
IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 12, DECEMBER 2023 1255

Abstract— A well-known data hiding scheme, Remainder with
Threshold substitution (RT), is analyzed. RT uses a threshold
value, T, and two moduli numbers, 𝒎𝒖, and 𝒎𝒍, 𝒎𝒍<𝒎𝒖, to embed
secret data into a cover image. RT does not impose any divisibility
constraints on the selection of the parameters, T, 𝒎𝒖, and 𝒎𝒍, and
its correctness (i.e., the data extracted are always the same as the
data embedded) is not proved. By counterexamples constructing,
we show that RT works for them incorrectly. Also, RT scheme uses
pseudo-random number generator (PRNG) to define a pixel for
embedding of the next secret bit portion. PRNG can produce
repeated values leading to the repeated embedding into the same
pixel, thus overwriting previously embedded secret and
preventing its correct extraction. We modify RT scheme (by
imposing divisibility constraints on the threshold, moduli values,
and PRNG), and prove correctness of the modification. Note that
in the reported experiments on RT, its parameters used, T=160,
and (𝒎𝒍, 𝒎𝒖) from {(4, 8), (16, 32)}, exactly satisfy our constraints,
and, thus, the scheme may be correct for such settings.

Index Terms— Data hiding scheme, Remainder with Threshold
substitution, Cover Image, Pixel, Secret Embedding, Secret
Extraction

I. INTRODUCTION

ata hiding is important due to the need to protect private
information. In [1], a well-known (e.g., [2]-[35] refer to it)

data hiding scheme named herein Remainder with Threshold
substitution (RT) with adaptation to a pixel value is proposed.
It uses modulus operator to hide the secret data in a host (cover)
image pixel by replacing the remainder of the pixel by the secret
data similar to least-significant-bit substitution (LSB, see
equations (4), (5) in [36]). Contrary to LSB, RT uses a threshold
value, T, and two moduli values, mu, and ml, ml<mu, defining
the number of bits to be embedded per pixel. For the pixels
with values not less (less) than the threshold, T, the number of
secret bits to be embedded is ⌊logଶ 𝑚௨⌋ (⌊logଶ 𝑚௟⌋), where ⌊𝑥⌋
denotes the floor function returning the maximal integer not
exceeding 𝑥.

Despite proposed in 2005, RT is still used for comparison or
as a reference scheme (see, e.g. [2-35]; note that eight of the
references are published before 2010, 21 papers from 2010 to
2019, and five papers from 2020 to 2022). RT is used for
comparison, e.g., in [2] (see Table 2), [3] (see Table 4), [4] (see
Table 2), [23] (see Table 1) and [26] (see Table 1). However,
[1] does not define how parameters, T, ml , and mu , are selected,

1Submitted on July 13, 2023.
A.G. Chefranov is with the Department of Computer Engineering, Eastern

Mediterranean University, Famagusta, North Cyprus (e-mail:
alexander.chefranov@emu.edu.tr).

no divisibility constraints are imposed on them. Correctness of
RT is not proved in [1]. We show by counterexamples that RT
works incorrectly (the data extracted are not the same as the
data embedded) if the parameters do not meet divisibility
constraints. It was found out that RT parameters, used in [1] for
its experiments, exactly meet these constraints, and, hence, for
such settings, it is correct. We fix the problem by imposing
constraints on the RT parameters; threshold and moduli values.
Also, RT uses a pseudo-random number generator (PRNG) to
define a pixel used for embedding of the next secret bit portion.
PRNG can produce repeated values that in the case of RT leads
to the repetitive one and the same pixel using for secret
embedding thus overwriting previously embedded secret that
prevents its correct extraction. To fix the problem, it is
necessary providing one-to-one random mapping (using
randomly generated permutations). We prove that under the
imposed constraints such modified scheme, RT-M, works
correctly.

The contribution of the paper is as follows:
- inconsistence of the known RT method is found out and

proved by counterexamples;
- constraints on RT parameters to fix the inconsistence are

specified, thus RT modification, RT-M, is defined;
- consistence of RT-M is proved theoretically.
The rest of the paper is organized as follows. In Section 2,

RT scheme is described. In Section 3, counterexamples for RT
scheme are constructed, RT-M is proposed, and its correctness
is stated. Section 4 concludes the paper. Appendix A illustrates
RT correct embedding/extraction by a numerical example.
Appendix B contains full proof of RT-M correctness.

II. RT SCHEME DESCRIPTION

In RT scheme [1], secret data hiding procedure is divided into
three phases. In the first phase, the secret message is represented
as a bit-string and encrypted. In the third phase, an extracted
bit-string is decrypted and reshaped to the form of the original
secret message. We do not touch these transformations, and
consider just the second phase (secret bit-string embedding),
and a part of the third phase related to the bit-string extraction.
In the second phase, a pixel for embedding of the next portion
of the secret bits is selected using a PRNG with a specified seed
value, and depending on the selected pixel’s value, the number
of the secret bits to be embedded is defined, followed by their
embedding into the pixel. The range of the possible pixel

G. Öz is with the Department of Computer Engineering, Eastern
Mediterranean University, Famagusta, North Cyprus (e-mail:
gurcu.oz@emu.edu.tr).

Remainder with Threshold Substitution Data Hiding
Scheme: Counterexamples and Modification

Alexander G. Chefranov, Gürcü Öz1

D

CHEFRANOV et al.: REMAINDER WITH THRESHOLD SUBSTITUTION DATA HIDING SCHEME 1256

values, [0,255], is split by 𝑇 into two subranges, less than 𝑇,
and not less than 𝑇. Embedding/extraction in each sub-ranges
uses own modulus. In the mid of each range embedding is done
with an optimization equivalent to optimal adjustment pixel
procedure (OPAP) introduced in [36] for LSB. OPAP
minimizes distance between the cover and respective stego
pixel values by adding/subtracting the modulus value that can
lead to crossing the border values. That is why, in [1], OPAP-
like optimization procedure is not applied near the borders
shown in Fig. 1 as filled boxes of the size of the half of the
respective modulus value.

Fig. 1. The range [0,255] of the pixel values split by 𝑇 into two sub-ranges in
the mid of which (empty space) optimization is applied, and with near-border
values shown by filling where optimization is not applied.

Below, we describe the second and the part of the third phases
of RT scheme using notation of [1]. Note that Case I
corresponds to embedding into the lower sub-range with sub-
cases I.1 and I.3 corresponding to the near-border pixels, and
sub-case I.2 to the mid of the sub-range where the OPAP-like
optimization is applied as illustrated by Fig. 1. Similarly, Case
II, has respective three sub-cases.
Phase II: [Secret bit-string, Bs, embedding into the host
image, C, resulting in the stego-image, S]
Input: The host image, C; bit-string, Bs; seed key, SK.
Output: The stego-image, S.
Step 1: Randomly choose a pixel, Pc(i), in C using a PRNG

with SK, where Pc(i) denotes the intensity of the ith
pixel with the linear order of top-to-down and left-to-
right in C.

Step 2: Set the threshold value, T, and the two moduli values,
mu, ml. Then compute the residue, RES, and the
possible embedding capacity, EC:

IF Pc(i) ≥ T
 𝐸𝐶 = ⌊logଶ 𝑚௨⌋, (1)
 𝑅𝐸𝑆 = 𝑃௖(𝑖) mod mu. (2)
ELSE Pc(i) < T
 𝐸𝐶 = ⌊logଶ 𝑚௟⌋, (3)
 𝑅𝐸𝑆 = 𝑃௖(𝑖) mod ml. (4)
Step 3: D =|𝑅𝐸𝑆 − 𝐷𝐸𝐶|, (5)
where DEC is the decimal value of EC bit-length string fetched
from Bs.
Step 4: Embed DEC into the pixel, Pc(i), by performing the

following process (here, Ps(i) is the intensity of the ith
pixel of the stego-image, S, after embedding of DEC).

Case I: Pc(i) <T:
 I.1. IF Pc(i) <

௠೗

ଶ

 Ps(i) = DEC. (6)
 I.2. ELSE IF

௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ

 I.2.1. IF 𝐷 >
௠೗

ଶ

 AV = ml – D. (7)

I.2.1.1. IF RES > DEC
 Ps(i) = Pc(i) + AV. (8)

I.2.1.2. ELSE RES<=DEC
 Ps(i) = Pc(i) – AV. (9)

 I.2.2. ELSE 𝐷 ≤
௠೗

ଶ

 AV = D. (10)
I.2.2.1. IF RES > DEC

 Ps(i) = Pc(i) – AV. (11)
I.2.2.2. ELSE RES ≤ DEC

 Ps(i) = Pc(i) + AV. (12)
 I.3. ELSE 𝑇 −

௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇

 Ps(i) = Pc(i) – RES + DEC. (13)
Case II: Pc(i) ≥ T :
 II.1. IF Pc(i) > 255−

௠ೠ

ଶ
 +1

 Ps(i) = 255 – mu +1 + DEC. (14)
 II.2. ELSE IF 𝑇 +

௠ೠ

ଶ
< 𝑃௖(𝑖) ≤ 255 −

௠ೠ

ଶ
 +1

 II.2.1. IF D >
௠ೠ

ଶ

 AV = mu – D. (15)
II.2.1.1. IF RES > DEC

 Ps(i) = Pc(i) + AV. (16)
II.2.1.2. ELSE RES ≤ DEC

 Ps(i) = Pc(i) – AV. (17)
 II.2.2. ELSE D ≤

௠ೠ

ଶ

 AV = D. (18)
II.2.2.1. IF RES > DEC

 Ps(i) = Pc(i) – AV. (19)
II.2.2.2. ELSE RES<=DEC

 Ps(i) = Pc(i) + AV. (20)
 II.3. ELSE 𝑇 ≤ 𝑃௖(𝑖) ≤ 𝑇 +

௠ೠ

ଶ

 Ps(i) = Pc(i) – RES + DEC. (21)
Step 5: Output the stego-image, S, containing pixels, Ps(i), for
all 𝑖 , with embedded secret, Bs.

Next is the last phase, Phase III, extracting the secret bit-
string from the stego-image, S. Here, also similar cases
illustrated by Fig. 1 are considered.
Phase III: [Bit-string extraction]
Input: The stego-image, S; the seed key, SK; the threshold

value, T; the two moduli, mu and ml.
Output: The extracted bit-string, Bs’
Step 1: Find the secret embedding pixel, Ps(i), in S by using

the PRNG with seed, SK.
Step 2: Compute RES’ and EC’ according to the following two
cases.

Case I: Ps(i)<T:
 RES’ = Ps(i) mod ml, (22)
 EC’ =⌊logଶ 𝑚௟⌋.
Case II: Ps(i) ≥T:
 RES’ = Ps(i) mod mu, (23)
 EC’ =⌊logଶ 𝑚௨⌋.
Step 3: Translate RES’ into the bit-string representation with
EC’ bits, RESBS. Append RESBS to Bs’ (Bs’ has to be initialized
as empty bit-string).
Step 4: Repeat Steps 1–3 until all bits of Bs’ are recovered

from S.

Flowcharts of Phase II and Phase III are provided in Figs 2-4.

0 255 T

1257 IEEE LATIN AMERICA TRANSACTIONS, Vol. 21, No. 12, DECEMBER 2023

Fig. 2. The algorithm of the Phase II (bit-string embedding) with the control flow for Counterexample 1.

Fig. 3. The algorithm of the Case II of Phase II.

Fig. 4. The algorithm of Phase III (bit-string extraction) with the control flow
for Counterexample 1.

CHEFRANOV et al.: REMAINDER WITH THRESHOLD SUBSTITUTION DATA HIDING SCHEME 1258

Numerical examples of RT scheme embedding/extraction are
not provided in [1], but results of experiments with this scheme
are reported (see [1, p. 107-108]) for T=160, and (mu, ml) from
the set {(32, 16), (8, 4)}. That is why, to illustrate the work of
RT, we give a numerical example for RT scheme
embedding/extraction with T =160, mu=8, ml =4, in Appendix
A.

III. RT SCHEME COUNTEREXAMPLES AND ITS MODIFICATION,
RT-M

Five counterexamples are given below proving that RT has
problems related to its parameters (threshold, moduli values)
and to the use of PRNG. In the correct embedding/extraction
example (see Appendix A), threshold value T = 160 is a
multiple of mu =8 and ml =4, which are the powers of 2. As we
shall see in Appendix A, in these conditions, RT scheme works
correctly. We found out that the borders of the both sub-ranges
shall be divisible by respective modulus value: ml shall divide
0 and 𝑇, and mu shall divide 𝑇 and 256. Since 0 is divided by
any number, for ml , there is only one condition, but for mu , the
both conditions are necessary, and since 256 = 2଼, 𝑚௨ shall be
a power of 2. Counterexamples 1-4 show that if any of these
conditions is violated, there are examples when result of
extraction is not equal to the originally embedded secret.
Counterexample 1 concerns indivisibility of 𝑇 by ml that is
denoted by 𝑚௟ ∤ 𝑇. Counterexamples 2-4 consider cases when
(𝑚௨ ∤ 𝑇)&(𝑚௨ ∤ 256) in Counterexample 2, (𝑚௨|𝑇)&(𝑚௨ ∤
256) in Counterexample 3, and (𝑚௨ ∤ 𝑇)&(𝑚௨|256) in
Counterexample 4, where 𝑎|𝑏 denotes that an integer, 𝑎,
divides an integer, 𝑏. Counterexample 5 concerns proving of the
repetition of the pixel numbers if using just a PRNG. Then RT
modification, RT-M, is proposed fixing the problems revealed.

Counterexample 1: It is related with the Case I.3 of Phase II.
But in this counterexample, we consider the case when T is not
a multiple of ml. Let the threshold value, T=160, cover pixel,
Pc(i) =159 (close to the threshold from below), ml =9, mu=16,
and a secret message, Bs is (111)ଶ. Since Pc(i) < T , using (3),
𝐸𝐶 = ⌊logଶ 9⌋=3, then read 3 bits from 𝐵௦, (111)2, convert it to
decimal, DEC = 7, and using (4), 𝑅𝐸𝑆 = 159 mod 9 = 6. From

Case I.3, we have 𝑇 −
௠೗

ଶ
= 160 −

ଽ

ଶ
≤ 159 < 160 = 𝑇 is true,

and using (13), 𝑃௦(i) = 𝑃௖(i) − 𝑅𝐸𝑆 + 𝐷𝐸𝐶 = 159 − 6 + 7 = 160,
which is equal to the threshold, T=160.

Thus, the value of stego-pixel, 𝑃௦(𝑖), is 160 that is not less
than T=160, whereas the original cover pixel value, Pc(i) =159,
is less than T. Hence, when extracting the secret bit-string from
the stego-pixel, in Phase III, Case II is used, equation (23), and
RES’ = Ps(i) mod mu = 160 mod 16 = 0,
EC’=⌊logଶ 𝑚௨⌋=⌊logଶ 16⌋=4, and Bs’= (0000)2, that is not equal
to the original bit-string, Bs=(111)2. Thus, embedding in the
Case I.3 may lead to an incorrect extracted value.
Note that in the Counterexample 1, the threshold value, T=160,
is not a multiple of ml = 9.
To clarify the counterexample, tracing of the Phases II
(Embedding) and III (Extraction) is provided in Table I and
Table II showing the states of the variables after termination of
the respective operator (referred to by its equation number).
Other counterexamples can easily be traced similarly.

TABLE I

TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=160, ML =9, MU =16,
BS=’111’ FOR COUNTEREXAMPLE 1

Operator EC RES DEC D 𝑃௦(𝑖)
1 (3) 3
2 (4) 6
3 (5) 7 1
4 (13) 160

TABLE II

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=160, ML =9, MU =16,
PS(I) =160 FOR COUNTEREXAMPLE 1

Operator EC’ RES’ RESBS
1 (23) 4 0 0000

The Execution flow of Counterexample 1 is shown in Figs. 2-
4.

Counterexample 2: It is related with the Case II.3 of Phase II.
We also consider the case when cover pixel, Pc(i) =161 (close
to the threshold, T=160, from above), with ml =8, mu=15, and a
secret message, Bs is (111)ଶ. Since Pc(i) ≥T , using (1), 𝐸𝐶 =
⌊logଶ 15⌋=3, then read 3 bits from 𝐵௦, (111)2, convert it to
decimal, DEC = 7, and using (2), 𝑅𝐸𝑆 = 161 mod 15 = 11.
From Case II.3, we have 𝑇 = 160 ≤ 𝑃𝑐(𝑖) = 161 ≤ 𝑇 +

௠ೠ

ଶ
=

160 +
ଵହ

ଶ
= 167.5 is true, and using (21), 𝑃௦(i) = 𝑃௖(i) − 𝑅𝐸𝑆 +

𝐷𝐸𝐶 = 161 − 11 + 7 = 157, which is less than the threshold,
T=160.
 Thus, the value of stego-pixel, 𝑃௦(𝑖), is 157 that is less than
T=160, whereas the original cover pixel value, Pc(i) =161, is
greater than T. Hence, when extracting the secret bit-string from
the stego-pixel, in Phase III, Case I is used, equation (22), and
RES’ = Ps(i) mod ml = 157 mod 8 = 5,
EC’=⌊logଶ 𝑚௟⌋=⌊logଶ 8⌋=3, and Bs’= (101)2, that is not equal to
the original bit-string, Bs=(111)2. Thus, embedding in the Case
II.3 may lead to an incorrect extracted value.
 Note that in the Counterexample 2, the threshold value,
T=160, is not a multiple of mu = 15.
To clarify the counterexample, tracing of the Phases II
(Embedding) and III (Extraction) is provided in Table III and
Table IV.

TABLE III
TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=160, ML=8, MU=15,

BS=’111’ FOR COUNTEREXAMPLE 2
Operator EC RES DEC D 𝑃௦(i)
1 (1) 3
2 (2) 11
3 (5) 7 4
4 (21) 157

TABLE IV

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=160, ML=8, MU=15,
PS(I)= 157 FOR COUNTEREXAMPLE 2

Operator EC’ RES’ RESBS
1 (22) 3 5 101

Counterexample 3: It is related with the Case II.1 of Phase II.
In this counterexample, we consider the case when mu is a
multiple of T and it is not a power of 2. Let 𝑃௖(𝑖) = 253,
𝑇 = 252, 𝑚௨ = 18, ml=8, and secret message, Bs=(0111)2 .
Since Pc(i)=253 ≥ T=252 , using (1), 𝐸𝐶 = ⌊logଶ 18⌋ = 4, then
read 4 bits from 𝐵௦, (0111)2, convert it to decimal, DEC = 7.

1259 IEEE LATIN AMERICA TRANSACTIONS, Vol. 21, No. 12, DECEMBER 2023

From Case II.1, since 253=Pc(i) >255-mu/2+1=255−
ଵ଼

ଶ

+1=247, so using (14), 𝑃௦(𝑖) = 255 − 𝑚௨ + 1 + 𝐷𝐸𝐶 =
255 − 18 + 1 + 7 = 245 which is less than the threshold,
T=252. Hence, 𝑃௦(𝑖) is less than T, on the other hand, original
Pc(i) = 253 > T. Applying Phase III, Step 2, Case I, since
Ps(i)=245<T=252, by equation (22), RES’=Ps(i) mod ml = 245
mod 8 = 5, EC’=⌊logଶ 𝑚௟⌋=⌊logଶ 8⌋=3. In Step 3, we get binary
representation of RES’= (101)2 = Bs’ that is not equal to the
original Bs = (0111)2. Thus, embedding in the Case II.1 may
lead to incorrect extracted value.
Note that in the Counterexample 3, the threshold value, T=252,
is divisible by mu=18, but mu is not a power of 2.
To clarify the counterexample, tracing of the Phases II
(Embedding) and III (Extraction) is provided in Table V and
Table VI.

TABLE V
TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=252, ML=8, MU=18,

BS=’0111’ FOR COUNTEREXAMPLE 3.
Operator EC RES DEC D 𝑃௦(𝑖)
1 (1) 4
2 (2) 9
3 (5) 7 2
4 (21) 245

TABLE VI

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=252, ML=8, MU=18,
PS(I)=245 FOR COUNTEREXAMPLE 3.

Operator EC’ RES’ RESBS
1 (22) 3 5 101

Counterexample 4: It is, as Counterexample 3, related to Case
II.1 of Phase II. In this counterexample, we consider the case
where mu is not a multiple of T and it is a power of 2. Let 𝑇 =
252, mu = 16, ml=8, Pc(i)=253, Bs=(1011)2. Since Pc(i) = 253 ≥
T=252, using (1), 𝐸𝐶 = ⌊logଶ 16⌋ = 4, then read EC bits from
𝐵௦, (1011)2, convert it to decimal, DEC = 11. From Case II.1,

we have, Pc(i)=253 >255-mu/2+1= 255−
ଵ଺

ଶ
 +1=248, so using

(14), 𝑃௦(𝑖) = 255 − 𝑚௨ + 1 + 𝐷𝐸𝐶 = 255 − 16 + 1 + 11 =
251, which is less than the threshold, T=252. Hence, 𝑃௦(𝑖) =
251 is less than T=252, on the other hand, original Pc(i) = 253
> T=252. Applying Phase III, Step 2, Case I, since
Ps(i)=251<T=252, by equation (22), RES’=Ps(i) mod ml = 251
mod 8 = 3, EC’=⌊logଶ 𝑚௟⌋=⌊logଶ 8⌋=3. In Step 3, we get 3-bit
binary representation of RES’ = (011)2=Bs’ that is not equal to
the original Bs=(1011)2. Thus, embedding in the Case II.1 may
lead to incorrect extracted value.

Note that in Counterexample 4, the threshold value, T=252,
is not a multiple of mu=16, but mu is a power of 2.
To clarify the counterexample, tracing of the Phases II
(Embedding) and III (Extraction) is provided in Table VII and

TABLE VIII.

TABLE VII
TRACE OF PHASE II (EMBEDDING), STEPS 2-4, FOR T=252, ML=8, MU=16,

BS=’1011’ FOR COUNTEREXAMPLE 4
Operator EC RES DEC D Ps(i)
1 (1) 4
2 (2) 9
3 (5) 11 2
4 (21) 251

TABLE VIII

TRACE OF PHASE III (EXTRACTION), STEPS 2-3, FOR T=252, ML=8, MU=16,
PS(I)=251 FOR COUNTEREXAMPLE 4

Operator EC’ RES’ RESBS
1 (22) 3 3 011

Counterexample 5: It is related to the use of PRNG in Phase
II, Step 1. In that step, a next pixel for embedding is selected
randomly that may result in the reuse of one and the same pixel
for embedding of several secret bit-string portions. For
example, if a cover image contains N pixels, and PRNG selects
the next pixel uniformly randomly, then the probability of the

choices without repetition is
!

1
1

2

1
..

1

11

NNN



 , and

the probability of repeating at least of two choices is

!

1
1)(

N
NPR  that tends to 1 with the growth of N. For an

image with 512x512 pixels, N=218=262144, and

1
262144!

1
1

!

1
1)(

N
NPR . A sample of 10 out of

100 uniformly pseudo-randomly generated numbers in Maple
is shown in Fig. 2.

Fig. 5. Maple commands to generate 100 uniformly distributed pseudo-random
numbers and display 10 of them, a(61..70).

From Fig. 5, we see that value 98 is repeated twice, resulting in
overwriting of the embedded secret, and, hence, losing
information in the Phase III of the secret extraction.

Conditions (24)-(27) together with the requirement of non-
repeating pixel numbers generated by PRNG in Phase II, Step
1 of RT, define the RT modification, RT-M. Thus, RT-M
differs from RT by the choice of its parameters defined by (24)-
(27). Correctness of RT-M is stated in the theorem below.

RT Modification, RT-M, Correctness Theorem: If the
following conditions (24)-(27) hold

𝑚௟|𝑇, (24)
𝑚௨|2଼, (25)
𝑚௨|𝑇, (26)

𝑚௟ < 𝑚௨ < 𝑇 < 2଼ , (27)

and if the PRNG used in Phase II, Step 1, guarantees non-
repeating sequence of pixels selected for embedding/extraction,
then RT scheme works correctly, i.e. extraction by Phase III of
RT scheme of the secret from a stego-image obtained by
embedding of a secret into the cover image by Phase II of RT
scheme is equal to the original secret for any original secret.

Proof of the RT Modification correctness is provided in
Appendix B. Note that Counterexamples 1-4 violate

CHEFRANOV et al.: REMAINDER WITH THRESHOLD SUBSTITUTION DATA HIDING SCHEME 1260

respectively conditions (24)-(26), and Counterexample 5
violates the condition on the pseudo-random pixel sequence
generation stated in the RT Modification, RT-M. Also note, that
the parameters values, T=160, ml is from {4, 16}, mu is from {8,
32}, used in experiments [1], meet our conditions (24)-(26), and
hence RT might work correctly provided a proper PRNG was
actually used. It shall be also noted that violation of the
conditions (24)-(26) does not imply incorrectness of
embedding/extraction. So, in the conditions of Counterexample
1, if the secret bit-string would be ‘110’ instead of ‘111’ used,
then stego value will be not 160, but 159, and in the extraction
process, it will be extracted as 159 𝑚𝑜𝑑 9 = 6 = ′110′, that
is, correctly.

IV. CONCLUSION

In this paper, incorrectness of the RT scheme [1] using
adaptation to the pixel value where the next secret portion is
embedded with the help of three parameters, threshold, and two
moduli values defining how many secret bits shall be
embedded, is proved by counterexamples for which the data
extracted is not the same as the embedded. Numerical example
of RT scheme correct embedding/extraction is given in
Appendix A for the parameters mentioned in [1] as used for
their experiments. Counterexamples 1-4 are constructed to
violate introduced for RT-M scheme conditions (24)-(26).
Counterexample 5 uses weakness of the RT scheme which is
the consequence of the use of a PRNG for the next for
embedding pixel defining. Such randomness can lead to the
pixel repetition, i.e. several times using one and the same pixel
for the secret embedding, and each next writing destroying
previously written there secret data. The problems are fixed by
imposing constraints (24)-(27) on the threshold and two moduli
values, and also on the PRNG so that it shall provide a one-to-
one random mapping, which guarantees non-repeating
sequence of pixels selected for embedding/extraction. As a
result, the modification of RT scheme, RT-M, is defined, and
the proof of its correctness is provided in Appendix B. Note that
RT scheme parameters used in the experiments [1] meet the
conditions (24)-(27).

Appendix A: RT scheme correct embedding/extraction
example
Consider a numerical example for RT scheme with threshold
value T =160, mu=8, ml =4. Let the cover image, C, pixel values
are (160 200 255 150)ଵ଴ , the secret bit-string 𝐵௦
is (01110111101)ଶ. For simplicity, we do not use a PRNG in
the example to determine a pixel for embedding; just the pixels
are used one by one, in natural order, for embedding. Thus, we
consider embedding of the secret, Bs, into the cover image, C,
followed by extraction of the embedded secret from the stego-
image, S.
Embedding of the secret into the first four bytes of the cover
image:
Phase II: [Secret embedding]

1. Embed into the pixel, Pc(i), i = 1:
Step 1: Chosen pixel is Pc(i) = 𝑃௖(1) = 160.
Step 2: T=160, mu=8, ml =4.

Since Pc(i) ≥ T ; (160 ≥ 160) is true, compute EC using (1)
𝐸𝐶 = ⌊logଶ 𝑚௨⌋= ⌊logଶ 8⌋= 3, then read 3 bits from 𝐵௦, (011)2
and convert it to decimal, DEC = 3. Compute RES using (2).
𝑅𝐸𝑆 = 𝑃௖(𝑖) mod mu.=160 mod 8 = 0.
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|0 − 3| = 3.
Step 4: Embed DEC=3 into the pixel Pc(i) =160. Here,
 • Case II: Pc(i) ≥ T ; (160 ≥ 160) is true and

 II.3. 𝑇 ≤ 𝑃௖(𝑖) ≤ (𝑇 +
௠ೠ

ଶ
) ; (160 ≤ 160 ≤ 160 +

଼

 ଶ
) is true;

compute Ps(i) using (21)
 Ps(1)=Ps(i) = Pc(i) – RES + DEC=160 – 0 + 3=163.

2. Embed into the pixel, Pc(i), i = 2:
Step 1: Chosen pixel is Pc(i) = 𝑃𝑐(2) = 200.
Step 2: T=160, mu=8, ml =4.
Since Pc(i) ≥ T ; (200 ≥ 160) is true, compute EC using (1):
𝐸𝐶 = ⌊logଶ 𝑚௨⌋= ⌊logଶ 8⌋= 3, then read next 3 bits from 𝐵௦,
(101)2 and convert it to decimal, DEC = 5. Compute RES using
(2). 𝑅𝐸𝑆 = 𝑃௖(𝑖) mod mu.=200 mod 8 = 0.
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|0 − 5| = 5.
Step 4: Embed DEC=5 into the pixel Pc(2) =200. Here,
 • Case II: Pc(i) ≥ T ; (200 ≥ 160) is true and

 II.2. (𝑇 +
௠ೠ

ଶ
) < 𝑃௖(2) ≤ (255 −

௠ೠ

ଶ
 +1); (160 +

଼

ଶ
) <

200 ≤ (255 −
଼

ଶ
 +1), is true then,

 II.2.1 D >
௠ೠ

ଶ
; 5 >

଼

ଶ
 is also true, so, compute AV using (15)

AV = mu – D = 8 – 5 = 3. From Case II.2.1.2 RES ≤
DEC; 0 ≤ 5 is true, compute Ps(2) using (17)
Ps(i)=Ps(2) = Pc(2) – AV = 200 – 3 =197.

3. Embed into the pixel, Pc(i), i = 3:
Step 1: Chosen pixel is Pc(i) = Pc(3) = 255.
Step 2: T=160, mu=8, ml =4.
Since Pc(i) = Pc(3) ≥ T ; 255 ≥ 160 is true, compute EC using
(1)
𝐸𝐶 = ⌊logଶ 𝑚௨⌋= ⌊logଶ 8⌋= 3, then read 3 bits from 𝐵௦, (111)2
and convert it to decimal, DEC = 7. Compute RES using (2).
𝑅𝐸𝑆 = 𝑃௖(3) mod mu.=255 mod 8 = 7.
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|7 − 5| = 2.
Step 4: Embed DEC=7 into the pixel Pc(3) =255. Here,
 • Case II: Pc(3) ≥ T; (255 ≥ 160) is true and

 II.1. Pc(i)=Pc(3)=255 > 255−
௠ೠ

ଶ
 +1= 255−

଼

ଶ
 +1=252 is

true. Compute Ps(3) using (14)
Ps(i)=Ps(3) = 255 – mu +1 + DEC = 255 – 8 +1 + 7 =255.

4. Embed into the pixel, Pc(i), i = 4:
Step 1: Chosen pixel is Pc(i)= 𝑃௖(4) = 150.
Step 2: T=160, mu=8, ml =4.
Since Pc(4) < T ; (150 < 160), is true, compute EC using (3)
𝐸𝐶 = ⌊logଶ 𝑚௟⌋ = ⌊logଶ 4⌋=2, then read 2 bits from 𝐵௦, (01)2
and convert it to decimal, DEC = 1. Compute RES using (4).
𝑅𝐸𝑆 = 𝑃௖(4) mod ml.=150 mod 4 = 2.
Step 3: Compute D using (5), D = |𝑅𝐸𝑆 − 𝐷𝐸𝐶|=|2 − 1| = 1.
Step 4: Embed DEC=1 into the pixel Pc(4) =150. Here,
• Case I: Pc(4)=150 <T=160 is true, then

 I.2.
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
 ;

ସ

ଶ
≤ 150 < 160 −

ସ

ଶ
 is true, then

 I.2.2. 𝐷 ≤
௠೗

ଶ
 ; 1 ≤

ସ

ଶ
 is true, compute AV using (10), AV

= D = 1. Here I.2.2.1. RES=2 > DEC=1 is true, compute
Ps(4) using (11)

Ps(i) = Ps(4) = Pc(i) – AV =150 – 1= 149.

1261 IEEE LATIN AMERICA TRANSACTIONS, Vol. 21, No. 12, DECEMBER 2023

Step 5: The stego-image, S, containing the Ps(i), i=1…4, of
embedded secret, Bs, is (163 197 255 149).
Consider now extraction from the four consecutive bytes of the
cover image.
Phase III: [Bit-string extraction]

1. Bs’={}; Extract from the pixel, Pc(i), i = 1;
Step 1: Ps(1) = 163.
Step 2: Compute RES’ and EC’ according to the following case.
 • Case II: Ps(i)=Ps(1)=163 ≥T=160 is true; compute RES’
and EC’ using (23)
 RES’ = Ps(1) mod mu= 163 mod 8 = 3 and EC’ =⌊logଶ 8⌋=3.
Step 3: Translate the RES’ = 3 into the bit representations with
EC’=3 bit-length: RESBS=(011)2. So the secret message, Bs’=
(011)2 is restored.

2. Extract from the pixel, Pc(i),i = 2;
Step 1: Ps(i)=Ps(2) = 197.
Step 2: Compute RES’ and EC’ according to the following case.
 • Case II: Ps(i)=Ps(2)=197 ≥T=160 is true; compute RES’ and
EC’ using (23)
 RES’ = Ps(2) mod mu= 197 mod 8 = 5 and EC’ =⌊logଶ 8⌋=3.
Step 3: Translate the RES’ = 5 into the bit representations with
EC’=3 bit-length: RESBS=(101)2. So the secret message,
Bs’=(011 101)2 is restored.

3. Extract from the pixel, Pc(i), i = 3;
Step 1: Ps(i)=Ps(3) = 255.
Step 2: Compute RES’ and EC’ according to the following case.
 • Case II: Ps(i)=Ps(3)=255 ≥T=160 is true; compute RES’ and
EC’ using (23)
 RES’ = Ps(3) mod mu= 255 mod 8 = 7 and EC’ =⌊logଶ 8⌋=3.
Step 3: Translate the RES’ = 7 into the bit representations with
EC’=3 bit-length: RESBS=(111)2. So the secret message, Bs’ =
(011 101 111)2 is restored.

4. Extract from the pixel, Pc(i), i = 4;
Step 1: Ps(i) =Ps(4) = 149.
Step 2: Compute RES’ and EC’ according to the following case.
 • Case I: Ps(i)=Ps(4)=149 < T=160 is true; compute RES’ and
EC’ using (22)
 RES’ = Ps(4) mod ml= 149 mod 4 = 1 and EC’ =⌊logଶ 4⌋=2.
Step 3: Translate the RES’ = 1 into the bit representations with
EC’=2 bit-length: RESBS=(01)2. So the secret message, Bs’=
(011 101 111 01)2 is restored.
Step 4: The embedded bits of Bs’= (011 101 111 01)2 are

recovered from the stego-image (163 197 255 149).
As we see, the extracted bit-string, Bs’, coincides with the
original secret bit-string, Bs. Thus, RT scheme for that example
works correctly.

Appendix B: Proof of the RT Modification, RT-M,
correctness: We consider the proof for Case I. in items 1-6,
and Case II in items 7-12 below. Items 1 and 6 consider near-
border cases and Items 2-5 consider mid cases where OPAP-
like optimization is applied for the lower sub-range.
Respectively, Items 7 and 12 consider near-border cases and
Items 8-11 consider mid cases for the upper sub-range.

1. Proof for Case I Pc(i) < T and Case I.1 Pc(i) <
௠೗

ଶ
.

From (3) and DEC definition in (5),
0 ≤ 𝐷𝐸𝐶 < 2ா஼ ≤ 𝑚௟, (B1)

From (4),
0 ≤ 𝑅𝐸𝑆 = 𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௟ < 𝑚௟. (B2)

From Case I.1 condition, (B1), (6), and (27),
Ps(i) = DEC <T. (B3)

Thus, Ps(i) and Pc(i) are less than T. In the extraction, using
(22) and (B3)

RES’ = Ps(i)mod ml = DEC mod ml.
 Since by (B1), DEC< 𝑚௟, RES’ = DEC, i.e. extracted and
embedded values are the same. Thus, for the Case I.1,
correctness is proved.

2. Proof for Case I.2
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
, Case

I.2.1 𝐷 >
௠೗

ଶ
, and Case I.2.1.1 RES > DEC.

From (5), Case I.2.1 condition, and Case 1.2.1.1 condition,
𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| = RES − DEC >

௠೗

ଶ
. (B4)

 From (B4),
𝐷𝐸𝐶 < 𝑅𝐸𝑆 −

௠೗

ଶ
. (B5)

 Using (4) and (B5),
𝐷𝐸𝐶 < 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ −

௠೗

ଶ
. (B6)

From (7) and (B4),
AV = ml – D = ml – RES + DEC. (B7)

 Using (B7) in (8),
Ps(i) = Pc(i) + AV = Pc(i) + ml – RES+DEC. (B8)

From (4), (B6), and (B8),
Ps(i) = Pc(i) + ml – RES+DEC< 𝑃𝑐(𝑖) + 𝑚௟ −

𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ + 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ −
௠೗

ଶ

= 𝑃௖(𝑖) +
௠೗

ଶ
. (B9)

 Then, from (B9) and Case I.2 condition
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
,

𝑃௦(𝑖) < 𝑃௖(𝑖) +
௠೗

ଶ
< 𝑇. (B10)

Thus, we see that Ps(i) and Pc(i) are both less than T.
In extraction algorithm, using (4), (22), (B1), and (B8),

RES’=Ps(i) mod ml=(Pc(i)+ml – RES+DEC) mod ml=(Pc(i) -
Pc(i) mod ml) mod ml + ml mod ml +DEC mod ml=0+0+ DEC

mod ml=DEC.
Thus, extracted value, RES’, and embedded value, DEC, are the
same, and their binary representation is also the same, since
EC’=EC, and the correctness is proved for the Case I.2.1.1

3. Proof for the Case I.2.1 𝐷 >
௠೗

ଶ
 and Case I.2.1.2 RES

≤ DEC.
From (5), (7), and Case I.2.1.2 condition,

AV = ml – D = ml + RES – DEC. (B11)
Use (B11) in (9):

Ps(i) = Pc(i) – AV = Pc(i) – ml – RES+DEC. (B12)
 Using (B1), (4), and (B12),

Ps(i) = Pc(i) – ml – RES+DEC = 𝑃௖(𝑖) − 𝑚௟ −
 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟ + 𝐷𝐸𝐶

≤ 𝑃௖(𝑖) − (𝑚௟ − 𝐷𝐸𝐶) < 𝑃௖(𝑖) .
 (B13)

Then, from (B13) and Case I condition, 𝑃௖(𝑖) < 𝑇,
𝑃௦(𝑖) < 𝑃௖(𝑖) < 𝑇. (B14)

Thus, we see that Ps(i) and Pc(i) are both less than T.
In extraction algorithm, using (B1), (B12), (4) and (22),
RES’= Ps(i)mod ml =(Pc(i) - Pc(i) mod ml) mod ml - ml mod ml

+DEC mod ml=0-0+ DEC mod ml=DEC.
Thus, extracted value, RES’, and embedded value, DEC, are the
same, and their binary representation is also the same, since
EC’=EC, and the correctness is proved for the Case I.2.1.2.

CHEFRANOV et al.: REMAINDER WITH THRESHOLD SUBSTITUTION DATA HIDING SCHEME 1262

4. Proof for the Case I.2.2. 𝐷 ≤
௠೗

ଶ
 and Case I.2.2.1 RES

> DEC.
From (5), Case I.2.2 condition, and Case I.2.2.1 condition,

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| = 𝑅𝐸𝑆 − 𝐷𝐸𝐶 ≤
௠೗

ଶ
. (B15)

From (B.15),
𝐴𝑉 = 𝑅𝐸𝑆 − 𝐷𝐸𝐶. (B16)

 From (11) and (B16),
Ps(i) = Pc(i) –AV = Pc(i) – 𝑅𝐸𝑆 + 𝐷𝐸𝐶. (B17)

Using (4) and Case I.2.2.1 condition in (B17),
Ps(i) = Pc(i) – 𝑅𝐸𝑆 + 𝐷𝐸𝐶 < 𝑃௖(𝑖). (B18)

Then, from Case I condition 𝑃௖(𝑖) < 𝑇 and (B18),
 𝑃௦(𝑖) < 𝑃௖(𝑖) < 𝑇. (B19)

Hence, both Ps(i) and Pc(i) are less than T.
In extraction algorithm, using (B1), (B17), (2) and (22),
RES’= 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௟ = (𝑃𝑐(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟)𝑚𝑜𝑑 𝑚௟ +

𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟
= 0 + 𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟ = 𝐷𝐸𝐶.

Hence, extracted value, RES’, and embedded value, DEC, are
the same, and their binary representation is also the same, since
EC’=EC, and the correctness is proved for the Case I.2.2.1

5. Proof of the correctness for the Case I.2.2. 𝐷 ≤
௠೗

ଶ

and Case I.2.2.2 RES ≤ DEC.
From (5) and Case I.2.2 condition,

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| ≤
௠೗

ଶ
. (B20)

 From (10) and Case I.2.2.2 condition,
𝐴𝑉 = 𝐷 = 𝐷𝐸𝐶 − 𝑅𝐸𝑆. (B21)

 From (12) and (B21),
Ps(i) = Pc(i) +𝐴𝑉 =Pc(i)+D. (B22)

From (B20) and (B22),
Ps(i) = Pc(i) + 𝐷≤ 𝑃௖(𝑖) +

௠೗

ଶ
 . (B23)

Then from (B23) and Case I.2 condition
௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇 −

௠೗

ଶ
,

Ps(i) ≤ 𝑃௖(𝑖) +
௠೗

ଶ
< 𝑇. (B24)

Hence, both Ps(i) and Pc(i) are less than T.
In extraction algorithm, using (B1), (B21), (B22), (4), and (22),
RES’= (Pc(i) + DEC - 𝑅𝐸𝑆)𝑚𝑜𝑑 𝑚௟ = (𝑃𝑐(𝑖) −
 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௟)𝑚𝑜𝑑 𝑚௟ + 𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟

= 0 + 𝐷𝐸𝐶𝑚𝑜𝑑 𝑚௟ = 𝐷𝐸𝐶.
Hence, extracted value, RES’, and embedded value, DEC, are
the same, and their binary representation is also the same, since
EC’=EC, and the correctness is proved for the Case I.2.2.2.
Note that in the items 1-5 above of the proof of RT-M
correctness, conditions (24)-(26) were not used.

6. Proof of the correctness for the Case I Pc(i) <T and
Case I.3 𝑇 −

௠೗

ଶ
≤ 𝑃௖(𝑖) < 𝑇.

From (4), Case I.3 condition, and (13),
Ps(i) =Pc(i)–RES + DEC= Pc(i)– 𝑃௖(𝑖)mod ml + DEC, (B25)

Pc(i) – 𝑃௖(𝑖)mod ml=k ml., (B26)
where 𝑘 ≥ 0 is some integer.
Using (B26) in (B25), one gets

Ps(i) = k ml + DEC. (B27)
From Case I condition, (B26), and (24),

𝑘 < 𝑘ଵ. (B28)
 Hence, from (B1), (B27), (B28), and (24),

𝑃௦(i) = 𝑘𝑚௟ + 𝐷𝐸𝐶 < 𝑘𝑚௟ + 𝑚௟ = (𝑘 + 1) 𝑚௟ ≤
𝑇 = 𝑘ଵ ∗ 𝑚௟. (B29)

 Thus, both Ps(i) and Pc(i) are less than T. In extraction

algorithm, using (B1), and (B29) in (22),
RES’=Ps(i)mod ml = (𝑘𝑚௟ + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௟= 𝑘𝑚௟𝑚𝑜𝑑 𝑚௟ +
𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௟ = 𝐷𝐸𝐶.
Thus, extracted value, RES’, and embedded value, DEC, are the
same, and their binary representation is also the same, since, by
(3), EC’=EC, and the correctness for the Case I.3 is also proved
but now, in that item 6, we need the use of the condition (24).
Note that this condition was violated in the Counterexample 1
showing incorrect work of RT.

7. Proof of the correctness for the Case II 𝑃௖(𝑖) ≥ 𝑇
and Case II.1 𝑃௖(𝑖) > 255 −

௠ೠ

ଶ
 + 1,

From (1), (5),
0 ≤ 𝐷𝐸𝐶 < 2ா஼ ≤ 𝑚௨. (B30)

From (2),
0 ≤ 𝑅𝐸𝑆 = 𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௨ < 𝑚௨. (B31)

From Case II.1 condition and (14),
Ps(i) = 256 – mu + DEC (B32)

Using Case II.1 condition and (25)-(27), assuming that
256 = 𝑘 ∗ 𝑚௨,(B33)
𝑃௖(𝑖) > 256 −

௠ೠ

ଶ
= 𝑘 ∗ 𝑚௨ −

௠ೠ

ଶ
=

ቀ𝑘 −
ଵ

ଶ
ቁ ∗ 𝑚௨, (B34)

𝑃௖(𝑖) ≥ 𝑇 = 𝑘ଷ ∗ 𝑚௨. (B35)
 Since according to (27), 𝑇 < 256, from (B33), (B35),

𝑘ଷ < 𝑘 . (B36)
 According to (B31), (B33), (B35), and (B36),

𝑃௦(𝑖) = 256 − 𝑚௨ + 𝐷𝐸𝐶 = (𝑘 − 1) ∗
𝑚௨ + 𝐷𝐸𝐶 ≥ 𝑘ଷ ∗ 𝑚௨ + 𝐷𝐸𝐶

= 𝑇 + 𝐷𝐸𝐶 ≥ 𝑇 (B37)
From (B37), we see that both, 𝑃௦(𝑖) and 𝑃௖(𝑖) are not less than
T.
In extraction algorithm, from (23), (B30), (B32), (B33),

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨ = (256 − 𝑚௨ + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௨ =
൫(𝑘 − 1)𝑚௨ + 𝐷𝐸𝐶൯𝑚𝑜𝑑 𝑚௨ =

𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶. (B38)
From (B38), the extracted value, RES’ and embedded value,
DEC, and their binary representation is also the same, since
EC’=EC, are the same, and the correctness is proved for the
Case II.1. Note that in this Case II.1, considered in item 7,
conditions (25)-(27) are used, and in the Counterexample 3,
condition (25) is violated, and in the Counterexample 4,
condition (26) is violated.

8. Prove now correctness for the Case II.2.1 D >
௠ೠ

ଶ
 and Case II.2.1.1 𝑅𝐸𝑆 > 𝐷𝐸𝐶.

From (5), Case II.2.1 condition, and Case II.2.1.1 condition,,
𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| = 𝑅𝐸𝑆 − 𝐷𝐸𝐶

௠ೠ

ଶ
. (B39)

From (15) and (B39),
𝐴𝑉 = 𝑚௨ − 𝑅𝐸𝑆 + 𝐷𝐸𝐶. (B40)

 From (16) and (B40),
𝑃௦(𝑖) = 𝑃௖(𝑖) + 𝑚௨ − 𝑅𝐸𝑆 + 𝐷𝐸𝐶. (B41)

From (2), Case II.2. condition 𝑇 +
௠ೠ

ଶ
< 𝑃௖(𝑖) ≤ 255 −

௠ೠ

ଶ

+1, and (B41),
𝑃௦(𝑖) = 𝑃௖(𝑖) + 𝑚௨ − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ + 𝐷𝐸𝐶 > 𝑃௖(𝑖) +

𝐷𝐸𝐶 ≥ 𝑃௖(𝑖) > 𝑇. (B42)
Then, from (B42),

𝑃௦(𝑖) > 𝑇. (B43)
Thus, both 𝑃௦(𝑖)and 𝑃௖(𝑖) are greater than T.
In extraction algorithm, from (2), (23), (B30), and (B41),

1263 IEEE LATIN AMERICA TRANSACTIONS, Vol. 21, No. 12, DECEMBER 2023

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨

= (𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨)𝑚𝑜𝑑 𝑚௨

+ 𝑚௨𝑚𝑜𝑑 𝑚௨ + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ =
 0+0+ 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶.
Thus, the extracted value, RES’, is the same as the embedded
value, DEC, and their binary representation is also the same,
since EC’=EC, and the correctness is proved for the Case
II.2.1.1 Note that in this item 8, as in items 1-5, conditions of
the RT-A, (24)-(26), are not used.

9. Prove the correctness for the Case II.2.1. D >
௠ೠ

ଶ
 and

Case II.2.1.2 𝑅𝐸𝑆 ≤ 𝐷𝐸𝐶.
From (5) and Case II.2.1 condition D >

௠ೠ

ଶ
 ,

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| >
௠ೠ

ଶ
. (B44)

From Case II.2.1.2 condition and (B44),
𝐷𝐸𝐶 > 𝑅𝐸𝑆 +

௠ೠ

ଶ
 . (B45)

 From (2) and (B45),
𝐷𝐸𝐶 > 𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௨ +

௠ೠ

ଶ
. (B46)

From (15) and (B44),
𝐴𝑉 = 𝑚௨ − 𝐷𝐸𝐶 + 𝑅𝐸𝑆. (B47)

 From (17) and (B47)
𝑃௦(𝑖) = 𝑃௖(𝑖) − 𝑚௨ − 𝑅𝐸𝑆 + 𝐷𝐸𝐶. (B48)

From (2), (B46), and (B48),
𝑃௦(𝑖) > 𝑃௖(𝑖) − 𝑚௨ − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ +

𝑃௖(𝑖) 𝑚𝑜𝑑 𝑚௨ +
௠ೠ

ଶ
= 𝑃௖(𝑖) −

௠ೠ

ଶ
. (B49)

Then, from (B49), and Case II.2 condition 𝑇 +
௠ೠ

ଶ
< 𝑃௖(𝑖) ≤

255 −
௠ೠ

ଶ
 +1,

𝑃௦(𝑖) > 𝑃௖(𝑖) −
௠ೠ

ଶ
> 𝑇. (B50)

From (B50), both 𝑃௦(𝑖) and 𝑃௖(𝑖) are greater than T.
In extraction algorithm, from (2), (23), (B30), and (B48),

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨

= (𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨)𝑚𝑜𝑑 𝑚௨

− 𝑚௨𝑚𝑜𝑑 𝑚௨ + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ =
0 – 0 + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶.

Thus, the extracted value, RES’, is the same as the embedded
value, DEC, and their binary representation is also the same,
since EC’=EC, and the correctness is proved for this item 9
without use of the RT-M conditions (24)-(26).

10. Prove now correctness for the Case II.2.2 𝐷 ≤
௠ೠ

ଶ
 and

Case II.2.2.1 RES > DEC.
From (5), and Case II.2.2 condition,

𝐷 = |𝑅𝐸𝑆 − 𝐷𝐸𝐶| ≤
௠ೠ

ଶ
 . (B51)

 From Case II.2.2.1 condition, and (B51),
𝐷𝐸𝐶 ≥ 𝑅𝐸𝑆 −

௠ೠ

ଶ
. (B52)

 From (2), and (B52),
𝐷𝐸𝐶 ≥ 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ −

௠ೠ

ଶ
. (B53)

From (18), and Case II.2.2.1 condition,
AV = RES – DEC. (B54)

 From (B54), and (19),
Ps(i) = Pc(i) -AV = Pc(i) – RES+DEC. (B55)

 Using (2), (B53), and (B55),
Ps(i) = Pc(i) – RES+DEC≥ 𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ +

𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ −
௠ೠ

ଶ
= 𝑃௖(𝑖) −

௠ೠ

ଶ
. (B56)

Then, from (B56), and Case II.2 condition 𝑇 +
௠ೠ

ଶ
< 𝑃௖(𝑖) ≤

255 −
௠ೠ

ଶ
 +1,

𝑃௦(𝑖) ≥ 𝑃௖(𝑖) −
௠ೠ

ଶ
> 𝑇. (B57)

Thus, we see that Ps(i) and Pc(i) are both greater than T.
In extraction algorithm, using (B30), (B55), (2), and (23),
RES’=Ps(i) mod mu=(Pc(i) – 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨)mod mu +DEC mod
mu = 0 + DEC mod mu = DEC.
Thus, the extracted value, RES’, is the same as the embedded
value, DEC, and their binary representation is also the same,
since EC’=EC, and the correctness is proved for this item 10
without use of the RT-M conditions (24)-(26).

11. Now prove correctness in the Case II.2.2 𝐷 ≤
௠೗

ଶ
 and

Case II.2.2.2 RES ≤ DEC.
From (18), and Case II.2.2.2 condition RES ≤ DEC,

AV = D = DEC – RES>=0. (B58)
Using (20) and (B58),

Ps(i) = 𝑃௖(𝑖) + 𝐷 ≥ 𝑃௖(𝑖) > 𝑇. (B59)
Thus, from (B59), both 𝑃௦(𝑖), 𝑃௖(𝑖) are greater than T.
In the extraction algorithm, from (2), (23), (B30), (B58), and
(B59),
 RES’=(𝑃௖(𝑖) − 𝑃௖(𝑖)mod mu) mod 𝑚௨+DEC 𝑚𝑜𝑑 𝑚௨
=0+DEC 𝑚𝑜𝑑 𝑚௨=DEC.
Thus, the extracted value, RES’, is the same as the embedded
value, DEC, and their binary representation is also the same,
since EC’=EC, and the correctness is proved for this item 11
without use of the RT-M conditions (24)-(26).

12. Prove now correctness for the Case II.3 𝑇 ≤ 𝑃௖(𝑖) ≤

𝑇 +
௠ೠ

ଶ
.

From (2) and (21),
Ps(i) = Pc(i) – RES + DEC=𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨𝐷𝐸𝐶. (B60)

𝑃௖(𝑖) − 𝑃௖(𝑖)𝑚𝑜𝑑 𝑚௨ = 𝑘 ∗ 𝑚௨. (B61)
𝑃௦(𝑖) = 𝑘 ∗ 𝑚௨ + 𝐷𝐸𝐶. (B62)

From (2), (26), (B61), and Case II.3 condition,𝑇 +
௠ೠ

ଶ
= 𝑘ଷ ∗

𝑚௨ +
௠ೠ

ଶ
≥ 𝑃௖(i) = 𝑘 ∗ 𝑚௨ + 𝑅𝐸𝑆 ≥ T

= 𝑘ଷ ∗ 𝑚௨. (B63)
 From (B63),

𝑘ଷ ∗ 𝑚௨ ≤ 𝑘 ∗ 𝑚௨ + 𝑅𝐸𝑆 ≤ (𝑘ଷ + 0.5)𝑚௨
< (𝑘ଷ + 1)𝑚௨. (B64)

From (B64),
𝑘ଷ ≤ 𝑘 < 𝑘ଷ + 1. (B65)

 From (B65),
𝑘 = 𝑘ଷ. (B66)

 From (B30), (B62), (B66), and (26),
𝑃௦(𝑖) = 𝑘𝑚௨ + 𝐷𝐸𝐶 = 𝑘ଷ𝑚௨ + 𝐷𝐸𝐶 = 𝑇 + 𝐷𝐸𝐶 ≥ 𝑇. (B67)

 Thus, from (B67) and Case II.3 condition, we have that both
stego-pixel value, 𝑃௦(𝑖), and original cover pixel value, 𝑃௖(𝑖),
are not less than T.
In the extraction algorithm, from (23), (25), (B30), and (B67),

𝑅𝐸𝑆ᇱ = 𝑃௦(𝑖)𝑚𝑜𝑑 𝑚௨ = (𝑇 + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௨

= (𝑘ଷ ∗ 𝑚௨ + 𝐷𝐸𝐶)𝑚𝑜𝑑 𝑚௨

= 0 + 𝐷𝐸𝐶 𝑚𝑜𝑑 𝑚௨ = 𝐷𝐸𝐶.
Thus, the result of extraction is the same as the secret
embedded, and their binary representation is also the same,
since EC’=EC, and the correctness for this item 12 is proved.
Proof of item 12 needs usage of the condition (26) introduced
in the RT-M. Note that in the Counterexample 2, condition (26)

CHEFRANOV et al.: REMAINDER WITH THRESHOLD SUBSTITUTION DATA HIDING SCHEME 1264

is violated.
Thus, in the RT-M Modification Correctness Theorem proof
represented by items 1-12 above, only items 6, 7, 12 use
conditions (24)-(26) introduced in the RT-M.
Thus, if any particular secret embedded into some cover pixel
is extracted correctly that is proved in Items 1-12, then, if the
sequence of the pixels used for extraction dictated by a PRNG
is exactly the same as used for embedding then overall secret
message extracted is the same as the embedded one. Thus, the
theorem is fully proved.

REFERENCES

[1] Wang SJ (2005) Steganography of capacity required using
modulo operator for embedding secret image. Applied
Mathematics and Computation 164:99–116

[2] Chang CC, Chan CS, Fan YH (2006) Image hiding scheme with
modulus function and dynamic programming strategy on
partitioned pixels. Pattern Recognition 39(6):1155-1167

[3] Chen WY (2007) Color image steganography scheme using set
partitioning in hierarchical trees coding, digital Fourier
transform and adaptive phase modulation. Applied Mathematics
and Computation 185(1):432-448

[4] Lin SJ, Lin JC (2007) VCPSS: A two-in-one two-decoding-
options image sharing method combining visual cryptography
(VC) and polynomial-style sharing (PSS) approaches. Pattern
Recognition 40(12):3652-3666

[5] Wang CM, Wu NI, Tsai CS, Hwang MS (2008) A high quality
steganographic method with pixel-value differencing and
modulus. Journal of Systems and Software 81(1):150-158

[6] Yang CH (2008) Inverted pattern approach to improve image
quality of information hiding by LSB substitution. Pattern
Recognition 41(8):2674-2683

[7] Chang YJ, Wang RZ, Lin JC (2008) Hiding images using
modified search-order coding and modulus function.
International Journal of Pattern Recognition and Artificial
Intelligence 22(6):1215-1240

[8] Chang CC, Hsiehb YP, Lina CH (2008) Sharing secrets in stego
images with authentication. Pattern Recognition 41(10):3130-
3137

[9] Hsieha YP, Changa CC, Liua LJ (2008) A two-codebook
combination and three-phase block matching based image-
hiding scheme with high embedding capacity. Pattern
Recognition 41(10):3104-3113

[10] Lin IC, Lin YB, Wang CM (2009) Hiding data in spatial domain
images with distortion tolerance. Computer Standards &
Interfaces 31(2):458-464

[11] Eslami Z, Razzaghi SH, Ahmadabadi JZ (2010) Secret image
sharing based on cellular automata and steganography. Pattern
Recognition 43(1):397-404

[12] Chang CC, Hsieh YP (2010) A chaotic map-based adaptive
variable-size LSB method with pixel-value differencing and
modulus. Image Science Journal 58(1):49-60

[13] Chen LST, Lin SJ, Lin JC (2010) Reversible JPEG-based hiding
method with high hiding-ratio. International Journal of Pattern
recognition and Artificial Intelligence 24(3):433-456

[14] Lou DC, Wu NI, Wang CM et al (2010) A novel adaptive
steganography based on local complexity and human vision
sensitivity. Journal of Systems and Software 83(7):1236-1248

[15] Yang CH, Weng CY, Wang SJ et al (2010) Varied PVD+LSB
evading detection programs to spatial domain in data embedding
systems. Journal of Systems and Software 83(10):1635-1643

[16] Wu NI, Fu KC, Wang CM (2010) A novel data hiding method
for gray scale images based on pixel-value differencing and

modulus function. Journal of Internet technology 11(7):1071-
1081

[17] Liao X, Wen QY, Zhang J (2011) A steganographic method for
digital images with four-pixel differencing and modified LSB
substitution. Journal of Visual Communication and Image
Representation 22(1):1-8

[18] Lin PY, Lee JS, Chang CC (2011) Protecting the content
integrity of digital imagery with fidelity preservation. ACM
Transaction on Multimedia Computing Communications and
Applications 7(3):1-20

[19] Lin CC (2011) An information hiding scheme with minimal
image distortion. Computer Standards & Interfaces 33(5):477-
484

[20] Lou DC, Hu CH (2012) LSB steganographic method based on
reversible histogram transformation function for resisting
statistical steganalysis. Information Sciences 188:346-358

[21] Liu S, Chen Y, Jiang F et al (2012) A New Steganographic
method based on equivalence class partition. Journal of
Computational and Theoretical Nanoscience 9(10):1757-1765

[22] Sajasi S, Moghadam AME (2015) An adaptive image
steganographic scheme based on noise visibility function and an
optimal chaotic based encryption method. Applied Soft
Computing 30:375-389

[23] Jana B (2016) High payload reversible data hiding scheme using
weighted matrix. Optik 127(6):3347-3358

[24] Xu WL, Chang CC, Chen TS et al (2016) An improved least-
significant-bit substitution method using the modulo three
strategy. Displays 42:36-42

[25] Liu L, Chang CC, Wang A (2017) Data hiding based on extended
turtle shell matrix construction method. Multimedia Tools and
Applications 76(10):12233-12250

[26] Wu NI, Hwang MS (2017) A novel LSB data hiding scheme with
the lowest distortion. The Imaging Science Journal 65(6):371-
378

[27] Liu L, Chang CC, Anhong W (2017) Data hiding based on
extended turtle shell matrix construction method. Multimedia
Tools and Applications 76(10):12233-12250

[28] Jana B (2018) Reversible data hiding scheme using sub-sampled
image exploiting Lagrange’s interpolating polynomial.
Multimedia Tools Applications 77:8805–8821

[29] Datta B, Roy S, S. Roy, Bandyopadhyay SM (2019) Multi-bit
robust image steganography based on modular arithmetic.
Multimedia Tools Applications 78(2):1511-1546

[30] Nashat D, Mamdouh L (2019) An efficient steganographic
technique for hiding data. Journal of the Egyptian Mathematical
Society 27(1):1-4

[31] Zenati A, Ouarda W, Alimi AM (2020) SSDIS-BEM: A New
Signature Steganography Document Image System based on
Beta Elliptic Modeling. Engineering Science and Technology,
an International Journal 23(3):470-82

[32] Zenati A, Ouarda W, Alimi AM (2021) A new digital
steganography system based on hiding online signature within
document image data in YUV color space. Multimedia Tools and
Applications 80(12):18653-7

[33] Ping P, Yang X, Zhang X, Mao Y, Khalid H (2022) Generating
visually secure encrypted images by partial block pairing-
substitution and semi-tensor product compressed sensing.
Digital Signal Processing 120.
https://doi.org/10.1016/j.dsp.2021.103263

[34] Ko HJ, Huang CT, Tseng H W. Wang SJ (2022) Efficient Cost-
Reduced With High-Quality Image of Imperceptible
Steganography Using Modulo and Magic Cube. IEEE Access
10:67686-67693. doi: 10.1109/ACCESS.2022.3185120

[35] Hu Y, Li X, Ma J (2022) A Novel LSB Matching Algorithm
Based on Information Pre-Processing. Mathematics 2022, 10, 8.
https://doi.org/10.3390/math10010008.

1265 IEEE LATIN AMERICA TRANSACTIONS, Vol. 21, No. 12, DECEMBER 2023

[36] Chan C-K, Cheng LM (2004) Hiding Data in Images by Simple
LSB Substitution. Pattern Recognition 37, 469-474,
doi:10.1016/j.patcog.2003.08.007

Alexander G. Chefranov received his
Engineer in Applied Mathematics, PhD and
Doctor of Engineering Sciences from Taganrog
State Radio-Engineering University, Taganrog,
Russia. Currently, he is working as Professor in
the Department of Computer Engineering of
Eastern Mediterranean University. His
research interests include information security,

parallel processing, distributed systems, real-time systems,
scientific computing.

Gürcü Öz received her B.S, M.S. degrees
from the Electrical and Electronic
Engineering Department and Ph.D. degree
from the Computer Engineering Department
of Eastern Mediterranean University, in
Famagusta, North Cyprus. Currently, she is

working as an Associate Professor in the Department of
Computer Engineering of Eastern Mediterranean University.
Her research interests include computer networks, wireless ad
hoc networks, distributed systems, cloud computing, system
simulation, information security.

