2509
x∈[1.518,2.614) 0.1269 0.2500 0.2500 0.2509
x∈[2.614,3.521) 0.1277 0.2500 0.2500 0.2505
x∈[3.521,4.016) 0.1250 0.2500 0.2500 0.2500
x∈[4.016,5] 0.1190 0.2500 0.2500 0.2497

better performance. Furthermore, for some ranges of x, the
original bounds and the optimized approximations overlap at
best. This signifies that for such ranges, the coefficients used

in the original bounds are matching the optimized coefficients.
This is also evident from Table I and Table II. Clearly, with the
help of these optimized coefficients, the RE is minimal for the
entire range considered over here i.e. x ∈ [0, 5]. Noteworthy,
the coefficients listed in these Tables have a very generic use
as for the same values of coefficients the AE is also getting
optimized which can be seen from Fig. 5c.

A. Accuracy Comparison of (18)
In this section, the accuracy of (18) is demonstrated by

presenting exhaustive graphical as well as numerical compar-
isons with several existing well-known approximations/bounds
available in the open literature. This is achieved via RE as
defined in (17).

In Fig. 6a the accuracy of (18a) is compared with the
existing [23], [19], [20] for three exponential terms. Clearly,
the optimized one has a better performance than all the other
approximations. Although [19, N = 3] has an appreciable
performance till x ≈ 3.25, it is evident that the RE becomes
unbounded just after x exceeds this value thereby limiting its
significance. On the contrary, Eq. (18a) gives accurate results
for the complete range of x under consideration with the RE
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Fig. 6. Accuracy comparison of (18) with several existing bounds on the Gaussian Q function [7]–[16], [18]–[23]

reaching to as low as 10−2 that too with only three terms.
Moreover, as seen from the plot, although the corresponding
simple exponential based approximations [23] and [20] have
an appreciable performance yet they are not as accurate as
the optimized approximation (18a) which again highlights the
utility of the proposed work.

In Fig. 6b, the accuracy of (18b) is compared with the corre-
sponding approximations [19, N = 4] and [23, N = 4]. Apart
from giving a very low value of the RE, the approximation
[19, N = 4] has a behaviour similar to the above discussed
N = 3 case of [19] i.e. it becomes unbounded after x ≈ 3.25;
unlike the proposed analysis where it is clearly seen that the
optimized n = 4 has a better performance than the optimized
n = 3. Furthermore, the approximation as described in [23] for
n = 4 is superceded by the optimized (18b) for a quite a large
range of x; barring a couple of points where [23] performs
better. In Fig. 6c, an exponential based approximation given
by the authors in [22] is compared with the proposed optimized
approximation (18). It can bee seen that for like number of
terms, Eq. (18) is more accurate than [22].

Fig. 6d demonstrates the RE comparison of (18) with the
exponential bounds on the Gaussian Q function [7] and [20,
N = 2] derived via numerical integration techniques. It is
evident that (18) outperforms [7, N = 2] case. Moreover, to
provide an insight on the effect of increasing the number of
terms on the accuracy, the generic approximation as given in
[7] is extended to N = 4, 8 terms. It can be seen that (18)

is having a clear cut supremacy over both the aforementioned
cases of [7] that too with less number of terms. Furthermore,
the proposed optimized approximations completely supersede
N = 20 of [20]; as evident from Fig. 6d.

In Fig. 6e, the RE comparison of (18) with [8] is demon-
strated. Quite clearly, Eq. (18) surpasses this approximation
which significantly looses its accuracy beyond x ≥ 1. Fur-
thermore, Eq. (18) is compared with an improved version of
[8], as described in [21]. The authors in [21] have proposed
two sets of the optimized coefficients for the original proposed
approximation [8]. They are defined as: [a = 0.3760, b =
0.5, c = 1.3293] and [a = 0.3200, b = 0.4703, c = 1.5625].
The former is used to minimize the RE whereas the latter
reduces the AE as well as the total error. It should be noted
that the latter is achieved at the cost of the unbounded RE.
On the contrary, it is evident that the proposed optimized
approximation (18) supersedes all these cases in terms of the
RE without worrying about the AE or the total error (as the
optimized coefficients here are generic in nature).

Fig. 6f further compares (18) with an N−term approx-
imated version [9] of the original approximation [8]. The
authors in [9] have clearly stated that with minimum eight
terms (i.e. N = 8), the performance of the approximation [9]
somewhat matches to [8]. However, when the analysis of [9]
is further extended upto twelve terms; it becomes clear that
even N = 12 case of [9] is not comparable to the proposed
optimized approximation (18).
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TABLE III
ACCURACY COMPARISON OF OPTIMIZED n = 3 ON THE BASIS OF MEAN RE (%)

Over range x ∈ [0, 1.335)

Approximations x∈[0,0.04338) x∈[0.04338,0.1602) x∈[0.1602,0.2903) x∈[0.2903,0.6007) x∈[0.6007,0.7575) x∈[0.7575,1.135) x∈[1.135,1.335)
Ref. [7, N = 2] 28.419190 25.667450 16.304275 5.007252 11.281199 20.663444 25.870674
Ref. [10, p = 2] 24.453878 21.142647 12.431306 3.094533 4.061264 3.595622 0.709423
Ref. [10, p = 3 ] 31.977425 30.118883 21.759821 10.474350 2.251471 1.348332 1.457680
Ref. [13, N = 2 ] 0.027457 0.026623 0.012338 0.125080 0.535857 1.692214 3.813088
Ref. [15, n = 2] 21.759106 17.979792 9.348845 2.477296 4.221611 1.972619 2.946880
Ref. [15, n = 3] 25.192627 22.115541 13.794443 4.359500 0.395063 0.51665 1.549789
Ref. [16] 2.163090 10.794937 21.481216 32.700186 34.846784 25.000860 11.486097
Ref. [18, L(1)

3 ] 88.041183 90.781276 76.293396 48.579315 15.941595 23.944838 67.139025
Ref. [18, U(1)] ∞ 259.117285 75.940916 28.1462509 15.0562528 10.553858 7.958564
Ref. [18, U(3)] ∞ 33.715400 9.761728 5.0625113 6.860392 10.742490 15.340895
Ref. [11] 0.878976 2.344217 4.379186 7.028676 8.753572 9.304845 9.336795
Ref. [12] 7.422319 6.139602 3.265724 1.044461 2.560162 3.432892 3.310210
Ref. [20, N = 2] 2.063028 8.848748 12.767578 5.904998 9.287354 13.938057 9.970142
Ref. [20, N = 3] 1.918228 6.150275 3.770336 2.856944 1.400202 0.787615 0.341808
Ref. [19, N = 3 ] 1.672025 2.557369 2.522674 1.981657 3.596147 1.745932 2.193061
Ref. [22, N = 3] 13.169293 8.274451 1.601509 2.187704 0.546974 1.079513 0.299340
Ref. [23, n = 3 ] 1.896462 5.794870 2.949475 2.402900 0.574322 1.110750 0.277721
Original n = 3 [17] 13.169293 8.274451 1.601509 2.1877046 0.546974 1.079513 0.299340
Optimized n = 3 2.128596 2.433114 1.620761 0.406501 0.529959 0.210912 0.299116

Over range x ∈ [1.335, 5]

Approximations x∈[1.335,1.795) x∈[1.795,1.959) x∈[1.959,2.096) x∈[2.096,2.646) x∈[2.646,2.887) x∈[2.887,3.654) x∈[3.654,5]
Ref. [7, N = 2] 23.968946 18.959118 15.883771 10.547755 6.789599 9.949436 32.225438
Ref. [10, p = 2] 2.781886 2.753358 1.706414 1.649122 4.178571 3.714215 10.099779
Ref. [10, p = 3 ] 0.489817 0.717572 0.380263 1.246852 2.897781 2.030765 11.774554
Ref. [13, N = 2 ] 7.5146095 11.862786 14.190777 20.884772 28.336534 38.548317 57.307183
Ref. [15, n = 2] 4.851303 3.259557 1.541462 2.524127 5.575020 4.894135 9.933681
Ref. [15, n = 3] 1.071317 1.534044 3.025767 5.585689 6.021592 2.935163 21.890487
Ref. [16] 2.012226 1.159972 3.826488 14.735933 29.723376 51.193177 96.533039
Ref. [18, L(1)

3 ] 114.83067 158.7371 178.4973 232.88089 287.01038 3.61211e+02 5.1077e+02
Ref. [18, U(1)] 5.991942 4.641747 4.123123 3.379301 2.606680 2.004161 1.232963
Ref. [18, U(3)] 20.060348 24.315903 26.139460 31.522316 36.402051 42.998235 55.215958
Ref. [11] 8.488743 7.515292 6.987314 6.154914 5.045383 4.021853 2.537793
Ref. [12] 2.032786 0.532736 0.225748 1.612643 2.610579 2.0250664 8.246632
Ref. [20, N = 2] 2.967372 1.382184 2.082375 1.419074 5.032805 17.924599 50.249420
Ref. [20, N = 3] 0.826981 0.719260 0.223196 0.764118 0.477976 4.626844 26.581016
Ref. [19, N = 3 ] 3.344444 1.634577 0.372011 2.537864 3.587209 2.318335 21.081197
Ref. [22, N = 3] 0.769579 0.223809 0.436818 1.139260 0.465444 6.898076 31.837122
Ref. [23, n = 3 ] 0.735050 0.205563 0.466186 1.199597 0.465712 6.796889 31.651446
Original n = 3 [17] 0.769579 0.213809 0.436818 1.139260 0.465444 6.898076 31.837128
Optimized n = 3 0.152326 0.214889 0.157080 0.161006 0.470013 4.277285 5.766500

In Figs. 6g, 6h and 6i, the analysis is further solidified by
comparing (18) with the remaining significant approximations
[10]–[16], [18]; eventually super ceding all of them. Notewor-
thy, on the basis of mean RE for each range of x, Table III
and Table IV provides an exhaustive numerical comparison of
(18) with all the so far discussed approximations/bounds. It is
quite evident that for almost each range of x, Eq. (18) gives
minimum mean RE. In addition, the total mean RE of (18)
is also the lowest among all the approximations as evident in
Table V. This gives an idea of the significance of the proposed
analysis.

B. Applications of (18)

The new optimized coefficients of (18) are applicable as one
to one replacements in the applications of the original one (16)
like:

• the error analysis under κ− µ shadowed fading channel
[32]

• radio-on-free-space optical systems [33]
• terrestrial free space optical systems [34]
• frequency-modulated differential chaos shift keying ultra-

wide band system [35]
• re-configurable intelligent surfaces−aided wireless com-

munication systems [36]–[38]
• bit error computation of M-Ary phase-shift keying signals

[39]
• cognitive radio-inspired non-orthogonal multiple access

(CR-NOMA) systems [40]

IV. CONCLUSION AND FUTURE SCOPE

This paper proposes a generic method which optimizes
already existing approximations of the Gaussian Q function



POWARI et al.: NOVEL RANGE WISE OPTIMIZATION OF THE EXPONENTIAL BOUNDS ON THE GAUSSIAN Q FUNCTION 1244

TABLE IV
ACCURACY COMPARISON OF OPTIMIZED n = 4 ON THE BASIS OF MEAN RE (%)

for range x ∈ [0, 0.9377)

Approximations x∈[0,0.04338) x∈[0.04338,0.1368) x∈[0.1368,0.2102) x∈[0.2102,0.4505) x∈[0.4505,0.5306) x∈[0.5306,0.6040) x∈[0.6040,0.8343) x∈[0.8343,0.9377)
Ref. [7, N = 4] 2.133276 8.748786 15.774615 23.012107 24.929919 24.981012 23.935755 22.783481
Ref. [7, N = 8 ] 1.999793 6.893963 9.707369 8.900959 8.071891 8.725058 10.637198 12.826009
Ref. [8] 1.084637 0.486164 0.255595 1.082157 1.421014 1.433479 1.1740930 0.648444
Ref.3 [21] 0.730513 0.285371 0.917634 1.961181 2.460767 2.564386 2.444593 2.012931
Ref.4 [21] 0.458997 1.422596 2.622710 4.174169 5.063256 5.391175 5.615989 5.418772
Ref. [18, U(2)

4 ] ∞ 109.9567 62.859238 38.837448 29.005497 28.118698 28.169996 29.089423
Ref. [18, U(4)] 4.619474 2.296793 0.281397 1.241480 3.799970 5.050982 6.626345 7.257248
Ref. [18, U(5)] 30.447251 21.243087 14.716010 12.755277 13.682856 15.082504 17.911543 20.584777
Ref. [9, N = 8] 1.165034 0.490577 0.252049 1.078487 1.417709 1.429627 1.161899 0.601551
Ref. [9, N = 12] 1.165034 0.490577 0.252049 1.078518 1.418039 1.430721 1.171777 0.646592
Ref. [19, N = 4 ] 0.860263 0.886415 0.512032 0.846677 0.850777 1.310359 0.767435 0.535416
Ref. [14, Eq. (12)] 3.155174 2.209662 1.314807 0.511851 0.203756 0.186167 0.214067 0.260228
Ref. [14, Eq. (13)] 3.232186 3.440770 3.361248 2.971744 2.900368 3.257371 4.562455 6.448614
Ref. [22, N = 4] 9.382129 4.855581 0.848701 1.387901 0.375407 0.266378 0.569106 0.161937
Ref. [23, n = 4 ] 1.773730 4.040680 1.894493 1.501626 0.352959 0.367788 0.576107 0.1466766
Original n = 4 [17] 9.379664 4.820683 0.824250 1.680550 0.710275 0.150319 0.473985 0.263023
Optimized n = 4 2.0758060 1.767056 0.824250 0.307999 0.234394 0.150318 0.065325 0.067613

for range x ∈ [0.9377, 5]

Approximation x∈[0.9377,1.198) x∈[1.198,1.340) x∈[1.340,1.518) x∈[1.518,2.614) x∈[2.614,3.521) x∈[3.521,4.016) x∈[4.016,5]
Ref. [7, N = 4] 24.532184 27.668350 31.904530 51.955089 94.403614 130.9335 1.727154e+02
Ref. [7, N = 8 ] 16.060139 19.489454 22.738839 32.976327 47.481502 57.497191 68.217277

Ref. [8] 0.309971 1.057356 1.880834 4.697947 7.763991 9.012922 9.806484
Ref.5 [21] 1.378744 0.516867 0.271758 2.934814 5.968775 7.223284 8.027049
Ref.6 [21] 5.099015 4.453692 3.940885 1.538369 1.431159 2.701110 3.528793

Ref. [18, U(2)
4 ] 32.708266 36.818029 41.434645 57.854965 83.451002 100.41395 1.1716e+02

Ref. [18, U(4)] 7.270951 6.704147 6.247863 4.183397 2.241965 1.554463 1.133450
Ref. [18, U(5)] 24.266808 27.802477 31.251320 41.989518 57.615332 67.720729 77.641077
Ref. [9, N = 8] 0.484157 2.013527 4.583191 1.1670e+02 2.18948e+03 1.05758e+04 5.20502e+04

Ref. [9, N = 12] 0.310374 1.060918 1.893119 8.391099 2.59175e+02 2.33557e+03 2.61050e+04
Ref. [19, N = 4 ] 1.244444 0.955910 0.281667 0.832076 0.959471 4.060296 16.592964
Ref. [14, Eq. (12)] 0.350543 0.521653 0.790233 2.888587 6.754776 9.001510 10.851682
Ref. [14, Eq. (13)] 9.240391 12.104564 14.297176 16.658844 14.77476 13.006591 11.539459
Ref. [22, N = 4] 0.218068 0.191862 0.057200 0.117943 0.215133 1.452187 8.839423
Ref. [23, n = 4 ] 0.210540 0.188360 0.057586 0.118684 0.213645 1.457515 8.846600

Original n = 4 [17] 0.040006 0.207073 0.534460 0.959766 1.440346 0.823038 8.239151
Optimized n = 4 0.040006 0.092851 0.09730 0.048096 0.175077 0.823038 3.886734

1 A = 1.95, B = 1.113; 2 A = 1.88, B = 1.061

TABLE V
TOTAL MEAN RE COMPARISON OVER x ∈ [0, 5]

comparison with optimized n = 3 comparison with optimized n = 4
Approximation Total MRE Approximation Total MRE
Ref. [7, N = 2] 19.624517 Ref. [7, N = 4] 82.732208
Ref. [10, p = 2] 5.780641 Ref. [7, N = 8 ] 38.988705
Ref. [10, p = 3 ] 6.351980 Ref. [8] 5.570858
Ref. [13, N = 2 ] 26.845746 Ref.7 [21] 4.480218
Ref. [15, n = 2] 6.033053 Ref.8 [21] 2.913968
Ref. [15, n = 3] 9.032484 Ref. [18, U(2)

4 ] ∞
Ref. [16] 43.674612 Ref. [18, U(4)] 3.266679
Ref. [18, L(1)

3 ] 2.6683e+02 Ref. [18, U(5)] 48.229511
Ref. [18, U(1)] ∞ Ref. [9, N = 8] 1.17554e+04
Ref. [18, U(3)] ∞ Ref. [9, N = 12] 5.44124e+03
Ref. [11] 5.434935 Ref. [19, N = 4 ] 4.295977
Ref. [12] 3.903917 Ref. [14, Eq. (12)] 5.095305
Ref. [20, N = 2] 19.787045 Ref. [14, Eq. (13)] 11.988856
Ref. [20, N = 3] 8.665695 Ref. [22, N = 4] 2.317322
Ref. [19, N = 3 ] 7.480283 Ref. [23, n = 4 ] 2.216729
Ref. [22, N = 3] 10.514913 Original n = 4 [17] 2.535685
Ref. [23, n = 3 ] 10.332343 Optimized n = 4 0.987178
Original n = 3 [17] 10.514913 - -
Optimized n = 3 2.837328 - -

1 A = 1.95, B = 1.113; 2 A = 1.88, B = 1.061

yielding new optimized coefficients giving rise to extremely
accurate optimized approximations. To show the utility of the

proposed approach, as an example, the range wise optimization
of [17] is extensively presented in this paper. Exhaustive
graphical as well as numerical comparisons have been carried
out yielding the minimum mean RE not only for the smaller
intervals of x; but also for the entire range of x under consid-
eration. This paper also provides an insight on the usefulness
of the optimized approximation in the various cutting-edge
applications of the communication systems like [32]–[40].

As a future work, the range-wise coefficients can be used
in the scenarios where the effect of noise is more i.e. the
signal-to-noise ratio (SNR) is very low and we need accurate
estimation of the performance analysis metrics. Moreover, the
proposed coefficients can also be used in accurate computation
of the symbol error probability of various digital modulation
schemes subjected to severe fading conditions. Lastly, other
simple exponential-based approximations [17], [19], [20], [23],
[24], [41] can also be optimized using the proposed approach.
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