
IEEE LATIN AMERICA TRANSACTIONS, VOL. 22, NO. 2, FEBRUARY 2024 113

RA4Self-CPS: A Reference Architecture for
Self-Adaptive Cyber-Physical Systems

Marcos Paulo de Oliveira Camargo , Gabriel dos Santos Pereira , Daniel de Almeida , Leandro Apolinário
Bento , William Fernandes Dorante , and Frank José Affonso

Abstract—Cyber-Physical Systems (CPS) represent an
evolution of embedded systems by the computational elements
interacting with physical entities through a network. Self-
adaptive Cyber-Physical Systems (Self-CPS) present specific
features compared to traditional CPS because this type of
system can deal with changes at runtime. In parallel, Reference
Architectures (RA) enable reusable artifacts that aggregate
the knowledge of software architectures in specific domains.
RAs have facilitated the development, standardization, and
system evolution in different domains. Despite their relevance,
reference architectures that could support the more systematic
development of Self-CPS, covering issues like self-protecting
and observability, are not found yet. Based on this scenario,
the main contribution of this paper is to present an RA for
Self-CPS named RA4Self-CPS. The goal of this RA is to
support the Self-CPS development that requires self-protecting,
observability, and adaptation at runtime. To show the viability
of our RA, we conducted a case study that revealed a good
perspective to contribute to the Self-CPS area.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8354

Index Terms—Reference architecture, Cyber-Physical Systems,
Self-adaptive, Self-CPS.

I. INTRODUCTION

A new paradigm has emerged in the literature whose pur-
pose is to make human-machine interaction possible impercep-
tibly. In this perspective, several elements of the environment
become a valuable source of information so that more accu-
rate reactions of the systems can be interpreted. Among the
systems that enable such interaction, Cyber-Physical Systems
(CPS) is a system class that can be highlighted because their
computational elements also interact with physical entities
through a communication network [1], [2], [3].

The current scenario of the software suggests that most
parts of software systems must be prepared to operate in
normal mode and be available 24/7 (i.e., 24 hours per day
and seven days per week). Therefore, features like robustness,
reliability, scalability, and customization are required by these
systems. These features match with a specific class of software
system, which represents the self-adaptive systems. As this
term is used in different areas/domains and we will focus

M. P. O. Camargo, G. S. Pereira, D. Almeida, L. A. Bento, W. F. Dorante,
and F. J. Affonso are with São Paulo State University – UNESP, Rio Claro,
Brazil (e-mail: mp.camargo@unesp.br, gabriel-santos.pereira@unesp.br,
daniel.almeida19@unesp.br, leandro.bento@unesp.br, w.dorante@unesp.br,
f.affonso@unesp.br).

only on the software domain, it will be referenced as Self-
adaptive Software (SaS). According to Salehie & Tahvildari
[4] and Affonso et al. [5], SaS enables the incorporation of new
features and/or behavior at runtime (i.e., adaptations without
interrupting the execution).

According to Muccini et al. [6] and Musil et al. [7], CPS
that deals with some type of uncertainty or unpredictability at
runtime can incorporate SaS features in its development, gen-
erating a new class of systems known as Self-adaptive Cyber-
Physical Systems (Self-CPS). These authors also commented
that the MAPE-K loop and specific use of self-* properties
have been the starting points for the development of Self-CPS.
As CPS are critical systems, the adoption of good engineering
practices combined with the segmentation of the adaptation
logic into well-defined layers has also been a point to be
highlighted in the development of such systems.

From another perspective, Reference Architectures (RA)
refer to a special type of software architecture that has become
an important element for systematically reusing architectural
knowledge [8]. Thus, different domains of software systems,
including Self-CPS, have understood the need for encapsu-
lating knowledge (i.e., experiences and good practices) to
disseminate and reuse this knowledge in the development of
systems. Although the use of RA has relevantly figured in
the development of software systems, Self-CPSs have been
developed with no concern on the reuse of previously acquired
knowledge and experiences, such as best practices, guidelines,
and better architectural styles. Based on this scenario, the main
goal of this article is to present the RA4Self-CPS, an RA for
Self-CPS based on ProSA-RA (Process based on Software Ar-
chitecture – Reference Architecture) [9]. This architecture was
designed based on previous experiences of our research group,
namely: (i) an RA called RA4SaS to support the development
of SaS [10]; (ii) a framework to support the development of
decision support systems for SaS domain [11]; and (iii) an
RA named RA4Self-MobApps to support the development of
Self-MobApps (Self-adaptive Service-oriented Mobile Appli-
cations) [5], [12]. In short, our architecture was organized
into three layers, namely: physical environment, cyber, and
adaptation. The first represents the physical environment of
a CPS. The second represents the software of a CPS, where
data collected from the physical environment is captured and
processed for decision-making and/or information processing.
This layer also contains two important mechanisms for any
type of CPS, which are self-protecting and observability. The
self-protecting mechanism acts as a protecting strategy for
Self-CPS [13]. The observability mechanism aims to present

https://orcid.org/0000-0003-3980-5204
https://orcid.org/0009-0003-9881-2516
https://orcid.org/0009-0009-7262-4166
https://orcid.org/0009-0004-0674-119X
https://orcid.org/0000-0002-9941-0004
https://orcid.org/0000-0002-5784-6248


CAMARGO et al.: RA4SELF-CPS: A REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE CYBER-PHYSICAL SYSTEMS 114

to its stakeholders the current state of the system (Self-
CPS) through a set of metrics, tracking information, and logs.
Finally, the third layer represents the adaptation logic of a
Self-CPS in an external approach [4].

Based on the presented context, our architecture aims to
consolidate itself as a feasible alternative to facilitate the
development of Self-CPS that requires features like service
adaptation at runtime, self-protecting, and observability. Thus,
we can summarize the main contributions of our RA in three
items. From an engineering viewpoint, it enables boosting
the software reuse by means of well-defined modules (i.e.,
module standardization); it makes possible the use of third-
party components (e.g., observability solutions); and it enables
the developers in their native development environments (e.g.,
programming language). Regarding the adaptation features, it
enables addressing service adaptation at runtime through a
dynamic approach of deployment based on previous experi-
ence of our research group [12]. Concerning the features of
security, it enables us to address the self-protecting of Self-
CPS by means of a non-intrusive approach developed in a
previous work of our research group [13]. Based on these
items, we can create a favorable scenario of development for
Self-CPS, since our architecture can agile the development of
such systems while enabling the server side to monitor them
in the background according to the interest of each system.

The article is organized as follows: Section II presents the
background and related work; Section III provides a descrip-
tion of our architecture; Section IV presents a case study to
show the applicability of our RA; and Section VI summarizes
our conclusions and perspectives for further research.

II. BACKGROUND AND RELATED WORK

In this section we present the background and related
work that contributed to the development of our architecture.
Concepts of self-adaptive software, cyber-physical systems,
and RA are presented in Section II-A. Next, related work on
Reference Models (RM) and RA for Self-CPS is addressed in
Section II-B.

A. Background

Self-adaptive software. SaS has specific features compared
to a traditional one since this type of software must be
designed to deal with structural, behavioral, or contextual
changes at runtime. Some changes are made to handle com-
plexity and unexpected conditions (e.g., quality degradation),
changing priorities and policies governing the goals, and
changing conditions (e.g., execution environment) [4]. Accord-
ing to Salehie & Tahvildari [4], “SaS is expected to fulfill its
requirements at runtime in response to changes. To achieve
this goal, software should have certain characteristics, known
as self-* properties. These properties provide some degree of
variability, and consequently, help to overcome deviations from
expected goals (e.g., reliability)”. These authors mentioned the
5W1H model as a feasible alternative to elicit the essential
requirements of SaS. In short, this model is composed of six
questions (i.e., What, Where, Who, When, Why, and How)
that need to be answered in both the design and runtime

phases. The MAPE-K loop proposed by IBM [14] has been a
good alternative to manage the changes at runtime because it
enables all decisions to be taken based on a plan established
in the data collected from the execution environment. Based
on these concepts, a framework to support decision-making
in the SaS domain was developed by our research group in
previous works [11].

Cyber-physical system. According to the National Science
Foundation (NSF), cyber-physical systems (CPS) can be char-
acterized by the interaction between computational elements
with physical entities through a communication network. Ac-
cording to Rajkumar et al. [1], CPS may be described as “phys-
ical systems, whose operations are monitored, coordinated,
controlled and integrated by a computing and communication
core”. In the view of Li et al. [2], these systems are based
on supporting decision-making in real-time, which directly
depends on factors such as (i) security, which refers to the
guarantee that the impacts of the operations performed are
within the desired limit, and (ii) predictability, which is char-
acterized by the system’s ability to act in the face of unforeseen
conditions through self-adaptation mechanisms. Muccini et al.
[6] and Musil et al. [7] presented a study on the presence of
CPS in different application domains. For instance, the authors
reported the use of CPS in the manufacturing domain (Cyber-
Physical Production Systems – CPPS). In summary, these
systems (CPPS) can perform autonomous operations in the
industry, such as exchanging information, triggering events,
and controlling processes independently. Another application
domain that has benefited from CPS is the health domain (e.g.,
Medical Cyber-Physical Systems – MCPS). In short, these
systems (MCPS) interact with the physical environment (i.e.,
patient monitoring mechanisms) so that decisions can be taken.
Due to its critical nature, it is worth mentioning that MCPS
requires special attention in relation to quality attributes (for
example, response time, security, and reliability).

The concept of Digital Twins (DT) is related to the CPS
integration. A DT can simulate the behaviors of physical
objects through high-fidelity virtual models in virtual space,
offering insights into their real-world performance [15]. Ac-
cording to Moyne et al. [16], a virtual model uses data
to remain synchronized with its physical counterpart. These
capabilities and scope are limited to a predefined purpose
and application environment. DTs empower organizations to
anticipate and identify physical issues with greater speed
and precision, optimizing manufacturing processes, enhancing
product quality (e.g., agriculture), boosting medical monitor-
ing, and optimizing autonomous automobile systems [17].

Another element to be highlighted in the CPS context is the
collaborative aspect, which can associate a value to the system
(i.e., (Self-)CPS) coming from the collaboration of the system
components among themselves, and even from the collabora-
tion between these components and humans, enabling the ideal
level of abstraction for the systems [18]. This combination
resulted in the concept of Collaborative CPS (CCPS), which
was defined as “a system containing interconnected, tightly
coupled physical (hardware) and cyber (software) components
with defined borders, allowing identifying the inner and outer
components as well as inputs and outputs, jointly acting and



115 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 2, FEBRUARY 2024

sharing information, resources and responsibilities in order to
achieve a common goal, and operating over a given period of
time” [19].

Reference architecture. RA is a special type of architecture
that provides a set of guidelines for the specification of
concrete architectures. In this sense, guidelines and processes
have been proposed in order to systematize the design of such
architectures [20], [21]. To Kruchten [22], “RA is, in essence,
a predefined architectural pattern, or set of patterns, possibly
partially or completely instantiated, designed and proven for
use in particular business and technical contexts, together with
supporting artifacts to enable their use. Often, these artifacts
are harvested from previous projects”. In Bass et al. [8],
“RA is a reference model mapped onto software elements
(that cooperatively implement the functionality defined in the
reference model) and the data flows between them”. Therefore,
it can note that the effective knowledge reuse of RAs depends
not only on raising the domain knowledge but also document-
ing and communicating efficiently this knowledge through an
adequate architectural description. Considering the relevance
of this research topic as the basis of software development,
a diversity of architectures has been proposed and used,
including self-* software (e.g., FORMS [23] RA4SaS [10],
RA4Self-MobApps [5], among others).

B. Related Work

As related work, we conducted a Systematic Mapping Study
(SMS) to identify studies on reference models and reference
architectures for Self-CPS [24]. The main purpose of this SMS
was to identify primary studies that report reference models
and/or reference architectures for the Self-CPS domain. This
mapping also aimed to get a comprehensive overview of the
features of these models and/or architectures. In this sense, we
identified the application domains that have proposed mod-
els/architectures for Self-CPS, the quality attributes adopted
in the design of such models and/or architectures, besides
different aspects related to design and (self-)adaptation. Next,
an overview of this mapping is addressed based on 12 studies
presented in Table I.

The first column shows the ID for each study, and the second
one the reference for each study. Each reference is composed
of the publication title with an external link where the primary
study was published, besides its respective reference after the
title. The third column shows the type of each study (i.e.,
RM – Reference Model and RA – Reference Architecture).
In the fourth column are presented the application domains
identified in our mapping. An overview of the techniques
used to evaluate each study is presented in the fifth column.
The sixth column shows the quality attributes (QA) identified
in each study from our mapping. The target of monitoring
adopted in each study is presented in the seventh column.
Finally, the eighth column shows the evidence identified in
each study concerning the adaptation features.

Of the 12 studies, 10 were classified as RA and two as
RM, revealing that most studies proposed more comprehensive
solutions from the design viewpoint. “Industry 4.0” with four
studies, “Automotive” with three studies, “Urban” with one

study, and “Unmanned Aerial Vehicle” with one study were the
application domains identified in our mapping. Three studies
were classified as “General” because they did not provide
concrete evidence about the application domain. Although
such studies have been classified into different domains, we
found some similarities in the elements of the models and
architectures proposed as CPS with adaptation features. “Case
study” with three studies and “Prototype” development were
the most used techniques for the evaluation of the models
and/or architectures. Quality was another aspect investigated
in our mapping and the evidence showed us that there is no
prominent attribute. Reliability, performance, interoperability,
and security were the most used attributes. The evidence
reveals that the seven attributes identified were used according
to the purpose of each model and/or architecture.

Regarding the design of the models and/or architectures,
the evidence of our mapping revealed that we organized them
according to the approach selected to deal with software
adaptation. In addition, the monitoring mechanisms in such
models/architecture must be highlighted, since they enable
perception of the physical environment. Monitoring focused
on quality aspects was found in three studies because the
application domain of these studies requires special attention
to communication and/or performance degradation for task
execution.

With regard to adaptation interests, two issues were inves-
tigated. The first focused on understanding how the Self-CPS
has dealt with uncertainties, which can be internal or external.
In this sense, it is worth highlighting the use of the MAPE-
K loop as a solid alternative from the self-* community to
deal with adaptation concerns. Our mapping data also reveal
that the self-organizing property (S5, S6, S7, S10, and S11)
was identified in five of the seven studies in which it was
possible to evidence a self-* property. The second focused on
gathering evidence on the Artificial Intelligence Techniques
(AIT) used in the design of such models/architecture so that
these systems (Self-CPS) can handle adaptation at runtime.
“Supervisor system”, Learning techniques, and “Intelligent
agents” were AIT techniques identified in our mapping capable
of dealing with knowledge acquisition and decision-making to
promote some type of modification in the Self-CPS.

As reported in this section, Self-CPS design is a complex
issue that requires knowledge from different areas. Therefore,
designing reference architectures that can serve as a guide
for the development of this type of system is still an open
issue and of interest to different scientific communities and
practitioners. To the best of our knowledge, there is no
reference architecture for Self-CPS that can handle adaptation,
protecting, and monitoring concerns simultaneously. To do so,
this architecture must be flexible and scalar in relation to the
design so that new threats/vulnerabilities can be incorporated
into a self-protecting module without interfering with the other
interests of the application. This feature must be valid to other
modules of this architecture like observability concerns (i.e.,



CAMARGO et al.: RA4SELF-CPS: A REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE CYBER-PHYSICAL SYSTEMS 116

TABLE I
LIST OF PRIMARY STUDIES ANALYZED IN THE MAPPING

ID Reference Type Domain Evaluation QA Monitoring Adaptation

S1 A Conceptual Reference Model for Human
as a Service Provider in Cyber Physical
Systems [25]

RM General Case study,
Metric Analysis

Reliability Physical
environment

MAPE-K

S2 Analysis of autonomous deconfliction in
Unmanned Aircraft Systems for Testing and
Evaluation [26]

RM Unmanned
Aerial Vehicle

Not evaluated Security - self-* property

S3 An architecture for context-aware reactive
systems based on run-time semantic mod-
els [27]

RA General Case study,
Prototype

Interoperability,
Reliability

- MAPE-K

S4 A reference architecture for cooperative
driving [28]

RA Automotive System
example

Performance Quality aspect Supervisor
systems

S5 BIOSOARM: a bio-inspired self-organising
architecture for manufacturing cyber-
physical shopfloors [29]

RA Industry 4.0 Test scenario Performance - Learning
techniques,
self-* property

S6 Engineering self-organizing urban superor-
ganisms [30]

RA Urban Not evaluated Modularity - self-* property

S7 Industrial Dataspace: A Broker to Run
Cyber-Physical-Social Production System in
Level of Machining Workshops [31]

RA Industry 4.0 Prototype - - self-* property

S8 Integration of digital twin and deep learning
in cyber-physical systems: Towards smart
manufacturing [32]

RA Industry 4.0 Case study Resiliency,
Performance,
Reliability

Quality aspect Learning
techniques,
MAPE-K

S9 Risk Assessment for Cooperative Auto-
mated Driving [33]

RA Automotive Not evaluated - - self-* property

S10 Tools and Methodologies for Autonomous
Driving Systems [34]

RA Automotive Not evaluated Compatibility,
Reliability,
Security

- self-* property

S11 Towards a cloud-assisted and agent-oriented
architecture for the Internet of Things [35]

RA General Not evaluated - - Intelligent
agents,
self-* property

S12 Towards Cyber-Physical Infrastructure as-
a-Service (CPIaaS) in the Era of Industry
4.0 [36]

RA Industry 4.0 Not evaluated Resiliency,
Interoperability,
Reliability

Physical
environment
Quality aspect

-

metrics, trace information, and logs)1 that can support the
monitoring activity.

III. REFERENCE ARCHITECTURE FOR SELF-CPS

RA4Self-CPS is a reference architecture that aims to support
the development of Self-CPS, whose main features are observ-
ability, self-protecting, and adaptation at runtime without the
perception of the stakeholders. We used a process to build
reference architectures named ProSA-RA [9] and an approach
proposed by Tummers et al. [38] to establish our architec-
ture. In short, we selected and investigated the information
sources in Step RA-1. Next, we identified the architectural
requirements in Step RA-2 so that an architectural description
of the RA4Self-CPS is established in Step RA-3. Finally, we
evaluated our architecture in Step RA-4. We addressed the
details of each step in Sections III-A to III-D.

1 According to Tozzi [37], metrics can be defined as a logical meter (i.e.,
a counter or histogram over a period). Trace information deals with request-
scoped data (i.e., any data or metadata associated with the life cycle of a
single transactional object in a system). Logs deal with discrete events that
occur while running a system, such as error messages, audit events, or request-
specific metadata.

A. Step RA-1: Information Source Investigation

In this step, the main sources of information were listed to
identify the requirements related to the RA4Self-CPS design.
In summary, we grouped these sources of information in two
sets, namely: (i) guidelines for the development of Self-CPS,
and (ii) reference models and reference architectures for Self-
CPS. The first set aimed to gather the key concepts and provide
evidence on good practices used in the development of Self-
CPS. The second set aimed to synthesize the main evidence on
the design of architectures and/or models for Self-CPS, where
it was possible to identify the mandatory functionalities and
the similarities between the models and/or architectures. Next,
details of each set are presented.

Set 1 – Guidelines for the development of Self-CPS.
In this set, we grouped concepts and information that act as
a support for the development of SaS and CPS, generating
the so-called Self-CPS. As reported in Section II-A, SaS is
a special type of software system because enables adaptation
at runtime. Thus, in order to elicit the requirements for the
RA4Self-CPS design regarding adaptation, we used the 5W1H
model based on the previous experience of our research group
[5], [10]. To do so, we have used the following questions:
(i) What will be adapted? (e.g., CPS); (ii) Where will the

https://doi.org/10.1109/SEAMS51251.2021.00012
https://doi.org/10.1109/SEAMS51251.2021.00012
https://doi.org/10.1109/SEAMS51251.2021.00012
https://doi.org/10.1109/AERO.2009.4839599
https://doi.org/10.1109/AERO.2009.4839599
https://doi.org/10.1109/AERO.2009.4839599
https://doi.org/10.7287/peerj.preprints.27702v1
https://doi.org/10.7287/peerj.preprints.27702v1
https://doi.org/10.7287/peerj.preprints.27702v1
https://doi.org/10.1016/j.sysarc.2013.05.014
https://doi.org/10.1016/j.sysarc.2013.05.014
https://doi.org/10.1007/s10845-016-1258-2
https://doi.org/10.1007/s10845-016-1258-2
https://doi.org/10.1007/s10845-016-1258-2
https://doi.org/10.1016/j.engappai.2014.10.004
https://doi.org/10.1016/j.engappai.2014.10.004
https://doi.org/10.1109/COASE.2019.8843010
https://doi.org/10.1109/COASE.2019.8843010
https://doi.org/10.1109/COASE.2019.8843010
https://doi.org/10.1049/iet-cim.2020.0009
https://doi.org/10.1049/iet-cim.2020.0009
https://doi.org/10.1049/iet-cim.2020.0009
https://doi.org/10.1145/2994487.2994499
https://doi.org/10.1145/2994487.2994499
https://doi.org/10.1109/JPROC.2018.2841339
https://doi.org/10.1109/JPROC.2018.2841339
https://www.researchgate.net/publication/287118308_Towards_a_cloud-assisted_and_agent-oriented_architecture_for_the_Internet_of_Things
https://www.researchgate.net/publication/287118308_Towards_a_cloud-assisted_and_agent-oriented_architecture_for_the_Internet_of_Things
https://doi.org/10.1007/978-3-030-28005-5_24
https://doi.org/10.1007/978-3-030-28005-5_24
https://doi.org/10.1007/978-3-030-28005-5_24


117 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 2, FEBRUARY 2024

adaptation occur? (e.g., software architectures); (iii) Who will
perform the adaptation? (e.g. supervisor systems); (iv) When
will the adaptation be applied? (e.g., how often); (v) Why
will it be adapted? (e.g., low QoS); and (vi) How will it be
adapted? (e.g., actions plan).

Regarding the state of the art on Self-CPS, we conducted
a literature mapping (see Section II-B). Based on the studies
selected in this mapping, important information was extracted,
namely: (i) the main domains involving (Self-)CPS, (ii) the
main approaches adopted to enable self-adaptation, (iii) the
main design patterns used in (Self-)CPS, (iv) the main con-
cerns addressed by the adaptation, and (v) the main difficulties
encountered when implementing adaptation properties [39].
This information forms an important knowledge base for the
design of our architecture. As reported in Section II-B (see
Table I), 12 studies reported having designed models and/or
reference architecture for Self-CPS. Among the evidence iden-
tified in these models and/or architectures, we can highlight
the following features: modular organization, observability
features, monitoring (e.g., QoS degradation), data parsing be-
tween software layers of this type of system, external approach
to adaptation, and security. Although such features are relevant
for the design of a Self-CPS, we always partly identify them.
Therefore, it can be said that of the initiatives found in the
literature, none of these models/architectures address the self-
protecting, observability, and adaptation at runtime of the Self-
CPS as our RA.

Set 2 – Reference Architectures for Self-CPS. In this
set, we grouped and studied the main reference models and
reference architectures for Self-CPS. To do so, we conducted
a systematic mapping (see Section II-B), which resulted in
12 primary studies distributed between January 1, 2009 and
September 17, 2021. The results of this mapping enable us
to establish an overview and a more solid understanding of
how the reference models and/or architectures were designed
in recent years. Thus, we highlighted important indicators,
such as the current stage of the Self-CPS, research gaps and
perspectives for future work. Therefore, it can be said that
this overview/understanding was important to establish the
architectural requirements of our architecture.

B. Step RA-2: Architectural Requirement Establishment

Based on the information identified in Step RA-1, we
identified the requirements for the proposed reference archi-
tecture. In this step, we organized the requirements into two
categories, namely: (i) Cyber-Physical Requirements (CPR),
which are related to the overall purposes of the (Self-)CPS,
(ii) ADaptation Requirements (ADR). Next, a description of
each requirement is addressed:

• [CPR-1] The RA should provide a monitoring mecha-
nism capable of identifying and notifying system stake-
holders of anomalous requests or unwanted behavior
(e.g., execution environment);

• [CPR-2] The RA must enable the user the option of
storing a state history of the application environment
and/or software components;

• [CPR-3] The RA must provide a dashboard to visualize
the status of the execution environment (metrics, trace-
ability, and logs);

• [CPR-4] The RA must enable a Self-CPS to be aware of
the context in which it is inserted;

• [CPR-5] The RA must provide a mechanism for ex-
changing data between the execution environment and
the decision-making modules;

• [ADR-1] The RA must identify and overcome an adverse
situation (e.g., quality degradation) at runtime;

• [ADR-2] The RA must enable the replacement of a
software entity or service at runtime;

• [ADR-3] The RA must provide a mechanism for identify-
ing and reporting a problem when an adaptation operation
has been performed;

• [ADR-4] The RA must allow elaborating an adaptation
plan so that a Self-CPS can deal with unforeseen situa-
tions at runtime (structure, behavior, and context).

• [AR-5] The RA must alert interested parties about an
unavoidable situation. From this scenario, it is understood
that the system can transition to an irreversible scenario
that requires human intervention to return to the normal
operating state.

• [AR-6] The RA must enable monitoring of the Self-CPS
to assess its operating conditions (e.g., quality of service).

Besides standards and reference architectures, other sources
of information were also analyzed so that the list of require-
ments was generated: (i) SaS development and its adaptation
engine [4]; (ii) SaS developers with experience designing and
implementing SaS [40], and (iii) example systems [25], [41],
[42]. Regarding the last item, it is worth mentioning that the
aforementioned authors developed such systems for different
domains and provided excellent contributions (e.g., adaptation
scenarios, architecture requirements, end-user needs, among
other resources) for the reference architecture design proposed
in this article.

C. Step RA-3: Architectural Design

As mentioned in Section III, our architecture was designed
based on a combination of the PROSA-RA process guidelines
and the approach proposed by Tummers et al. [38], which
provides a process for building and/or reusing modules in
reference architectures for the information systems domain.
Based on this methodological strategy, RA4Self-CPS was
organized in layers according to a top-down view. To do so,
we used the information sources (i.e., Sets 1 and 2) identified
in Section III-A and the architectural requirements established
in Section III-B. Fig. 1 illustrates an overview of RA4Self-
CPS, where it is possible to observe the following layers:
adaptation, cyber, and physical. The first represents the logic
to deal with the self-adaptation of the system at runtime. The
second, represented by the dotted line, represents the software
communication layer with the physical layer (third layer). Re-
garding the internal elements of these layers, we recommended
that some modules be designed. For instance, so that a CPS
software can modify its structure and/or behavior at runtime or



CAMARGO et al.: RA4SELF-CPS: A REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE CYBER-PHYSICAL SYSTEMS 118

even adjust to context scenarios (i.e., execution environment),
the adaptation layer has three modules: metamodel, control
loop, and adaptation mechanism. The cyber layer contains all
the communication logic between the CPS and the physical
layer, providing modules for service design, communication
between CPS components, and routing. Because it is a layer
that deals with distributed systems via services, this layer
also provides for the elaboration of modules for monitoring
services and protecting them via HTTP (Hypertext Transfer
Protocol) requests. Finally, the physical layer is responsible
for enabling communication between the physical environ-
ment and the CPS through sensors and effectors. The physical
environment represents the physical side of a CPS. Next, a
description of the general purpose of each layer is presented.

physical layer
Physical

Services Communication
cyber layer

control loop

Metamodel

Parser(in)

Sensor

Parser(out)

Effector

Gateway

Physical environmet

K

Adaptation
Mechanism adaptation layer

log

Self-
protecting Monitor log

DashboardDashboard

C
PS

monitoring layer

Se
lf-

Fig. 1. Overview of RA4Self-CPS

Physical environment. Based on the concepts and defini-
tions reported in Section II-A, it can be said that the operating
environment of a (Self-)CPS can meet different application
domains. As each application has specific requirements re-
garding the number of equipment and sensors (among other
elements), the definition of the operational environment must
be in accordance (and may vary) according to each application.
Therefore, this layer represents the physical components of a
Self-CPS that are used to monitor and control the physical
processes seamlessly.

Physical layer. This layer aims to enable the interaction
between the layer that represents the physical environment
(physical environment layer) and the cyber layer of a Self-
CPS, as illustrated in Fig. 2. The physical and logical sensors
represent the hardware and software components that are part
of a Self-CPS, respectively. Effectors represent all hardware
components that can interact and make modifications in the
physical environment. Next, a description of the components
of the physical layer is presented.

Sensors components capture data from the operational envi-
ronment, and Effectors forward the data to this environment.
The Controller component receives the data from the sensors
and, after activities of execution of a Self-CPS, returns the
processed data to the execution environment. The Parser(in)
and Parser(out) modules translate data between the physical

Physical
Sensor

Logic
Sensor

Sensor

Effector A Effector N

Effector

Controller Controller

Dispatcher Receiver

Parser 
(in)

Parser 
(out)

Interface

Database

cyber layer

Fig. 2. Physical layer components

environment layer and the other layers of the architecture.
This operation is performed to make the data collected from
the environment compatible with the format required by
artificial intelligence algorithms. The Interface component
works in parallel with the Controller component, storing
data collected from the physical environment via sensors and
actuators in a Database component. This data is used by
upper-layer systems to manage a Self-CPS at runtime. The
Dispatcher component aims to provide the data collected
from the runtime environment to the cyber layer via Web
services. The Receiver component receives the processed data
from the upper layers and forwards it to the components of
the physical layer to be sent to the operational environment
(physical environment layer).

Cyber layer. This layer is represented by the intermediate
layers (i.e., cyber and monitoring) and enables the commu-
nication between the physical layer and the software of a
Self-CPS, as illustrated in Fig. 3. As reported in this section,
the purpose of the physical layer is to deliver the data collected
from the execution environment via the Dispatcher component
(see Fig. 2) to be processed by the cyber layer in the right
format. Once processed, this data is returned to the physical
layer through the Receiver component. During the process-
ing step, changes such as anomaly detection and/or quality
degradation can be detected in the application (Self-CPS) by
the adaptation layer. Such changes must be analyzed and
corrected so that damage or interruptions in this application
are not generated. Next, a description of the components of
the cyber layer is presented.

The Communication component provides the interfaces for
the services (i.e., concrete implementation) that will perform
the processing of an operation. In this sense, three types
of communication are illustrated, namely: (i) Endpoint for
communication via REST services; (ii) WDSL (Web Service
Description Language) for communication via SOAP services;
and (iii) API (Application Programming Interface), which rep-
resents a generic communication type. It is worth mentioning
that these interfaces must be organized in a service catalog to
be consulted by the other RA4Self-CPS components.

The concrete implementation of the services used by Self-
CPS is represented by the Service component. To enable self-



119 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 2, FEBRUARY 2024

phisical layer

API Gateway

adaptation layer

Data analysis

Models 

Process

Algorithm 
Repository

Engine

Security
specialist

Data science
specialist

Security
specialist

Application
specialist

Dashboard

Dashboard

Metrics, Tracking, and Logging

Database

cy
be

r l
ay

er
m

on
ito

rin
g 

la
ye

r

Self-protecting

Specialized loops

Monitor

Analyze Plan

ExecuteKnowledge

Classification Recommendation

Sensor Effector

Monitor
NOTIFICATION

Endpoint

Communication

...

...

API WDSL

Endpoint WSDL

Services

Service A

Service B

Service C Service D

Service E

...

...

N

Table

Graphical
Interface Notification

Specialists:
security and 
application

Fig. 3. Cyber layer components

adaptation in a Self-CPS regarding services, previous experi-
ences of our research group can be used. In this sense, it is
worth highlighting the framework [12], [43] and the reference
architecture [5] that enables dealing with adaptation of REST
and SOAP service at runtime. In short, the software engineer
must define the primary service and the set of alternative
services for this primary service. Thus, in case any type of
anomaly (e.g., failure or quality degradation) is identified
during the execution of a primary service, an alternative one
takes over running without the user’s perception.

The API Gateway component aims to facilitate commu-
nication/interaction between the services that are part of a
Self-CPS. To do so, this component must be available at a
different address for the target service, making it possible to
replace/relocate the target service without changing the details
of the associated gateway service. In addition, this component
must provide a common interface for the services, in which the
interested parties do not need to know where each underlying
service is located (e.g., internal or external service to the Self-
CPS operational environment).

As a Self-CPS can be complex and critical, monitoring the
state of execution and security of this type of system has
been an aspect identified in our mapping (see Section II –
related work). Thus, we created a supervisory layer for the
cyber layer called monitoring, which is composed of two
modules: Self-protecting and Monitor. Next, a description of
each module is addressed.

The Self-protecting module (see Fig. 3 – dotted line) aims
to analyze all HTTP requests from a Self-CPS and identify
whether they represent any type of threat/vulnerability. To do
so, we used an approach proposed by Martins [44], which

enables self-protecting at the application layer in Web and
service-oriented applications. In synthesis, this approach en-
ables flexibility and scalability in relation to the development
of models for anomaly classification. In addition, it is worth
noting that other security alternatives can be used in the
architecture proposed in this article, besides other security
levels that can also be inserted in this architecture.

The Monitor module aims to present interested parties
(i.e., security and application specialists) in the current state
of the system (Self-CPS) through a set of metrics, trace
information, and logs. In short, this information can be useful
for identifying any type of anomaly that could compromise the
system’s operation (Self-CPS). To do so, we can adopt a set
of existing tools in the literature to deal with monitoring an
application that goes beyond the collection of observability
information. These tools can interpret and make sense of
the data tracked and monitored and the created relationships
between various data sources. Finally, this module should
enable the interaction between the interested parties and the
Self-CPS, enabling modification in behaviors and/or awareness
of the monitored environment.

Adaptation layer. This layer must meet the adaptation
interests of a Self-CPS at runtime. Regarding adaptation,
two considerations should be highlighted. First, software that
requires runtime modification can be designed to satisfy one
(or more) self-* properties. As the number of these properties
increases according to the application domain, the complexity
of development also increases by an equivalent or even greater
proportion. Second, the control loop proposed by IBM [14]
has been adopted by the SaS community to address adaptation
concerns (see Section II-A). In previous experiments by our
research group [11], this loop was organized into two modules
to deal with SaS adaptation interests, namely: classification
and recommendation. Fig. 4 illustrates the organization of the
adaptation layer for our architecture, based on the MAPE-K
loop and on the aforementioned organization. In short, in the
Process phase occur the elaboration of the classification and
recommendation models that will be used by the loops (Loop
phase). Next, a description of each phase is addressed.

cyber layer

Process

Algorithm
repository

Engine

Data science
aspecialist

Monitor

Analyze Plan

ExecuteKnowledge

Classification Recommendation

Sensor Effector

Model 

Self-CPS

Application
specialist

Loop

Fig. 4. Adaptation layer components

In the Process phase, specialists must create the classi-
fication and recommendation models, which will deal with
the adaptation interests of a Self-CPS at runtime. In short,
the classification module must be responsible for identifying
some type of anomaly/adversity in a Self-CPS. On the other
hand, the recommendation module must be able to establish a



CAMARGO et al.: RA4SELF-CPS: A REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE CYBER-PHYSICAL SYSTEMS 120

modification plan so that such anomalies/adversities do not
harm or interrupt the execution of the system (Self-CPS).
To design these models, the Self-CPS specialist must define
which modifications this system must support and which self-*
properties will be used so that the modifications at runtime be
performed. To do so, this specialist can use the 5W1H model
as a mechanism to guide adaptation interests in relation to
the target software and its modifications. Finally, the Loop
phase represents the instance of a control loop in the execution
environment, based on the classification and recommendation
models elaborated in the Process phase.

As reported in this section, the description presented for
each module/component can guide the stakeholders when our
architecture is instantiated in a concrete architecture. In this
sense, we can highlight three considerations in relation to
such modules/components, namely: (i) Service component –
Fig. 3: we cite in the description of this component that we
used a previous work of our research group [12]. However,
it is worth highlighting that we can use any solution that
can perform service adaptation at runtime; (ii) API Gateway
component– Fig. 3: Similar to the previous component, we
can use other types of solutions that enable communication
between services [45]; and (iii) Self-protecting module (see
Fig. 3: we also cite in the description of this module that we
used a previous work of our research group [13] based on self-
protecting. In this sense, we can use similar or complementary
solutions in this module to provide protection at runtime.

D. Step RA-4: Reference Architecture Evaluation

We conducted an inspection based on the checklist in order
to improve the quality of RA4Self-CPS. The main purpose
of this checklist is to verify if there are defects related to
omission, ambiguity, inconsistency, and incorrect information
that can be present in our architecture. Moreover, aiming
at observing the viability of RA4Self-CPS, as well as its
capability to develop SaS, case studies were conducted, and
the results are presented in the Section IV.

IV. CASE STUDY

This section presents a case study we have conducted in
order to evaluate the applicability, strengths, and weaknesses
of our architecture (RA4Self-CPS). As subject application for
our empirical analysis, we have selected an application ad-
dressed to the Smart Home HealthCare (SHHC), as illustrated
in Fig. 5. Next, we presented a brief description of our subject
application and the empirical strategies adopted for conducting
this case study.

The SHHC project represents a domestic environment
composed of basic infrastructure to monitor the health of a
person with some type of illness in a simulated computing
environment. As illustrated in Fig. 5, this project has the
following elements: SHHCSensorAPI, ControlPanel,
ContainerApp, MonitorApp, NotifierApp, and
Observability. Besides the software elements, this
project has the following actors: patient, nurse, doctor,
ambulance, and hospital. Next, a brief description of the
elements/actors is presented.

The patient actor is represented by the SHHCSensorAPI
application, where each application was instantiated in a
Docker2 container. In short, each patient simulates monitoring
the following sensors: airflow, blood pressure, glucose, heart
rate, pulse oxygen, and temperature. These sensors represent
the physical environment of a Self-CPS. To enable com-
munication with the other elements of the SHHC project,
these sensors were implemented via API via the Spring Boot3

framework.
The SHHC specialist can adjust (i.e., increase or decrease)

the values of the sensors supposedly connected to the pa-
tient through ControlPanel, an application developed in
JavaFX4 integrated to SHHCSensorAPI. It is worth men-
tioning here that this application does not include a simulation
based on disease scenarios. For instance, a patient who has a
symptom of fever may have an altered heart rate, besides other
health alterations. In addition, other factors must be considered
modeling patient scenarios, such as age, weight, height, BMI
(Body Mass Index), among others.
MonitorApp is an application developed in JavaFX in-

tegrated with SHHCSensorAPI, which displays a graph
for each sensor. To do so, this application consumes the
current values of the sensors through REST services in
a time interval of 5 seconds. This application acts as a
dashboard that can be used by the nurses to observe the
status of each patient’s sensors. In addition, MonitorApp
was integrated with NotifierApp, whose purpose is to
send notifications to smartphones (nurses and doctors) of
situations that require urgent treatment. In summary, the
nurse receives a notification via mobile application so that
a procedure to overcome the health problem identified by
the system is started. Based on this scenario, the systems
(MonitorApp and NotifierApp) must await the comple-
tion of this procedure to notify it again. If the number of
attempts (nurses and doctors) exceeds the limit allowed by
the system, the emergency service can be triggered by the
NotifierApp application. With regard to implemen-
tation, the NotifierApp application receives data from the
sensors and classifies the patient’s status through a set of rules.
We opted for the framework DROOLS5 based on previous ex-
perience of our research group. Finally, smartphones (nurses)
and systems (doctors) are hardware elements that contain
applications that receive information from the NotifierApp
application via Websocket6.
ContainerApp is a Java application designed to interrupt

and initialize the SHHCSensorAPI application containers to
simulate failure scenarios in the sensors. These operations are
captured by the monitoring module and displayed on admin-
istrators’ dashboards. For instance, observability represents a
set of information (metrics, tracing, and logs) that can be
collected from services at runtime. The significant increase
in requests for a service and/or the log of command injection
(e.g., SQLi attack) captured by data analyzers are examples of

2https://www.docker.com/
3https://spring.io/projects/spring-boot
4https://openjfx.io/
5https://www.drools.org/
6https://spring.io/guides/gs/messaging-stomp-websocket

https://www.docker.com/
https://spring.io/projects/spring-boot
https://openjfx.io/
https://www.drools.org/
https://spring.io/guides/gs/messaging-stomp-websocket


121 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 2, FEBRUARY 2024

NursePatient APatient N

Patient A

...

SHHCSensorAPI

Patient N

Container
Manager

Specialist

ContainerApp ControlPanel

Specialist

Smartphone

System Monitor
Smartphone

Doctor

System

Hospital +
Mobile ICU

MonitorApp and NotifierApp
NotifierApp

Observability

Dashboard

(SHHC)

Fig. 5. General architecture for the SHHC

actions that can be malicious for a Self-CPS. To do so, we used
Wavefront7 application for the ease of integration with REST
APIs. Besides observability, a self-protecting approach [13],
[44] was instantiated to help identify anomalous requests to a
Self-CPS. To couple this approach to the SHHCSensorAPI
module, it is necessary to include the dependency in the
pom.xml file, as shown in Listing 1.

Listing 1: Source code of the pom.xml file
1 <dependency>

2 <groupId>br.unesp.rc</groupId>

3 <artifactId>LibSelfProtection</artifactId>

4 <version>1.0-SNAPSHOT</version>

5 </dependency>

Next, we must configure the application.proper-
ties file of the SHHCSensorAPI application so that the
approach works, as shown in Listing 2. We enable the security
process in Line 4, and we define the port and URL settings
in Lines 5 and 6. Finally, we created an identifier for the
application to be managed in Line 7(i.e., SHHCSensorAPI).

Listing 2: Source code of the application.properties
file
1 server.port=8084

2 spring.data.mongodb.

3 ignore-unknown-exceptions=true

4 mape.enable=true

5 mape.port=8081

7https://docs.wavefront.com/index.html

6 mape.url=http://localhost

7 appmanaged.id=63152073fe5ad305865bc6c9

After the configuration step, we must create a filter in the
SHHCSensorAPI module so that all headers and request
data can be captured. Listing 3 shows the source code of this
filter. In short, between Lines 6 and 13 the attributes for this
filter are defined, which are the information defined in the
application.properties file. In Line 19, it is verified
whether security is enabled in the application so that the
monitoring point can be instantiated in Line 20 and put into ex-
ecution in Line 23. As seen, all requests (wrappedRequest)
from an application (appID) are monitored by the approach.
Regarding monitoring, the security specialist visualizes all re-
quests in a dashboard (i.e., a request is normal or anomalous).
When an anomalous request is identified, the approach shows
a classification for the attack that the application is being
subjected to.

Listing 3: Source code of the CustomFilter.java class
1 package br.unesp.rc.shhc.SHHCSensorAPI.filter;

2 // ...

3 @Configuration

4 @Order(1)

5 public class CustomFilter implements Filter {

6 @Value("${appmanaged.id}")

7 private String appID;

8 @Value("${mape.enable}")

9 private boolean mapeEnable;

10 @Value("${mape.port}")

11 private String mapePort;

https://docs.wavefront.com/index.html


CAMARGO et al.: RA4SELF-CPS: A REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE CYBER-PHYSICAL SYSTEMS 122

12 @Value("${mape.url}")

13 private String mapeURL;

14

15 @Override

16 public void doFilter(...) throws IOException,

↪→ ServletException {

17 try {

18 //...

19 if (mapeEnable) {

20 MonitoringPointRequest mpr =

21 MonitoringPointRequest.

22 getInstance(mapeURL, mapePort);

23 mpr.run(wrappedRequest, appID);

24 }

25 } //...

26 }

27 //..

28 }

To illustrate adaptation scenarios in this case study, we
must first show the new organization of the SHHCSensorAPI
application, as illustrated in Fig. 6. Instead of this application
representing a patient with sensors on different routes, this
application now has a central element (Patient) that control-
s/coordinates calls to the other sensors (e.g., Temperature).
It is worth highlighting that we implemented each sensor
as an isolated application in a container. To illustrate the
service adaptation, we considered two scenarios of adaptation,
namely: recovery and evolution.

Patient 
(Coordinator)

Airflow

Blood Pressure

Glucose Heart rate

Pulse oxygen

Temperature

Consumer 
(Client-side)

request/response Evolution scenario

T1 T2 TNA1A2AN

Recovery
scenario

primary service

alternative service

primary service

alternative service

Fig. 6. Adaptation scenarios

The first aims to deal with the system’s recovery in re-
lation to the occurrence of failure or degradation of service
quality. To do so, a failure in the Temperature sensor
(TemperatureAPI) application) will be simulated so that
an alternative service (T1) will replace a primary service
named Temperature. The dotted line area named Recovery
Scenario illustrates this scenario for the Temperature and
Airflow sensors.

The second explores the evolution of the system in relation
to a new need of its users. To do so, we will simulate
the SHHCSensorAPI application with four sensors (Bood

Pressure, Glucose, Airflow, and Temperature).
Depending on the patient’s health status, we can add new
sensors to improve the system’s ability to monitor the patient.
The dotted line area named Evolution Scenario illustrates
this scenario through the addition of two sensors (Pulse
Oxygen and Heart rate).

We have not reported details of the service adaptation
(i.e., source code) at runtime in this section because of the
complexity and space reasons required by the framework
instantiation. Such details can be found at Passini & Affonso
[12] and Affonso et al. [5]. Finally, it is worth mentioning that
other technical elements (e.g., Gateway) of our architecture
were not described in this section for reasons of scope.

V. DISCUSSION OF RESULTS AND LIMITATIONS

This section summarizes the main findings and discusses
the relevance of this work to the RA, Software Engineering,
and CPS communities. The main findings and results are listed
as follows.

This article proposed the RA4Self-CPS, to the best of
our knowledge, the first reference architecture that encom-
passes three activities at the same time: self-adaptation, self-
protecting, and observability through a well-defined modular
organization. We can execute the first two activities without
the perception of the stakeholders, as well as be supported
by specialists through dashboards. The third is a mandatory
activity, which must be monitored by the specialists in the
application through information extraction tools. These tools
can guide the specialist’s decision-making depending on any
need to change the Sel-CPS.

As reported in Section III, we designed our architecture
(RA4Self-CPS) based on a well-defined modular organization,
which enables architecture modules, when instantiated in a
concrete architecture, to be reused in systems in the same
domain or neighboring domains. In this sense, it is worth
highlighting the methodology used for the design of our archi-
tecture. Initially, we understood the sources of information that
permeate the development of Self-CPS, elaborating a set of
architectural requirements. Next, analyzing the studies selected
in our mapping, we reused and/or adapted the modules of
the architectures/models for our architecture (RA4Self-CPS).
Therefore, it can be said that this feature can significantly
influence (time and cost) the development of new systems
(Self-CPS).

We explored the idea that it is possible to monitor the
execution status of an application (i.e., Self-CPS) and the ser-
vices that compose this application. To so do, our architecture
provides a “Monitor” component in the monitoring layer (as
illustrated in Fig. 1) that enables us to identify anomalies via
Dashboard that a service can present during its execution, such
as failure, unavailability, unsatisfactory response time, among
others requirements. As reported in Section II-B, QoS is an
important feature for service to ensure service quality for Self-
CPS. In parallel, we can also identify observability features
like metrics, logs, and trace information via the Dashboard in
order to guide specialist’s decisions.

Regarding security aspects, we adopted a self-protecting ap-
proach developed in previous work by our research group [13].



123 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 2, FEBRUARY 2024

In short, this approach enables the use of a security layer by
means of a non-intrusive way, as presented in Section IV.
To do so, the developer must implement a filter to capture
HTTP requests so that analysis of supported attacks can be
identified. Another important aspect to be highlighted in this
approach is the elasticity in relation to attacks that can be
handled without modifications to the Self-CPS source code.
Although our architecture has included security aspects (see
Self-protecting component – Fig. 1), we recognize that other
levels of security can be implemented at different layers of
our architecture and/or devices in the physical environment.

Based on the discussion presented in this section, we
next report a comparative analysis between the models and
architectures selected in our mapping (see Section II-B) and
RA4Self-CPS. To do so, we consider four features: security,
monitoring, adaptation, and engineering. For security, we
considered whether the model or architecture implements any
non-intrusive security aspect. In relation to monitoring, we
analyzed where monitoring occurs in a Self-CPS. In this
sense, we adopted the acronym PE for Physical Environment
and AoQ for Aspects of Quality (e.g., quality of service).
Regarding adaptation, we classified studies according to im-
plementing the self-* property. Although different techniques
have been used to carry out the adaptation (see Table I), we
selected only studies that presented concrete evidence of the
use of some property for comparison with our architecture.
Finally, regarding engineering, we analyzed the models and
architectures in relation to the intrusion into source code
to implement three previous features. In this sense, only
RA4Self-CPS enables the use of a non-intrusive security
approach, meeting an important principle in the security area,
which is to protect the protector [13], [44]. As reported in
Section IV, adaptation at runtime and monitoring activity also
do not require modification to the Self-CPS source code. Here,
the framework developed by Passini et al.[12] stands out,
which enables changing services at runtime with adaptation
logic separated from the application (Self-CPS). As shown
in Table II, the architecture proposed in this article meets
the three first features selected for our analysis. It is worth
mentioning that we identified these features in the literature
mapping (see Section II-B) and they proved to be essential
to design Self-CPS. Still in this direction, our architecture
also highlights the well-defined modular organization and
engineering flexibility (fourth feature) regarding the coupling
of third-party solutions based on a non-intrusive strategy,
which may represent the system’s transversal interests (e.g.,
security and monitoring) as described in this section.

Regarding limitations, as reported here and in Section III,
our architecture enables the development of security solutions
in the application layer. However, considering this system type
(Self-CPS), we can implement the security aspects in other
layers and devices of this system. Concerning the adaptation,
we use a framework developed in our research group [12].
Although this framework has the benefits and contributions
presented in this section, it acts to monitor services in relation
to the interests of quality attributes, and when these interests
are not met (see Section IV), it performs a service adaptation.
Finally, another limitation of this work refers to the use only of

TABLE II
COMPARATIVE ANALYSIS BETWEEN THE ARCHITECTURES

AND MODELS IDENTIFIED IN THE LITERATURE AND
RA4SELF-CPS

ID Security Monitoring Adaptation Engeneering

S1 – PE – –

S2 D – D –

S3 – – – –

S4 – AoQ – –

S5 – – D –

S6 – – D –

S7 – – D –

S8 – AoQ – –

S9 – – D –

S10 D – D –

S11 – – D –

S12 – PE, AoQ – –

RA4Self-CPS D AoQ D D

the Java programming language. Although we have conducted
the development of previous projects of our research group
and this RA based on good engineering practices, we did not
evaluate development in a heterogeneous environment from the
viewpoint of programming languages and development stack.

VI. CONCLUSION AND FUTURE WORK

In this article, we have proposed a novel reference archi-
tecture to support the development of Self-CPS, addressing
issues like self-adaptive service, self-protecting in the appli-
cation layer, and application observability. According to our
investigation (see Section II-B), these issues provide important
information for monitoring an application that enables identi-
fying the security level, execution parameter, traceability, and
logging. As an inherent feature of this type of system (Self-
CPS), our architecture enables dealing with the adaptation of
services at runtime through a framework developed in the
previous work of our research group [12].

Regarding the RA4Self-CPS design, it is worth highlighting
that its organization was based on layers and modules, which
can be considered a positive factor in understanding the archi-
tecture by reducing implementation complexity. Furthermore,
the modular organization can boost the reuse of modules when
our architecture is instantiated to act on systems in the same
domain, neighbor domains, or different domains.

The case study presented in this article enables us to
objectively evaluate the proposed architecture and confirm its
applicability in the health system (i.e., SHHC) but, above all,
its adherence to the Self-CPS domain. Drawing a parallel
between the architecture organization and the case study
conducted, our case study revealed good perspectives for
the instantiation of our RA in concrete architecture. In this
sense, it is worth highlighting the facility of implementing
the self-protecting approach, where only one filter must be
implemented as a means of coupling the aforementioned ap-
proach to the application that will be monitored, characterizing



CAMARGO et al.: RA4SELF-CPS: A REFERENCE ARCHITECTURE FOR SELF-ADAPTIVE CYBER-PHYSICAL SYSTEMS 124

a non-intrusive strategy for the Self-CPS application (i.e.,
SHHC). Similarly, the implementation of the observability and
service adaptation modules follow the same strategy. However,
the service adaptation module requires knowledge about the
application to define the variability of application adaptation
for framework configuration [12], [46].

As future work, we intend to conduct at least two activities,
namely: (i) conduction of more case studies intending to
completely evaluate RA4Self-CPS; (ii) instantiation of our RA
for other programming languages to evaluate its structures
and respective elements, behavior, and relationships between
them when a concrete architecture is instantiated; (iii) use
of this RA in the industry to evaluate its behavior when it
is applied in a larger real environment of development and
execution; (iv) evaluate the behavior of RA4Self-CPS when
it is instantiated to act in a neighboring system domain.
Therefore, it is expected a positive scenario of research that
aims to make our architecture (RA4Self-CPS) an effective
contribution to the software development community.

ACKNOWLEDGEMENTS

This research is supported by UNESP’s Pro-Rectory of
Research (PROPe/UNESP) and the São Paulo Research Foun-
dation (FAPESP) – Brazil (Grants: 2020/10288-5).

REFERENCES

[1] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: The next computing revolution,” in Proceedings of the 47th
Design Automation Conference, (New York, NY, USA), pp. 731–736,
Association for Computing Machinery, 2010.

[2] T. Li, F. Tan, Q. Wang, L. Bu, J. Cao, and X. Liu, “From offline toward
real-time: A hybrid systems model checking and cps co-design approach
for medical device plug-and-play (mdpnp),” in 2012 IEEE/ACM Third
International Conference on Cyber-Physical Systems, pp. 13–22, 2012.

[3] B. Bordel SÁnchez, R. Alcarria, D. SÁnchez de Rivera, and T. Robles,
“Process execution in cyber-physical systems using cloud and cyber-
physical internet services,” The Journal of Supercomputing, 05 2018.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, pp. 14:1–
14:42, may 2009.

[5] F. J. Affonso, W. F. Passini, and E. Y. Nakagawa, “A reference
architecture to support the development of mobile applications based
on self-adaptive services,” Pervasive and Mobile Computing, vol. 53,
pp. 33 – 48, 2019.

[6] H. Muccini, M. Sharaf, and D. Weyns, “Self-adaptation for cyber-
physical systems: A systematic literature review,” in 2016 IEEE/ACM
11th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), pp. 75–81, May 2016.

[7] A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, and M. Sharaf,
Patterns for self-adaptation in Cyber-Physical Systems. Springer Inter-
national Publishing, 2017. cited By 17.

[8] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Boston, USA: Addison-Wesley Professional, 3rd ed., 2012.

[9] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a process for the design, representation,
and evaluation of reference architectures,” in IEEE/IFIP Conference on
Software Architecture, pp. 143–152, 2014.

[10] F. J. Affonso and E. Y. Nakagawa, “A reference architecture based on
reflection for self-adaptive software,” in The 7th Brazilian Symposium
on Software Components, Architectures and Reuse, pp. 129–138, 2013.

[11] F. J. Affonso, G. Leite, R. A. P. Oliveira, and E. Y. Nakagawa, “A
framework based on learning techniques for decision-making in self-
adaptive software,” in The 27th International Conference on Software
Engineering and Knowledge Engineering, (Pittsburgh, USA), pp. 24–29,
Knowledge Systems Institute, 2015.

[12] W. F. Passini and F. J. Affonso, “Developing self-adaptive service-
oriented mobile applications: A framework based on dynamic deploy-
ment,” International Journal of Software Engineering and Knowledge
Engineering, vol. 28, no. 11n12, pp. 1537–1558, 2018.

[13] R. R. Martins, M. P. de Oliveira Camargo, W. F. Passini, G. N.
Campos, and F. J. Affonso, “A self-protecting approach for service-
oriented mobile applications,” in Proceedings of the 23rd International
Conference on Enterprise Information Systems, pp. 313–320, 2021.

[14] IBM, “An architectural blueprint for autonomic computing.” [On-
line], 2005. Available: https://www-03.ibm.com/autonomic/pdfs/
ACBlueprintWhitePaperV7.pdf, Accessed on January 15, 2024.

[15] R. Lutze, “Digital twins in ehealth – : Prospects and challenges focussing
on information management,” in 2019 IEEE International Conference
on Engineering, Technology and Innovation (ICE/ITMC), pp. 1–9, 2019.

[16] J. Moyne, Y. Qamsane, E. C. Balta, I. Kovalenko, J. Faris, K. Barton,
and D. M. Tilbury, “A requirements driven digital twin framework:
Specification and opportunities,” IEEE Access, vol. 8, pp. 107781–
107801, 2020.

[17] A. A. Nazarenko and L. M. Camarinha-Matos, “The role of digital twins
in collaborative cyber-physical systems,” in Technological Innovation
for Life Improvement (L. M. Camarinha-Matos, N. Farhadi, F. Lopes,
and H. Pereira, eds.), (Cham), pp. 191–205, Springer International
Publishing, 2020.

[18] L. M. Camarinha-Matos, J. Rosas, A. I. Oliveira, and F. Ferrada,
“A collaborative services ecosystem for ambient assisted living,” in
Collaborative Networks in the Internet of Services (L. M. Camarinha-
Matos, L. Xu, and H. Afsarmanesh, eds.), (Berlin, Heidelberg), pp. 117–
127, Springer Berlin Heidelberg, 2012.

[19] A. A. Nazarenko and L. M. Camarinha-Matos, “Towards collaborative
cyber-physical systems,” in 2017 International Young Engineers Forum
(YEF-ECE), pp. 12–17, 2017.

[20] M. Galster and P. Avgeriou, “Empirically-grounded reference architec-
tures: a proposal,” in Proceedings of the joint ACM SIGSOFT conference
– QoSA and ACM SIGSOFT symposium – ISARCS on Quality of soft-
ware architectures – QoSA and architecting critical systems – ISARCS,
QoSA-ISARCS ’11, (New York, NY, USA), pp. 153–158, ACM, 2011.

[21] S. Angelov, P. Grefen, and D. Greefhorst, “A framework for analysis and
design of software reference architectures,” Information and Software
Technology, vol. 54, no. 4, pp. 417–431, 2012.

[22] P. Kruchten, The Rational Unified Process: An Introduction. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 3 ed., 2003.

[23] D. Weyns, S. Malek, and J. Andersson, “Forms: A formal reference
model for self-adaptation,” in Proceedings of the 7th International
Conference on Autonomic Computing, ICAC ’10, (New York, NY, USA),
p. 205–214, Association for Computing Machinery, 2010.

[24] M. P. de Oliveira Camargo and F. J. Affonso, “Systematic
mapping protocol – mapping study on reference models
and/or reference architectures for the self-adaptive cyber-
physical systems.” on-line, 2023. https://drive.google.com/file/d/
1MexCsklL-2vlch3tbM8us3w9cVgqt7LW/view?usp=sharing, accessed
on January 15, 2024.

[25] H. T. Ignatius and R. Bahsoon, “A conceptual reference model for human
as a service provider in cyber physical systems,” in 2021 International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 1–10, May 2021.

[26] M. Castillo-Effen and N. A. Visnevski, “Analysis of autonomous de-
confliction in unmanned aircraft systems for testing and evaluation,” in
2009 IEEE Aerospace conference, pp. 1–12, March 2009.

[27] E. Giallonardo, F. Poggi, D. Rossi, and E. Zimeo, “An architecture for
context-aware reactive systems based on run-time semantic models,”
PeerJ Preprints, vol. 7, 2019.

[28] S. Behere, M. Torngren, and D.-J. Chen, “A reference architecture for
cooperative driving,” Journal of Systems Architecture, vol. 59, pp. 1095–
1112, NOV 2013.

[29] J. Dias-Ferreira, L. Ribeiro, H. Akillioglu, P. Neves, and M. Onori,
“Biosoarm: a bio-inspired self-organising architecture for manufactur-
ing cyber-physical shopfloors,” Journal of Intelligent Manufacturing,
vol. 29, pp. 1659–1682, OCT 2018.

[30] F. Zambonelli, “Engineering self-organizing urban superorganisms,”
Engineering Applications of Artificial Intelligence, vol. 41, pp. 325–332,
2015.

[31] P. Jiang, C. Liu, P. Li, and H. Shi, “Industrial dataspace: A broker
to run cyber-physical-social production system in level of machining
workshops,” in 2019 IEEE 15th International Conference on Automation
Science and Engineering (CASE), pp. 1402–1407, Aug 2019.

[32] J. Lee, M. Azamfar, J. Singh, and S. Siahpour, “Integration of digital
twin and deep learning in cyber-physical systems: Towards smart man-

https://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf
https://drive.google.com/file/d/1MexCsklL-2vlch3tbM8us3w9cVgqt7LW/view?usp=sharing
https://drive.google.com/file/d/1MexCsklL-2vlch3tbM8us3w9cVgqt7LW/view?usp=sharing


125 IEEE LATIN AMERICA TRANSACTIONS , Vol. 22, No. 2, FEBRUARY 2024

ufacturing,” IET Collaborative Intelligent Manufacturing, vol. 2, no. 1,
pp. 34–36, 2020.

[33] D. Dominic, S. Chhawri, R. M. Eustice, D. Ma, and A. Weimerskirch,
“Risk assessment for cooperative automated driving,” in Proceedings
of the 2nd ACM Workshop on Cyber-Physical Systems Security and
Privacy, CPS-SPC ’16, (New York, NY, USA), p. 47–58, Association
for Computing Machinery, 2016.

[34] A. Bhat, S. Aoki, and R. Rajkumar, “Tools and methodologies for
autonomous driving systems,” Proceedings of the IEEE, vol. 106,
pp. 1700–1716, Sep. 2018.

[35] G. Fortino and W. Russo, “Towards a cloud-assisted and agent-oriented
architecture for the internet of things,” in CEUR Workshop Proceedings,
vol. 1099, pp. 97–103, 2013.

[36] J. Dobaj, M. Krisper, and G. Macher, “Towards cyber-physical infras-
tructure as-a-service (cpiaas) in the era of industry 4.0,” in Systems,
Software and Services Process Improvement (A. Walker, R. OConnor,
and R. Messnarz, eds.), vol. 1060 of Communications in Computer
and Information Science, pp. 310–321, 2019. 26th Systems, Software
and Services Process Improvement (EuroSPI) Conference, Edinburgh,
SCOTLAND, SEP 18-20, 2019.

[37] C. Tozzi, “The 3 pillars of observability: Logs, metrics and traces,”
2023. Available: https://www.techtarget.com/searchitoperations/tip/
The-3-pillars-of-observability-Logs-metrics-and-traces, Accessed on
January 15, 2024.

[38] J. Tummers, H. Tobi, C. Catal, and B. Tekinerdogan, “Designing a
reference architecture for health information systems,” BMC Medical
Informatics and Decision Making, vol. 21, p. 210, Jul 2021.

[39] M. P. de Oliveira Camargo, “Estabelecimento de uma arquitetura de
referência para sistemas ciber-físicos autoadaptativos,” master thesis,
São Paulo State University (Unesp), Institute of Geosciences and Exact
Sciences (IGCE), Rio Claro, 2023. Unesp’s Graduate Program in
Computer Science (PPGCC), Available at https://repositorio.unesp.br/
bitstreams/824e6814-cb65-4b6b-9975-0b9a8c416805/download.

[40] D. Weyns, “Software engineering of self-adaptive systems: An organised
tour and future challenges,” in Chapter in Handbook of Software
Engineering, Springer, 2017.

[41] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype implementa-
tions and challenges,” Computers in Industry, vol. 81, pp. 11–25, 2016.

[42] C. Greer, M. Burns, D. Wollman, and E. Griffor, “Cyber-physical
systems and internet of things,” NIST Pubs, 07 2019.

[43] W. Filisbino Passini, C. Aparecida Lana, V. Pfeifer, and F. J. Affonso,
“Design of frameworks for self-adaptive service-oriented applications:
A systematic analysis,” Software: Practice and Experience, vol. n/a,
no. n/a, pp. 1–34, 2021.

[44] R. R. Martins, “Autoproteção para a camada de aplicação: uma abor-
dagem baseada em técnicas de aprendizado e no laço de controle mape-
k,” dissertação de mestrado, Universidade Estadual Paulista (UNESP),
Instituto de Geociências e Ciências Exatas (IGCE), Rio Claro, 2022.
Programa de Pós-Graduação em Ciência da Computação (PPGCC).

[45] C. Richardson, Microservices patterns. Manning Publications Company,
2018.

[46] W. F. Passini, “Desenvolvimento de serviços compostos autoadaptativos:
um framework baseado em implantação dinâmica, métricas de qos e
informação semântica,” Master’s thesis, Universidade Estadual Paulista
(UNESP), Instituto de Biociências Letras e Ciências Exatas, São José
do Rio Preto, Programa de Pós-Graduação em Ciência da Computação
(PPGCC), 2020.

Marcos Paulo de Oliveira Camargo received the
bachelor’s degree from São Paulo State University
(Unesp) in 2019. He is currently a software devel-
oper at Alpha7 Software, Brazil (Limeira/SP). He
has experience in Computer Science with empha-
sis on the following areas: cyber-physical sytems,
software engineering, software architecture, and web
development.

Gabriel dos Santos Pereira is a graduate student
in Computer Science at São Paulo State University
(Unesp). His topics of interest are software engi-
neering, service-based systems, mobile computing,
java programming language, JavaFX, and software
development.

Daniel de Almeida is a graduate student in Com-
puter Science at São Paulo State University (Un-
esp). His topics of interest are software engineering,
service-based systems, mobile computing, java pro-
gramming language, JavaFX, and software develop-
ment.

Leandro Apolinário Bento is a graduate student
in Computer Science at São Paulo State University
(Unesp). His topics of interest are software engi-
neering, service-based systems, mobile computing,
java programming language, JavaFX, and software
development.

William Fernandes Dorante received the bache-
lor’s degree from São Paulo State University (Unesp)
in 2023. He is currently a software developer at
AutBank, Brazil (Rio Claro/SP). Has experience in
Computer Science with emphasis on the following
areas: service-based systems, software engineering,
and web development.

Frank José Affonso is assistant professor at the
São Paulo State University (Unesp), Rio Claro/SP,
Brazil. He received his Ph.D. in 2009 from the
University of São Paulo (USP). He was a postdoc-
toral researcher in Computer Science from 2013 to
2014 at ICMC/USP. He has experience in Computer
Science with an emphasis on Software Engineer-
ing in the following areas: Reference Architecture,
Service-Based Systems, Mobile Computing, Self-
protecting systems, and Self-adaptive Software. He
advises students in Unesp’s graduate program. He is

a member of program committees at various conferences and has acted as a
reviewer for several journals. He is the institutional representative of the SBC
(Brazilian Computing Society) in Rio Claro.

https://www.techtarget.com/searchitoperations/tip/The-3-pillars-of-observability-Logs-metrics-and-traces
https://www.techtarget.com/searchitoperations/tip/The-3-pillars-of-observability-Logs-metrics-and-traces
https://repositorio.unesp.br/bitstreams/824e6814-cb65-4b6b-9975-0b9a8c416805/download
https://repositorio.unesp.br/bitstreams/824e6814-cb65-4b6b-9975-0b9a8c416805/download

	Introduction
	Background and Related Work
	Background
	Related Work

	Reference Architecture for Self-CPS
	Step RA-1: Information Source Investigation
	Step RA-2: Architectural Requirement Establishment
	Step RA-3: Architectural Design
	Step RA-4: Reference Architecture Evaluation

	Case Study
	Discussion of results and limitations
	Conclusion and Future Work
	References
	Biographies
	Marcos Paulo de Oliveira Camargo
	Gabriel dos Santos Pereira
	Daniel de Almeida
	Leandro Apolinário Bento
	William Fernandes Dorante
	Frank José Affonso


