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Abstract— A well-known data hiding scheme, Remainder with 
Threshold substitution (RT), is analyzed. RT uses a threshold 
value, T, and two moduli numbers, 𝒎𝒖, and 𝒎𝒍, 𝒎𝒍<𝒎𝒖, to embed 
secret data into a cover image. RT does not impose any divisibility 
constraints on the selection of the parameters, T, 𝒎𝒖, and 𝒎𝒍, and 
its correctness (i.e., the data extracted are always the same as the 
data embedded) is not proved. By counterexamples constructing, 
we show that RT works for them incorrectly. Also, RT scheme uses 
pseudo-random number generator (PRNG) to define a pixel for 
embedding of the next secret bit portion. PRNG can produce 
repeated values leading to the repeated embedding into the same 
pixel, thus overwriting previously embedded secret and 
preventing its correct extraction. We modify RT scheme (by 
imposing divisibility constraints on the threshold, moduli values, 
and PRNG), and prove correctness of the modification. Note that 
in the reported experiments on RT, its parameters used, T=160, 
and (𝒎𝒍, 𝒎𝒖) from {(4, 8), (16, 32)}, exactly satisfy our constraints, 
and, thus, the scheme may be correct for such settings. 
 

Index Terms— Data hiding scheme, Remainder with Threshold 
substitution, Cover Image, Pixel, Secret Embedding, Secret 
Extraction  
 

I. INTRODUCTION 

ata hiding is important due to the need to protect private 
information. In [1], a well-known (e.g., [2]-[35] refer to it) 

data hiding scheme named herein Remainder with Threshold 
substitution (RT) with adaptation to a pixel value is proposed. 
It uses modulus operator to hide the secret data in a host (cover) 
image pixel by replacing the remainder of the pixel by the secret 
data similar to least-significant-bit substitution (LSB, see 
equations (4), (5) in [36]). Contrary to LSB, RT uses a threshold 
value, T, and two moduli values, mu, and ml, ml<mu, defining 
the number of bits to be embedded per pixel.  For the pixels 
with values not less (less) than the threshold, T, the number of 
secret bits to be embedded is ⌊logଶ 𝑚௨⌋ (⌊logଶ 𝑚௟⌋), where ⌊𝑥⌋ 
denotes the floor function returning the maximal integer not 
exceeding 𝑥.   

Despite proposed in 2005, RT is still used for comparison or 
as a reference scheme (see, e.g. [2-35]; note that eight of the 
references are published before 2010, 21 papers from 2010 to 
2019, and five papers from 2020 to 2022). RT is used for 
comparison, e.g., in [2] (see Table 2), [3] (see Table 4), [4] (see 
Table 2), [23] (see Table 1) and [26] (see Table 1). However, 
[1] does not define how parameters, T, ml , and mu , are selected, 
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no divisibility constraints are imposed on them. Correctness of 
RT is not proved in [1].  We show by counterexamples that RT 
works incorrectly (the data extracted are not the same as the 
data embedded) if the parameters do not meet divisibility 
constraints. It was found out that RT parameters, used in [1] for 
its experiments, exactly meet these constraints, and, hence, for 
such settings, it is correct. We fix the problem by imposing 
constraints on the RT parameters; threshold and moduli values. 
Also, RT uses a pseudo-random number generator (PRNG) to 
define a pixel used for embedding of the next secret bit portion. 
PRNG can produce repeated values that in the case of RT leads 
to the repetitive one and the same pixel using for secret 
embedding thus overwriting previously embedded secret that 
prevents its correct extraction. To fix the problem, it is 
necessary providing one-to-one random mapping (using 
randomly generated permutations). We prove that under the 
imposed constraints such modified scheme, RT-M, works 
correctly.  

The contribution of the paper is as follows: 
- inconsistence of the known RT method is found out and 

proved by counterexamples; 
- constraints on RT parameters to fix the inconsistence are 

specified, thus RT modification, RT-M, is defined; 
- consistence of RT-M is proved theoretically. 
The rest of the paper is organized as follows. In Section 2, 

RT scheme is described. In Section 3, counterexamples for RT 
scheme are constructed, RT-M is proposed, and its correctness 
is stated. Section 4 concludes the paper. Appendix A illustrates 
RT correct embedding/extraction by a numerical example. 
Appendix B contains full proof of RT-M correctness. 

II. RT SCHEME DESCRIPTION 

In RT scheme [1], secret data hiding procedure is divided into 
three phases. In the first phase, the secret message is represented 
as a bit-string and encrypted. In the third phase, an extracted 
bit-string is decrypted and reshaped to the form of the original 
secret message. We do not touch these transformations, and 
consider just the second phase (secret bit-string embedding), 
and a part of the third phase related to the bit-string extraction. 
In the second phase, a pixel for embedding of the next portion 
of the secret bits is selected using a PRNG with a specified seed 
value, and depending on the selected pixel’s value, the number 
of the secret bits to be embedded is defined, followed by their 
embedding into the pixel. The range of the possible pixel 
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values, [0,255], is split by 𝑇 into two subranges, less than 𝑇, 
and not less than 𝑇. Embedding/extraction in each sub-ranges 
uses own modulus. In the mid of each range embedding is done 
with an optimization equivalent to optimal adjustment pixel 
procedure (OPAP) introduced in [36] for LSB. OPAP 
minimizes distance between the cover and respective stego 
pixel values by adding/subtracting the modulus value that can 
lead to crossing the border values. That is why, in [1], OPAP-
like optimization procedure is not applied near the borders 
shown in Fig. 1 as filled boxes of the size of the half of the 
respective modulus value.  

 

Fig. 1. The range [0,255] of the pixel values split by 𝑇 into two sub-ranges in 
the mid of which (empty space) optimization is applied, and with near-border 
values shown by filling where optimization is not applied. 

 
Below, we describe the second and the part of the third phases 
of RT scheme using notation of [1]. Note that Case I 
corresponds to embedding into the lower sub-range with sub-
cases I.1 and I.3 corresponding to the near-border pixels, and 
sub-case I.2 to the mid of the sub-range where the OPAP-like 
optimization is applied as illustrated by Fig. 1. Similarly, Case 
II, has respective three sub-cases. 
Phase II: [Secret bit-string, Bs, embedding into the host 
image, C, resulting in the stego-image, S] 
Input:   The host image, C; bit-string, Bs; seed key, SK. 
Output: The stego-image, S. 
Step 1:  Randomly choose a pixel, Pc(i), in C using a PRNG 

with SK, where Pc(i) denotes the intensity of the ith 
pixel with the linear order of top-to-down and left-to-
right in C. 

Step 2:  Set the threshold value, T, and the two moduli values, 
mu, ml. Then compute the residue, RES, and the 
possible embedding capacity, EC: 

IF Pc(i) ≥ T 
     𝐸𝐶 = ⌊logଶ 𝑚௨⌋,                (1) 
      𝑅𝐸𝑆 = 𝑃௖(𝑖) mod mu.             (2) 
ELSE Pc(i) < T 
      𝐸𝐶 = ⌊logଶ 𝑚௟⌋,               (3) 
      𝑅𝐸𝑆 = 𝑃௖(𝑖) mod ml.             (4) 
Step 3:  D =|𝑅𝐸𝑆 − 𝐷𝐸𝐶|,             (5) 
where DEC is the decimal value of EC bit-length string fetched 
from Bs. 
Step 4:  Embed DEC into the pixel, Pc(i), by performing the 

following process (here, Ps(i) is the intensity of the ith 
pixel of the stego-image, S, after embedding of DEC). 

Case I: Pc(i) <T: 
    I.1. IF Pc(i) < 

௠೗

ଶ
  

   Ps(i) =  DEC.              (6) 
    I.2. ELSE IF 

௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
 

   I.2.1. IF 𝐷 >
௠೗

ଶ
 

    AV = ml – D.          (7) 

I.2.1.1. IF RES > DEC 
  Ps(i) = Pc(i) + AV.     (8) 

I.2.1.2.  ELSE RES<=DEC 
      Ps(i) = Pc(i) – AV.        (9) 

  I.2.2. ELSE 𝐷 ≤
௠೗

ଶ
 

     AV = D.             (10) 
I.2.2.1. IF RES > DEC 

    Ps(i) = Pc(i) –  AV.     (11) 
I.2.2.2. ELSE RES ≤ DEC 

    Ps(i) = Pc(i) + AV.              (12) 
    I.3. ELSE 𝑇 −

௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 

      Ps(i) = Pc(i) – RES + DEC.       (13) 
Case II: Pc(i)  ≥ T : 
     II.1. IF Pc(i)  > 255−

௠ೠ

ଶ
 +1   

    Ps(i)  = 255 – mu +1 + DEC.       (14) 
     II.2. ELSE IF 𝑇 +

௠ೠ

ଶ
< 𝑃௖(𝑖) ≤ 255 −

௠ೠ

ଶ
 +1 

  II.2.1. IF D > 
௠ೠ

ଶ
  

   AV = mu – D.         (15) 
II.2.1.1. IF RES > DEC 

   Ps(i) = Pc(i) + AV.    (16) 
II.2.1.2. ELSE RES ≤ DEC 

   Ps(i) = Pc(i) –  AV.    (17) 
  II.2.2. ELSE  D ≤ 

௠ೠ

ଶ
  

         AV = D.                (18) 
II.2.2.1. IF RES > DEC 

   Ps(i) = Pc(i) –  AV.    (19) 
II.2.2.2. ELSE RES<=DEC 

    Ps(i) = Pc(i) + AV.    (20) 
    II.3. ELSE 𝑇 ≤ 𝑃௖(𝑖) ≤ 𝑇 +

௠ೠ

ଶ
 

     Ps(i) = Pc(i) – RES + DEC.        (21) 
Step 5: Output the stego-image, S, containing pixels, Ps(i), for 
all 𝑖 , with embedded secret, Bs. 

Next is the last phase, Phase III, extracting the secret bit-
string from the stego-image, S. Here, also similar cases 
illustrated by Fig. 1 are considered. 
Phase III: [Bit-string extraction] 
Input:  The stego-image, S; the seed key, SK; the threshold 

value, T; the two moduli, mu and ml.  
Output: The extracted bit-string, Bs’ 
Step 1: Find the secret embedding pixel, Ps(i), in S by using 

the PRNG with seed, SK. 
Step 2: Compute RES’ and EC’ according to the following two 
cases. 
 
Case I: Ps(i)<T: 
          RES’ = Ps(i) mod ml,             (22) 
          EC’ =⌊logଶ 𝑚௟⌋. 
Case II: Ps(i) ≥T: 
           RES’ = Ps(i) mod mu,           (23) 
           EC’ =⌊logଶ 𝑚௨⌋. 
Step 3: Translate RES’ into the bit-string representation with 
EC’ bits, RESBS. Append RESBS to Bs’ (Bs’ has to be initialized 
as empty bit-string). 
Step 4:  Repeat Steps 1–3 until all bits of Bs’ are recovered 

from S. 

Flowcharts of Phase II and Phase III are provided in Figs 2-4. 

 

0 255 T 
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Fig. 2. The algorithm of the Phase II (bit-string embedding) with the control flow for Counterexample 1. 

Fig. 3. The algorithm of the Case II of Phase II. 
 

Fig. 4. The algorithm of Phase III (bit-string extraction) with the control flow 
for Counterexample 1. 
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Numerical examples of RT scheme embedding/extraction are 
not provided in [1], but results of experiments with this scheme 
are reported (see [1, p. 107-108]) for T=160, and (mu, ml) from 
the set {(32, 16), (8, 4)}. That is why, to illustrate the work of 
RT, we give a numerical example for RT scheme 
embedding/extraction with T =160, mu=8, ml =4, in Appendix 
A. 

III. RT SCHEME COUNTEREXAMPLES AND ITS MODIFICATION, 
RT-M  

Five counterexamples are given below proving that RT has 
problems related to its parameters (threshold, moduli values) 
and to the use of PRNG. In the correct embedding/extraction 
example (see Appendix A), threshold value T = 160 is a 
multiple of mu =8 and ml =4, which are the powers of 2. As we 
shall see in Appendix A, in these conditions, RT scheme works 
correctly. We found out that the borders of the both sub-ranges 
shall be divisible by respective modulus value: ml shall divide 
0 and 𝑇, and mu shall divide 𝑇 and 256. Since 0 is divided by 
any number, for ml , there is only one condition, but for mu , the 
both conditions are necessary, and since 256 = 2଼, 𝑚௨ shall be 
a power of 2. Counterexamples 1-4 show that if any of these 
conditions is violated, there are examples when result of 
extraction is not equal to the originally embedded secret. 
Counterexample 1 concerns indivisibility of 𝑇 by ml that is 
denoted by 𝑚௟ ∤ 𝑇. Counterexamples 2-4 consider cases when 
(𝑚௨ ∤ 𝑇)&(𝑚௨ ∤ 256) in Counterexample 2, (𝑚௨|𝑇)&(𝑚௨ ∤
256) in Counterexample 3, and (𝑚௨ ∤ 𝑇)&(𝑚௨|256)   in 
Counterexample 4, where 𝑎|𝑏 denotes that an integer, 𝑎, 
divides an integer, 𝑏. Counterexample 5 concerns proving of the 
repetition of the pixel numbers if using just a PRNG. Then RT 
modification, RT-M, is proposed fixing the problems revealed. 
 
Counterexample 1: It is related with the Case I.3 of Phase II. 
But in this counterexample, we consider the case when T is not 
a multiple of ml. Let the threshold value, T=160, cover pixel, 
Pc(i) =159 (close to the threshold from below), ml =9, mu=16, 
and a secret message, Bs  is (111)ଶ. Since Pc(i) < T , using (3), 
𝐸𝐶 = ⌊logଶ 9⌋=3, then read 3 bits from 𝐵௦, (111)2, convert it to 
decimal, DEC = 7, and using (4),  𝑅𝐸𝑆 = 159 mod 9 = 6. From 

Case I.3, we have 𝑇 −
௠೗

ଶ
= 160 −

ଽ

ଶ
≤ 159 < 160 = 𝑇 is true, 

and using (13), 𝑃௦(i) = 𝑃௖(i) − 𝑅𝐸𝑆 + 𝐷𝐸𝐶 = 159 − 6 + 7 = 160, 
which is equal to the threshold, T=160. 

Thus, the value of stego-pixel, 𝑃௦(𝑖), is 160 that is not less 
than T=160, whereas the original cover pixel value, Pc(i) =159, 
is less than T. Hence, when extracting the secret bit-string from 
the stego-pixel, in Phase III, Case II is used, equation (23), and 
RES’ = Ps(i) mod mu = 160 mod 16 = 0, 
EC’=⌊logଶ 𝑚௨⌋=⌊logଶ 16⌋=4, and Bs’= (0000)2, that is not equal 
to the original bit-string, Bs=(111)2. Thus, embedding in the 
Case I.3 may lead to an incorrect extracted value.  
Note that in the Counterexample 1, the threshold value, T=160, 
is not a multiple of ml = 9.  
To clarify the counterexample, tracing of the Phases II 
(Embedding) and III (Extraction) is provided in Table I and 
Table II showing the states of the variables after termination of 
the respective operator (referred to by its equation number). 
Other counterexamples can easily be traced similarly. 

 
TABLE I 

TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=160, ML =9, MU =16, 
BS=’111’ FOR COUNTEREXAMPLE 1 

# Operator EC RES DEC D 𝑃௦(𝑖) 
1 (3) 3     
2 (4)  6    
3 (5)   7 1  
4 (13)     160 

 
TABLE II 

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=160, ML =9, MU =16, 
PS(I) =160 FOR COUNTEREXAMPLE 1 

# Operator EC’ RES’ RESBS 
1 (23) 4 0 0000 

 
The Execution flow of Counterexample 1 is shown in Figs. 2-
4. 
 
Counterexample 2: It is related with the Case II.3 of Phase II. 
We also consider the case when cover pixel, Pc(i) =161 (close 
to the threshold, T=160, from above), with ml =8, mu=15, and a 
secret message, Bs  is (111)ଶ. Since Pc(i) ≥T , using (1), 𝐸𝐶 =
⌊logଶ 15⌋=3, then read 3 bits from 𝐵௦, (111)2, convert it to 
decimal, DEC = 7, and using (2),  𝑅𝐸𝑆 = 161 mod 15 = 11. 
From Case II.3, we have 𝑇 = 160 ≤ 𝑃𝑐(𝑖) = 161 ≤ 𝑇 +

௠ೠ

ଶ
=

160 +
ଵହ

ଶ
= 167.5 is true, and using (21), 𝑃௦(i) = 𝑃௖(i) − 𝑅𝐸𝑆 +

𝐷𝐸𝐶 = 161 − 11 + 7 = 157, which is less than the threshold, 
T=160. 
     Thus, the value of stego-pixel, 𝑃௦(𝑖), is 157 that is less than 
T=160, whereas the original cover pixel value, Pc(i) =161, is 
greater than T. Hence, when extracting the secret bit-string from 
the stego-pixel, in Phase III, Case I is used, equation (22), and 
RES’ = Ps(i) mod ml = 157 mod 8 = 5, 
EC’=⌊logଶ 𝑚௟⌋=⌊logଶ 8⌋=3, and Bs’= (101)2, that is not equal to 
the original bit-string, Bs=(111)2. Thus, embedding in the Case 
II.3 may lead to an incorrect extracted value. 
      Note that in the Counterexample 2, the threshold value, 
T=160, is not a multiple of mu = 15. 
To clarify the counterexample, tracing of the Phases II 
(Embedding) and III (Extraction) is provided in Table III and 
Table IV. 

TABLE III 
TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=160, ML=8, MU=15, 

BS=’111’ FOR COUNTEREXAMPLE 2  
# Operator EC RES DEC D 𝑃௦(i) 
1 (1) 3     
2 (2)  11    
3 (5)   7 4  
4 (21)     157 

 
TABLE IV 

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=160, ML=8, MU=15, 
PS(I)= 157 FOR COUNTEREXAMPLE 2 

# Operator EC’ RES’ RESBS 
1 (22) 3 5 101 

 
Counterexample 3: It is related with the Case II.1 of Phase II. 
In this counterexample, we consider the case when mu is a 
multiple of T and it is not a power of 2. Let 𝑃௖(𝑖) = 253, 
𝑇 = 252, 𝑚௨ = 18, ml=8, and secret message, Bs=(0111)2 . 
Since Pc(i)=253 ≥ T=252 , using (1), 𝐸𝐶 = ⌊logଶ 18⌋ = 4, then 
read 4 bits from 𝐵௦, (0111)2, convert it to decimal, DEC = 7. 
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From Case II.1, since 253=Pc(i) >255-mu/2+1=255−
ଵ଼

ଶ
 

+1=247, so using (14),  𝑃௦(𝑖) = 255 − 𝑚௨ + 1 + 𝐷𝐸𝐶 =
255 − 18 + 1 + 7 = 245 which is less than the threshold, 
T=252. Hence, 𝑃௦(𝑖) is less than T, on the other hand, original 
Pc(i) = 253 > T. Applying Phase III, Step 2, Case I, since 
Ps(i)=245<T=252, by equation (22), RES’=Ps(i) mod ml = 245 
mod 8 = 5, EC’=⌊logଶ 𝑚௟⌋=⌊logଶ 8⌋=3. In Step 3, we get binary 
representation of RES’= (101)2 = Bs’ that is not equal to the 
original Bs = (0111)2.  Thus, embedding in the Case II.1 may 
lead to incorrect extracted value. 
Note that in the Counterexample 3, the threshold value, T=252, 
is divisible by mu=18, but mu is not a power of 2. 
To clarify the counterexample, tracing of the Phases II 
(Embedding) and III (Extraction) is provided in Table V and 
Table VI. 

TABLE V 
TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=252, ML=8, MU=18, 

BS=’0111’ FOR COUNTEREXAMPLE 3. 
# Operator EC RES DEC D 𝑃௦(𝑖) 
1 (1) 4     
2 (2)  9    
3 (5)   7 2  
4 (21)     245 

 
TABLE VI 

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=252, ML=8, MU=18, 
PS(I)=245 FOR COUNTEREXAMPLE 3. 

# Operator EC’ RES’ RESBS 
1 (22) 3 5 101 

 
Counterexample 4: It is, as Counterexample 3, related to Case 
II.1 of Phase II. In this counterexample, we consider the case 
where mu is not a multiple of T and it is a power of 2. Let 𝑇 =
252, mu = 16, ml=8, Pc(i)=253, Bs=(1011)2. Since Pc(i) = 253 ≥ 
T=252, using (1), 𝐸𝐶 = ⌊logଶ 16⌋ = 4, then read EC bits from 
𝐵௦, (1011)2, convert it to decimal, DEC = 11. From Case II.1, 

we have, Pc(i)=253 >255-mu/2+1= 255−
ଵ଺

ଶ
 +1=248, so using 

(14),  𝑃௦(𝑖) = 255 − 𝑚௨ + 1 + 𝐷𝐸𝐶 = 255 − 16 + 1 + 11 =
251, which is less than the threshold, T=252. Hence, 𝑃௦(𝑖) =
251 is less than T=252, on the other hand, original Pc(i) = 253 
> T=252. Applying Phase III, Step 2, Case I, since 
Ps(i)=251<T=252, by equation (22), RES’=Ps(i) mod ml = 251 
mod 8 = 3, EC’=⌊logଶ 𝑚௟⌋=⌊logଶ 8⌋=3. In Step 3, we get 3-bit 
binary representation of RES’ = (011)2=Bs’ that is not equal to 
the original Bs=(1011)2.  Thus, embedding in the Case II.1 may 
lead to incorrect extracted value. 

Note that in Counterexample 4, the threshold value, T=252, 
is not a multiple of mu=16, but mu is a power of 2. 
To clarify the counterexample, tracing of the Phases II 
(Embedding) and III (Extraction) is provided in Table VII and  
 
TABLE VIII. 

TABLE VII 
TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=252, ML=8, MU=16, 

BS=’1011’ FOR COUNTEREXAMPLE 4 
# Operator EC RES DEC D Ps(i) 
1 (1) 4     
2 (2)  9    
3 (5)   11 2  
4 (21)     251 

 
 

 
TABLE VIII 

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=252, ML=8, MU=16, 
PS(I)=251 FOR COUNTEREXAMPLE 4 

# Operator EC’ RES’ RESBS 
1 (22) 3 3 011 

 
Counterexample 5: It is related to the use of PRNG in Phase 
II, Step 1. In that step, a next pixel for embedding is selected 
randomly that may result in the reuse of one and the same pixel 
for embedding of several secret bit-string portions. For 
example, if a cover image contains N pixels, and PRNG selects 
the next pixel uniformly randomly, then the probability of the 

choices without repetition is 
!

1
1

2

1
..

1

11

NNN



 , and 

the probability of repeating at least of two choices is 

!

1
1)(

N
NPR   that tends to 1 with the growth of N. For an 

image with 512x512 pixels, N=218=262144, and

1
262144!

1
1

!

1
1)( 

N
NPR . A sample of 10 out of 

100 uniformly pseudo-randomly generated numbers in Maple 
is shown in Fig. 2. 
 

 
 

 
 

 

Fig. 5.  Maple commands to generate 100 uniformly distributed pseudo-random 
numbers and display 10 of them, a(61..70). 
 
From Fig. 5, we see that value 98 is repeated twice, resulting in 
overwriting of the embedded secret, and, hence, losing 
information in the Phase III of the secret extraction. 

Conditions (24)-(27) together with the requirement of non-
repeating pixel numbers generated by PRNG in Phase II, Step 
1 of RT, define the RT modification, RT-M. Thus, RT-M 
differs from RT by the choice of its parameters defined by (24)-
(27). Correctness of RT-M is stated in the theorem below. 
 
RT Modification, RT-M, Correctness Theorem: If the 
following conditions (24)-(27) hold  
 

𝑚௟|𝑇,          (24) 
𝑚௨|2଼,          (25) 
𝑚௨|𝑇,                                       (26) 

𝑚௟ < 𝑚௨ < 𝑇 < 2଼ ,                            (27) 
 

and if the PRNG used in Phase II, Step 1, guarantees non-
repeating sequence of pixels selected for embedding/extraction, 
then RT scheme works correctly, i.e. extraction by Phase III of 
RT scheme of the secret from a stego-image obtained by 
embedding of a secret into the cover image by Phase II of RT 
scheme is equal to the original secret for any original secret.  

Proof of the RT Modification correctness is provided in 
Appendix B. Note that Counterexamples 1-4 violate 
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respectively conditions (24)-(26), and Counterexample 5 
violates the condition on the pseudo-random pixel sequence 
generation stated in the RT Modification, RT-M. Also note, that 
the parameters values, T=160, ml is from {4, 16}, mu is from {8, 
32}, used in experiments [1], meet our conditions (24)-(26), and 
hence RT might work correctly provided a proper PRNG was 
actually used. It shall be also noted that violation of the 
conditions (24)-(26) does not imply incorrectness of 
embedding/extraction. So, in the conditions of Counterexample 
1, if the secret bit-string would be ‘110’ instead of ‘111’ used, 
then stego value will be not 160, but 159, and in the extraction 
process, it will be extracted as 159 𝑚𝑜𝑑 9 = 6 = ′110′, that 
is, correctly. 

IV. CONCLUSION  

In this paper, incorrectness of the RT scheme [1] using 
adaptation to the pixel value where the next secret portion is 
embedded with the help of three parameters, threshold, and two 
moduli values defining how many secret bits shall be 
embedded, is proved by counterexamples for which the data 
extracted is not the same as the embedded. Numerical example 
of RT scheme correct embedding/extraction is given in 
Appendix A for the parameters mentioned in [1] as used for 
their experiments. Counterexamples 1-4 are constructed to 
violate introduced for RT-M scheme conditions (24)-(26). 
Counterexample 5 uses weakness of the RT scheme which is 
the consequence of the use of a PRNG for the next for 
embedding pixel defining. Such randomness can lead to the 
pixel repetition, i.e. several times using one and the same pixel 
for the secret embedding, and each next writing destroying 
previously written there secret data. The problems are fixed by 
imposing constraints (24)-(27) on the threshold and two moduli 
values, and also on the PRNG so that it shall provide a one-to-
one random mapping, which guarantees non-repeating 
sequence of pixels selected for embedding/extraction. As a 
result, the modification of RT scheme, RT-M, is defined, and 
the proof of its correctness is provided in Appendix B. Note that 
RT scheme parameters used in the experiments [1] meet the 
conditions (24)-(27). 
 
Appendix A: RT scheme correct embedding/extraction 
example 
Consider a numerical example for RT scheme with threshold 
value T =160, mu=8, ml =4. Let the cover image, C, pixel values 
are  (160 200 255 150 )ଵ଴ , the secret bit-string 𝐵௦ 
is (01110111101)ଶ. For simplicity, we do not use a PRNG in 
the example to determine a pixel for embedding; just the pixels 
are used one by one, in natural order, for embedding.  Thus, we 
consider embedding of the secret, Bs, into the cover image, C, 
followed by extraction of the embedded secret from the stego-
image, S. 
Embedding of the secret into the first four bytes of the cover 
image: 
Phase II: [Secret embedding] 

1. Embed into the pixel, Pc(i), i = 1: 
Step 1: Chosen pixel is Pc(i) = 𝑃௖(1) = 160. 
Step 2: T=160, mu=8, ml =4. 

Since Pc(i)  ≥ T ; (160  ≥ 160)   is true, compute EC using (1) 
𝐸𝐶 = ⌊logଶ 𝑚௨⌋= ⌊logଶ 8⌋= 3, then read 3 bits from 𝐵௦, (011)2 
and convert it to decimal, DEC = 3. Compute RES using (2).  
𝑅𝐸𝑆 = 𝑃௖(𝑖) mod mu.=160 mod 8 = 0.      
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|0 − 3| = 3. 
Step 4:  Embed DEC=3 into the pixel Pc(i) =160. Here, 
    • Case II: Pc(i)  ≥ T ; (160  ≥ 160) is true and  

       II.3.  𝑇 ≤ 𝑃௖(𝑖) ≤ (𝑇 +
௠ೠ

ଶ
 ) ; (160 ≤ 160 ≤ 160 +

଼

 ଶ
 ) is true; 

compute Ps(i) using (21) 
  Ps(1)=Ps(i) = Pc(i) – RES + DEC=160 – 0 + 3=163. 

2. Embed into the pixel, Pc(i), i = 2: 
Step 1: Chosen pixel is Pc(i) = 𝑃𝑐(2) = 200. 
Step 2: T=160, mu=8, ml =4. 
Since  Pc(i)  ≥ T ; (200  ≥ 160)   is true, compute EC using (1): 
𝐸𝐶 = ⌊logଶ 𝑚௨⌋= ⌊logଶ 8⌋= 3, then read next 3 bits from 𝐵௦, 
(101)2 and convert it to decimal, DEC = 5. Compute RES using 
(2).  𝑅𝐸𝑆 = 𝑃௖(𝑖) mod mu.=200 mod 8 = 0.    
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|0 − 5| = 5. 
Step 4:  Embed DEC=5 into the pixel Pc(2) =200. Here,  
    • Case II: Pc(i)  ≥ T ; (200  ≥ 160) is true and  

    II.2.  (𝑇 +
௠ೠ

ଶ
) < 𝑃௖(2) ≤ (255 −

௠ೠ

ଶ
 +1); (160 +

଼

ଶ
) <

200 ≤ (255 −
଼

ଶ
 +1), is true then,  

     II.2.1 D > 
௠ೠ

ଶ
; 5  > 

଼

ଶ
 is also true, so, compute AV using (15) 

AV = mu – D = 8 – 5 = 3. From Case II.2.1.2 RES ≤ 
DEC; 0 ≤ 5 is true, compute Ps(2) using (17) 
Ps(i)=Ps(2) = Pc(2) –  AV = 200 – 3 =197.     

3. Embed into the pixel, Pc(i), i = 3: 
Step 1: Chosen pixel is Pc(i) = Pc(3) = 255. 
Step 2: T=160, mu=8, ml =4. 
Since  Pc(i) = Pc(3)  ≥ T ; 255  ≥ 160   is true, compute EC using 
(1) 
𝐸𝐶 = ⌊logଶ 𝑚௨⌋= ⌊logଶ 8⌋= 3, then read 3 bits from 𝐵௦, (111)2 
and convert it to decimal, DEC = 7. Compute RES using (2).  
𝑅𝐸𝑆 = 𝑃௖(3) mod mu.=255 mod 8 = 7.      
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|7 − 5| = 2. 
Step 4:  Embed DEC=7 into the pixel Pc(3) =255. Here,  
    • Case II: Pc(3)  ≥ T; (255  ≥ 160) is true and  

      II.1. Pc(i)=Pc(3)=255  > 255−
௠ೠ

ଶ
 +1= 255−

଼

ଶ
 +1=252 is 

true. Compute Ps(3)  using (14)  
Ps(i)=Ps(3)  = 255 – mu +1 + DEC = 255 – 8 +1 + 7 =255. 

4. Embed into the pixel, Pc(i), i = 4: 
Step 1: Chosen pixel is Pc(i)= 𝑃௖(4)  = 150. 
Step 2: T=160, mu=8, ml =4. 
Since Pc(4)  < T ; (150  < 160),    is true, compute EC using (3) 
𝐸𝐶 = ⌊logଶ 𝑚௟⌋ = ⌊logଶ 4⌋=2, then read 2 bits from 𝐵௦, (01)2 
and convert it to decimal, DEC = 1. Compute RES using (4).  
𝑅𝐸𝑆 = 𝑃௖(4) mod ml.=150 mod 4 = 2.      
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|2 − 1| = 1. 
Step 4:  Embed DEC=1 into the pixel Pc(4) =150. Here,  
• Case I: Pc(4)=150 <T=160 is true, then  

      I.2. 
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
 ; 

ସ

ଶ
≤ 150 < 160 −

ସ

ଶ
 is true, then  

        I.2.2.  𝐷 ≤
௠೗

ଶ
 ; 1 ≤

ସ

ଶ
 is true, compute AV using (10),   AV 

= D = 1.  Here  I.2.2.1. RES=2 > DEC=1 is true, compute  
Ps(4) using (11) 

Ps(i) = Ps(4) = Pc(i) –  AV =150 – 1= 149. 
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Step 5: The stego-image, S, containing the Ps(i), i=1…4, of 
embedded secret, Bs, is (163 197 255 149). 
Consider now extraction from the four consecutive bytes of the 
cover image. 
Phase III: [Bit-string extraction] 

1. Bs’={}; Extract from the pixel, Pc(i), i = 1; 
Step 1: Ps(1) = 163. 
Step 2: Compute RES’ and EC’ according to the following case.     
  • Case II: Ps(i)=Ps(1)=163 ≥T=160 is true;  compute  RES’  
and EC’ using (23) 
    RES’ = Ps(1) mod mu= 163 mod 8 = 3 and  EC’ =⌊logଶ 8⌋=3. 
Step 3: Translate the RES’ = 3 into the bit representations with 
EC’=3 bit-length: RESBS=(011)2. So the secret message, Bs’= 
(011)2 is restored. 

2. Extract from the pixel, Pc(i),i = 2; 
Step 1: Ps(i)=Ps(2) = 197. 
Step 2: Compute RES’ and EC’ according to the following case.    
  • Case II: Ps(i)=Ps(2)=197 ≥T=160 is true; compute  RES’  and 
EC’ using (23) 
    RES’ = Ps(2) mod mu= 197 mod 8 = 5 and  EC’ =⌊logଶ 8⌋=3. 
Step 3: Translate the RES’ = 5 into the bit representations with 
EC’=3 bit-length: RESBS=(101)2. So the secret message, 
Bs’=(011 101)2 is restored. 

3. Extract from the pixel, Pc(i), i = 3; 
Step 1: Ps(i)=Ps(3) = 255. 
Step 2: Compute RES’ and EC’ according to the following case.     
  • Case II: Ps(i)=Ps(3)=255 ≥T=160 is true; compute  RES’  and 
EC’ using (23) 
    RES’ = Ps(3) mod mu= 255 mod 8 = 7 and  EC’ =⌊logଶ 8⌋=3. 
Step 3: Translate the RES’ = 7 into the bit representations with 
EC’=3 bit-length: RESBS=(111)2. So the secret message, Bs’ = 
(011 101 111)2 is restored. 

4. Extract from the pixel, Pc(i), i = 4; 
Step 1: Ps(i) =Ps(4) = 149. 
Step 2: Compute RES’ and EC’ according to the following case.     
  • Case I: Ps(i)=Ps(4)=149 < T=160 is true; compute  RES’  and 
EC’ using (22) 
    RES’ = Ps(4) mod ml= 149 mod 4 = 1 and  EC’ =⌊logଶ 4⌋=2. 
Step 3: Translate the RES’ = 1 into the bit representations with 
EC’=2 bit-length: RESBS=(01)2. So the secret message, Bs’= 
(011 101 111 01)2 is restored. 
Step 4:  The embedded bits of Bs’= (011 101 111 01)2 are 

recovered from the stego-image (163 197 255 149).  
As we see, the extracted bit-string, Bs’, coincides with the 
original secret bit-string, Bs. Thus, RT scheme for that example 
works correctly. 
 
Appendix B: Proof of the RT Modification, RT-M, 
correctness: We consider the proof for Case I. in items 1-6, 
and Case II in items 7-12 below. Items 1 and 6 consider near-
border cases and Items 2-5 consider mid cases where OPAP-
like optimization is applied for the lower sub-range. 
Respectively, Items 7 and 12 consider near-border cases and 
Items 8-11 consider mid cases for the upper sub-range. 

1. Proof for Case I Pc(i) < T  and Case I.1 Pc(i) < 
௠೗

ଶ
. 

From (3) and DEC definition in (5), 
0 ≤ 𝐷𝐸𝐶 < 2ா஼ ≤ 𝑚௟,     (B1) 

From (4),  
0 ≤ 𝑅𝐸𝑆 = 𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௟ < 𝑚௟.    (B2) 

From Case I.1 condition, (B1), (6), and (27), 
Ps(i) =  DEC <T.     (B3) 

Thus, Ps(i) and Pc(i)  are less than T. In the extraction, using 
(22) and (B3)  

RES’ = Ps(i)mod ml = DEC mod ml. 
 Since by (B1), DEC< 𝑚௟, RES’ = DEC, i.e. extracted and 
embedded values are the same. Thus, for the Case I.1, 
correctness is proved. 

2. Proof for Case I.2  
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
, Case 

I.2.1 𝐷 >
௠೗

ଶ
, and Case I.2.1.1 RES > DEC. 

From (5), Case I.2.1 condition, and Case 1.2.1.1 condition, 
𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| = RES − DEC >

௠೗

ଶ
.           (B4) 

 From (B4), 
𝐷𝐸𝐶 < 𝑅𝐸𝑆 −

௠೗

ଶ
.     (B5) 

 Using (4) and (B5), 
𝐷𝐸𝐶 < 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ −

௠೗

ଶ
.     (B6) 

From  (7) and (B4), 
AV = ml – D = ml – RES + DEC.     (B7) 

 Using (B7) in (8), 
Ps(i) = Pc(i) + AV = Pc(i) + ml – RES+DEC.     (B8) 

From (4), (B6), and (B8), 
Ps(i) = Pc(i) + ml – RES+DEC< 𝑃𝑐(𝑖) +  𝑚௟ −

𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ + 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ −
௠೗

ଶ
 

= 𝑃௖(𝑖) +
௠೗

ଶ
.       (B9) 

 Then, from (B9) and Case I.2 condition   
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
, 

𝑃௦(𝑖) < 𝑃௖(𝑖) +
௠೗

ଶ
< 𝑇.      (B10) 

Thus, we see that Ps(i) and Pc(i) are both less than T. 
In extraction algorithm, using (4), (22), (B1), and (B8),  

RES’=Ps(i) mod ml=(Pc(i)+ml – RES+DEC) mod ml=(Pc(i) - 
Pc(i) mod ml ) mod ml + ml mod ml +DEC mod ml=0+0+ DEC 

mod ml=DEC. 
Thus, extracted value, RES’, and embedded value, DEC, are the 
same, and their binary representation is also the same, since 
EC’=EC, and the correctness is proved for the Case I.2.1.1 

3. Proof for the Case I.2.1 𝐷 >
௠೗

ଶ
 and Case I.2.1.2 RES 

≤ DEC. 
From (5), (7), and Case I.2.1.2 condition, 

AV = ml – D = ml + RES – DEC.     (B11) 
Use (B11) in (9): 

Ps(i) =  Pc(i) – AV = Pc(i) – ml – RES+DEC.     (B12) 
 Using (B1), (4), and (B12), 

Ps(i) = Pc(i) – ml – RES+DEC = 𝑃௖(𝑖) −  𝑚௟ −
 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ + 𝐷𝐸𝐶 

≤ 𝑃௖(𝑖) − (𝑚௟ − 𝐷𝐸𝐶) < 𝑃௖(𝑖) . 
     (B13) 

Then, from (B13) and Case I condition, 𝑃௖(𝑖) < 𝑇, 
𝑃௦(𝑖) < 𝑃௖(𝑖) < 𝑇.      (B14) 

Thus, we see that Ps(i) and Pc(i)  are both less than T. 
In extraction algorithm, using (B1), (B12), (4) and (22), 
RES’= Ps(i)mod ml =(Pc(i) - Pc(i) mod ml ) mod ml - ml mod ml 

+DEC mod ml=0-0+ DEC mod ml=DEC. 
Thus, extracted value, RES’, and embedded value, DEC, are the 
same, and their binary representation is also the same, since 
EC’=EC, and the correctness is proved for the Case I.2.1.2. 
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4. Proof for the Case I.2.2.  𝐷 ≤
௠೗

ଶ
 and Case I.2.2.1 RES 

> DEC. 
From (5), Case I.2.2 condition, and Case I.2.2.1 condition, 

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| = 𝑅𝐸𝑆 − 𝐷𝐸𝐶 ≤
௠೗

ଶ
.      (B15) 

From (B.15), 
𝐴𝑉 = 𝑅𝐸𝑆 − 𝐷𝐸𝐶.      (B16) 

 From (11) and (B16), 
Ps(i) = Pc(i) –AV = Pc(i) –  𝑅𝐸𝑆 + 𝐷𝐸𝐶.      (B17) 

Using (4) and Case I.2.2.1 condition in (B17), 
Ps(i) = Pc(i) – 𝑅𝐸𝑆 + 𝐷𝐸𝐶 <  𝑃௖(𝑖).         (B18) 

Then, from Case I condition  𝑃௖(𝑖) < 𝑇  and (B18), 
 𝑃௦(𝑖) < 𝑃௖(𝑖) < 𝑇.       (B19) 

Hence, both Ps(i) and Pc(i) are less than T. 
In extraction algorithm, using (B1), (B17), (2) and (22), 
RES’=  𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௟ =  (𝑃𝑐(𝑖) −  𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟)𝑚𝑜𝑑 𝑚௟ + 

𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟ 
= 0 +  𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟ = 𝐷𝐸𝐶. 

Hence, extracted value, RES’, and embedded value, DEC, are 
the same, and their binary representation is also the same, since 
EC’=EC, and the correctness is proved for the Case I.2.2.1 

5. Proof of the correctness for the Case I.2.2.  𝐷 ≤
௠೗

ଶ
  

and Case I.2.2.2 RES ≤ DEC. 
From (5) and Case I.2.2 condition, 

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| ≤
௠೗

ଶ
.      (B20) 

 From (10) and Case I.2.2.2 condition, 
𝐴𝑉 = 𝐷 = 𝐷𝐸𝐶 − 𝑅𝐸𝑆.      (B21) 

 From (12) and (B21), 
Ps(i) = Pc(i) +𝐴𝑉 =Pc(i)+D.    (B22) 

From (B20) and (B22), 
Ps(i) = Pc(i) +  𝐷≤ 𝑃௖(𝑖) +

௠೗

ଶ
   .         (B23) 

Then from (B23) and Case I.2 condition  
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
, 

Ps(i) ≤ 𝑃௖(𝑖) +
௠೗

ଶ
< 𝑇.     (B24) 

Hence, both Ps(i) and Pc(i) are less than T. 
In extraction algorithm, using (B1), (B21), (B22), (4), and (22), 
RES’= (Pc(i) + DEC -  𝑅𝐸𝑆)𝑚𝑜𝑑 𝑚௟ = (𝑃𝑐(𝑖) −
 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟)𝑚𝑜𝑑 𝑚௟ + 𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟ 

= 0 +  𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟ = 𝐷𝐸𝐶. 
Hence, extracted value, RES’, and embedded value, DEC, are 
the same, and their binary representation is also the same, since 
EC’=EC, and the correctness is proved for the Case I.2.2.2. 
Note that in the items 1-5 above of the proof of RT-M 
correctness, conditions (24)-(26) were not used. 

6. Proof of the correctness for the Case I Pc(i) <T  and 
Case I.3  𝑇 −

௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇. 

From (4), Case I.3   condition, and (13), 
Ps(i) =Pc(i)–RES + DEC= Pc(i)– 𝑃௖(𝑖)mod ml + DEC,     (B25) 

Pc(i) – 𝑃௖(𝑖)mod ml=k ml.,                    (B26) 
where  𝑘 ≥ 0 is some integer. 
Using (B26) in (B25), one gets 

Ps(i) =  k ml + DEC.                        (B27) 
From Case I condition, (B26), and (24), 

𝑘 < 𝑘ଵ.       (B28) 
 Hence, from (B1), (B27), (B28), and (24), 

𝑃௦(i) = 𝑘𝑚௟ + 𝐷𝐸𝐶 < 𝑘𝑚௟ + 𝑚௟ = (𝑘 + 1) 𝑚௟ ≤
𝑇 = 𝑘ଵ ∗ 𝑚௟.     (B29) 

 Thus, both Ps(i) and Pc(i) are less than T. In extraction 

algorithm, using (B1), and (B29) in  (22), 
RES’=Ps(i)mod ml = (𝑘𝑚௟ + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௟= 𝑘𝑚௟𝑚𝑜𝑑 𝑚௟ +
𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௟ = 𝐷𝐸𝐶.       
Thus, extracted value, RES’, and embedded value, DEC, are the 
same, and their binary representation is also the same, since, by 
(3), EC’=EC, and the correctness for the Case I.3 is also proved 
but now, in that item 6, we need the use of the condition (24). 
Note that this condition was violated in the Counterexample 1 
showing incorrect work of RT.  

7. Proof of the correctness for the Case II 𝑃௖(𝑖)  ≥  𝑇  
and Case II.1  𝑃௖(𝑖) > 255 −

௠ೠ

ଶ
 + 1, 

From (1), (5), 
0 ≤ 𝐷𝐸𝐶 < 2ா஼ ≤ 𝑚௨.     (B30) 

From (2), 
0 ≤ 𝑅𝐸𝑆 = 𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௨ < 𝑚௨.    (B31) 

From Case II.1 condition and (14), 
Ps(i)  = 256 – mu  + DEC                      (B32) 

Using Case II.1 condition and (25)-(27), assuming that 
256 = 𝑘 ∗ 𝑚௨,(B33) 
𝑃௖(𝑖) > 256 −

௠ೠ

ଶ
= 𝑘 ∗ 𝑚௨ −

௠ೠ

ଶ
=

ቀ𝑘 −
ଵ

ଶ
ቁ ∗ 𝑚௨, (B34) 

𝑃௖(𝑖) ≥ 𝑇 = 𝑘ଷ ∗ 𝑚௨.                          (B35) 
 Since according to (27), 𝑇 < 256, from (B33), (B35), 

𝑘ଷ < 𝑘 .                                               (B36) 
 According to (B31), (B33), (B35), and (B36),  

𝑃௦(𝑖) = 256 − 𝑚௨ + 𝐷𝐸𝐶 = (𝑘 − 1) ∗
𝑚௨ + 𝐷𝐸𝐶 ≥ 𝑘ଷ ∗ 𝑚௨ + 𝐷𝐸𝐶  

= 𝑇 + 𝐷𝐸𝐶 ≥ 𝑇                                 (B37) 
From (B37), we see that both, 𝑃௦(𝑖) and 𝑃௖(𝑖) are not less than 
T. 
In extraction algorithm, from (23), (B30), (B32), (B33), 

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨ = (256 − 𝑚௨ + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௨ = 
൫(𝑘 − 1)𝑚௨ + 𝐷𝐸𝐶൯𝑚𝑜𝑑 𝑚௨ =

𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶.               (B38) 
From (B38), the extracted value, RES’ and embedded value, 
DEC, and their binary representation is also the same, since 
EC’=EC, are the same, and the correctness is proved for the 
Case II.1. Note that in this Case II.1, considered in item 7, 
conditions (25)-(27) are used, and in the Counterexample 3, 
condition (25) is violated, and in the Counterexample 4, 
condition (26) is violated.  

8. Prove now correctness for the Case II.2.1 D > 
௠ೠ

ଶ
 and Case II.2.1.1 𝑅𝐸𝑆 > 𝐷𝐸𝐶. 

From (5), Case II.2.1 condition, and Case II.2.1.1 condition,, 
𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| = 𝑅𝐸𝑆 − 𝐷𝐸𝐶

௠ೠ

ଶ
. (B39) 

From (15) and (B39), 
𝐴𝑉 = 𝑚௨ − 𝑅𝐸𝑆 + 𝐷𝐸𝐶.    (B40) 

 From (16) and (B40), 
𝑃௦(𝑖) = 𝑃௖(𝑖) + 𝑚௨ − 𝑅𝐸𝑆 + 𝐷𝐸𝐶. (B41) 

From (2), Case II.2. condition  𝑇 +
௠ೠ

ଶ
< 𝑃௖(𝑖) ≤ 255 −

௠ೠ

ଶ
 

+1, and (B41), 
𝑃௦(𝑖) = 𝑃௖(𝑖) + 𝑚௨ − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ + 𝐷𝐸𝐶 > 𝑃௖(𝑖) +

𝐷𝐸𝐶 ≥ 𝑃௖(𝑖) > 𝑇.   (B42) 
Then, from (B42), 

𝑃௦(𝑖) > 𝑇.        (B43) 
Thus, both 𝑃௦(𝑖)and 𝑃௖(𝑖) are greater than T. 
In extraction algorithm, from (2), (23), (B30), and (B41), 
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𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨

= (𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨)𝑚𝑜𝑑 𝑚௨

+ 𝑚௨𝑚𝑜𝑑 𝑚௨ + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 
                                        0+0+ 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶. 
Thus, the extracted value, RES’, is the same as the embedded 
value, DEC, and their binary representation is also the same, 
since EC’=EC, and the correctness is proved for the Case 
II.2.1.1 Note that in this item 8, as in items 1-5, conditions of 
the RT-A, (24)-(26), are not used. 

9. Prove the correctness for the Case II.2.1. D > 
௠ೠ

ଶ
 and 

Case II.2.1.2 𝑅𝐸𝑆 ≤ 𝐷𝐸𝐶. 
From (5) and Case II.2.1 condition D > 

௠ೠ

ଶ
 , 

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| >
௠ೠ

ଶ
.      (B44) 

From Case II.2.1.2 condition and (B44), 
𝐷𝐸𝐶 > 𝑅𝐸𝑆 +

௠ೠ

ଶ
 .    (B45) 

 From (2) and (B45), 
𝐷𝐸𝐶 > 𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௨ +

௠ೠ

ଶ
.    (B46) 

From (15) and (B44), 
𝐴𝑉 = 𝑚௨ − 𝐷𝐸𝐶 + 𝑅𝐸𝑆.   (B47) 

 From (17) and (B47) 
𝑃௦(𝑖) = 𝑃௖(𝑖) − 𝑚௨ − 𝑅𝐸𝑆 + 𝐷𝐸𝐶.      (B48) 

From (2), (B46), and (B48), 
𝑃௦(𝑖) > 𝑃௖(𝑖) − 𝑚௨ − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ +

𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௨ +
௠ೠ

ଶ
= 𝑃௖(𝑖) −

௠ೠ

ଶ
.  (B49) 

Then, from (B49), and Case II.2 condition  𝑇 +
௠ೠ

ଶ
< 𝑃௖(𝑖) ≤

255 −
௠ೠ

ଶ
 +1, 

𝑃௦(𝑖) > 𝑃௖(𝑖) −
௠ೠ

ଶ
> 𝑇.    (B50) 

From (B50), both 𝑃௦(𝑖) and 𝑃௖(𝑖) are greater than T. 
In extraction algorithm, from (2), (23), (B30), and (B48), 

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨

= (𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨)𝑚𝑜𝑑 𝑚௨

− 𝑚௨𝑚𝑜𝑑 𝑚௨ + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 
0 – 0 + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶. 

Thus, the extracted value, RES’, is the same as the embedded 
value, DEC, and their binary representation is also the same, 
since EC’=EC, and the correctness is proved for this item 9 
without use of the RT-M conditions (24)-(26). 

10. Prove now correctness for the Case II.2.2 𝐷 ≤
௠ೠ

ଶ
 and 

Case II.2.2.1 RES > DEC. 
From (5), and Case II.2.2 condition, 

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| ≤
௠ೠ

ଶ
 .                       (B51) 

 From Case II.2.2.1 condition, and (B51), 
𝐷𝐸𝐶 ≥ 𝑅𝐸𝑆 −

௠ೠ

ଶ
.        (B52) 

 From (2), and (B52), 
𝐷𝐸𝐶 ≥ 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ −

௠ೠ

ଶ
.       (B53) 

From  (18), and Case II.2.2.1 condition, 
AV = RES – DEC.        (B54) 

 From (B54), and (19), 
Ps(i) = Pc(i) -AV = Pc(i) – RES+DEC.     (B55) 

 Using (2), (B53), and (B55), 
Ps(i) = Pc(i) – RES+DEC≥ 𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ + 

𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ −
௠ೠ

ଶ
=  𝑃௖(𝑖) −

௠ೠ

ଶ
.           (B56) 

Then, from (B56), and Case II.2 condition 𝑇 +
௠ೠ

ଶ
< 𝑃௖(𝑖) ≤

255 −
௠ೠ

ଶ
 +1, 

𝑃௦(𝑖) ≥ 𝑃௖(𝑖) −
௠ೠ

ଶ
> 𝑇.        (B57) 

Thus, we see that Ps(i) and Pc(i)  are both greater than T. 
In extraction algorithm, using (B30), (B55), (2), and (23),  
RES’=Ps(i) mod mu=(Pc(i) – 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨)mod mu +DEC mod 
mu = 0 + DEC mod mu = DEC. 
Thus, the extracted value, RES’, is the same as the embedded 
value, DEC, and their binary representation is also the same, 
since EC’=EC, and the correctness is proved for this item 10 
without use of the RT-M conditions (24)-(26). 

11. Now prove correctness in the Case II.2.2 𝐷 ≤
௠೗

ଶ
 and 

Case II.2.2.2 RES ≤ DEC. 
From (18), and Case II.2.2.2 condition RES ≤ DEC, 

AV = D = DEC – RES>=0.     (B58) 
Using (20) and (B58), 

Ps(i) =  𝑃௖(𝑖) + 𝐷 ≥ 𝑃௖(𝑖) > 𝑇.       (B59) 
Thus, from (B59), both 𝑃௦(𝑖), 𝑃௖(𝑖) are greater than T. 
In the extraction algorithm, from (2), (23), (B30), (B58), and 
(B59), 
     RES’=(𝑃௖(𝑖) − 𝑃௖(𝑖)mod mu) mod 𝑚௨+DEC  𝑚𝑜𝑑 𝑚௨ 
=0+DEC  𝑚𝑜𝑑 𝑚௨=DEC. 
Thus, the extracted value, RES’, is the same as the embedded 
value, DEC, and their binary representation is also the same, 
since EC’=EC, and the correctness is proved for this item 11 
without use of the RT-M conditions (24)-(26). 

12. Prove now correctness for the Case II.3  𝑇 ≤ 𝑃௖(𝑖) ≤

𝑇 +
௠ೠ

ଶ
. 

From (2) and (21), 
Ps(i) = Pc(i) – RES + DEC=𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨𝐷𝐸𝐶.  (B60) 

𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ = 𝑘 ∗ 𝑚௨.                           (B61) 
𝑃௦(𝑖) = 𝑘 ∗ 𝑚௨ + 𝐷𝐸𝐶.                                      (B62) 

From (2), (26), (B61), and Case II.3 condition,𝑇 +
௠ೠ

ଶ
= 𝑘ଷ ∗

𝑚௨ +
௠ೠ

ଶ
≥ 𝑃௖(i) = 𝑘 ∗ 𝑚௨ + 𝑅𝐸𝑆 ≥ T 

= 𝑘ଷ ∗ 𝑚௨.                                         (B63) 
 From (B63), 

𝑘ଷ ∗ 𝑚௨ ≤ 𝑘 ∗ 𝑚௨ + 𝑅𝐸𝑆 ≤ (𝑘ଷ + 0.5)𝑚௨ 
< (𝑘ଷ + 1)𝑚௨.       (B64) 

From (B64), 
𝑘ଷ ≤ 𝑘 < 𝑘ଷ + 1.                                      (B65) 

 From (B65), 
𝑘 = 𝑘ଷ.                                   (B66) 

 From (B30), (B62), (B66), and (26), 
𝑃௦(𝑖) = 𝑘𝑚௨ + 𝐷𝐸𝐶 = 𝑘ଷ𝑚௨ + 𝐷𝐸𝐶 = 𝑇 + 𝐷𝐸𝐶 ≥ 𝑇. (B67) 

  
 Thus, from (B67) and Case II.3 condition, we have that both 
stego-pixel value, 𝑃௦(𝑖), and original cover pixel value, 𝑃௖(𝑖), 
are not less than T. 
In the extraction algorithm, from (23), (25), (B30), and (B67),  

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨ = (𝑇 + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௨

= (𝑘ଷ ∗ 𝑚௨ + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௨

= 0 + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶. 
Thus, the result of extraction is the same as the secret 
embedded, and their binary representation is also the same, 
since EC’=EC, and the correctness for this item 12 is proved. 
Proof of item 12 needs usage of the condition (26) introduced 
in the RT-M. Note that in the Counterexample 2, condition (26) 
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is violated.  
Thus, in the RT-M Modification Correctness Theorem proof 
represented by items 1-12 above, only items 6, 7, 12 use 
conditions (24)-(26) introduced in the RT-M. 
Thus, if any particular secret embedded into some cover pixel 
is extracted correctly that is proved in Items 1-12, then, if the 
sequence of the pixels used for extraction dictated by a PRNG 
is exactly the same as used for embedding then overall secret 
message extracted is the same as the embedded one. Thus, the 
theorem is fully proved.  
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