
IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 12, DECEMBER 2023 1313

Mapping the Landscape of SLAM Research: A
Review

Jeremías Gaia Eugenio Orosco Francisco Rossomando Carlos Soria

Abstract—Multiple publications have arisen from over three
decades of research in the field of simultaneous localization and
mapping (SLAM), overwhelming those who wish to delve into
this area. The extensive body of work in SLAM has resulted
in an abundant and, at times, confusing flow of data, lacking
a straightforward explanation of the underlying principles. This
article aims to address this issue by providing a clear overview
of the general taxonomy of the SLAM universe, assuming the
reader is completely unfamiliar with the subject area. As cameras
remain the primary sensor choice for SLAM, and considering the
vast number of articles available on this topic, special emphasis
will be placed on Visual SLAM. Additionally, we will delve into
the influence of artificial intelligence on the development of new
algorithms. The article incorporates comparative tables to enable
readers to assess system performance using benchmark datasets.
Moreover, it offers insights into current trends and prospective
pathways within the subject area.

Index Terms—Simultaneous Localization and Mapping,
SLAM, Survey, Visual SLAM, Artificial Intelligence, Intoduction

I. INTRODUCTION

Robots must always be able to determine their location.
For mobile robots, whether they move autonomously or

with the assistance of an operator, the integration of SLAM
systems is imperative [1].

Since the foundations were established in 1986 by authors
like Cheeseman and Durrant-Whyte, SLAM has grown ex-
ponentially [2], [3]. During the initial two decades (approx-
imately 1986-2006), the primary approaches to solving the
problem were rooted in probabilistic filters. Kalman filters,
extended Kalman filters, and particle filters emerged as state-
of-the-art solutions [4], [5].

With the arrival of passive low-cost video sensors to provide
robotic systems with rich visual input, researchers began to
integrate cameras into SLAM systems [6]. With the help of
non-linear minimization techniques, this data was used to solve
the pose of the mobile robot.

Modern SLAM systems have evolved into intricate combi-
nations of subsystems, leveraging diverse sensor data, handling
vast amounts of information, and incorporating artificial intel-
ligence (AI) methodologies. In this paper, we present a com-
prehensive systematic mapping study of the existing literature
on SLAM, aiming to provide readers with a comprehensive
introduction to the realm of SLAM.

This study makes the following contributions:

All authors are with the Instituto de Automática, at Facultad
de Ingeniería, Universidad Nacional de San Juan, Argentina. e-
mail:{jgaia,eorosco,frosoma,csoria}@inaut.unsj.edu.ar

Manuscript received April 19, 2025; revised August 26, 2025.

• It provides a global perspective of the SLAM world,
showing how it is structured after more than thirty years
of research. Several classifications based on the most
common elements of SLAM systems have been proposed
to this end.

• The key elements in the current SLAM systems architec-
tures are investigated.

• The relevance of artificial intelligence as a tool in current
SLAM developments is discussed.

• It provides comparison tables for the reader to evaluate
and compare SLAM systems and datasets objectively
using

This article is structured as follows: Section II details the
guidelines for conducting a systematic search and organizing
the information within this document. Section III proposes
an overview of the SLAM universe, while Section IV delves
further into the specifics of visual SLAM. The impact of artifi-
cial intelligence on current systems is discussed in Section V.
Comparative analyses of various SLAM methodologies are
provided in Section VI. Conclusive insights are presented in
Section VIII. Finally, Appendix A contains a summary of the
symbols and acronyms employed throughout this article.

II. SEARCH GUIDELINES

Kitchenham and Charters proposed that Systematic Map-
ping Studies (also known as Scoping Studies) are designed
to provide a wide overview of a research area, to establish if
research evidence exists on a topic and provide an indication
of the quantity of the evidence [7]. They also designed a
number of steps to follow in order to reach a good research
result that include: defining the research questions and inclu-
sion/exclusion rules, among others.

Following Kitchenham and Charters idea, this study was
conducted based on the following research questions: Is it
possible to organize the overwhelming amount of articles
regarding the SLAM problem?, Are there any common ele-
ments between them?, Is it possible to objectively compare
SLAM systems?. Most of the recent systems include cameras:
How do Visual SLAM systems work?, Which are their main
algorithms?. Finally, since artificial intelligence is a hot topic,
it is worth asking: How are AI techniques influencing SLAM
systems?.

A preliminary search stage was first conducted to identify
existing reviews and assess the volume of relevant studies. As
a result, several SLAM surveys and articles were found, and
the classification criteria for the contributions in the SLAM
field used in this study were established.

https://orcid.org/0000-0003-3367-2228
https://orcid.org/0000-0002-9935-5244
https://orcid.org/0000-0002-7792-8101
https://orcid.org/0000-0003-4783-7708


GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1314

Most of the identified survey studies on SLAM have fo-
cused solely on specific aspects of the problem. The authors
have extensively discussed theoretical issues [8]–[10], multi
robot SLAM [11], LiDAR and camera-based SLAM [12],
autonomous driving [13], dynamic SLAM [14], and Deep
Learning for SLAM [15]. However, these studies often assume
that the reader possesses prior knowledge in the field. This
highlights the crucial need for an article that comprehensively
elucidates the underlying structure of the SLAM universe,
assuming the reader is completely unfamiliar with the subject
area.

After the preliminary search stage, the following inclu-
sion/exclusion rules were defined:

• Only articles written in Spanish or English were consid-
ered.

• Probabilistic SLAM approaches were not included since
these kind of systems have already been extensively
studied and reviewed [2], [3].

• The search stage was carried out with Google Scholar’s
search engine. Conference proceedings, journal papers,
and unpublished but relevant articles were included.

As the reader may note, there are minimal exclusion con-
straints, as our intention is to encompass a wide range rather
than a specific focus.

Given the significant number of papers presenting results
on the EuRoC, KITTI, and 7-Scenes datasets, we focused
our comparative analysis on the performance demonstrated
by systems on these datasets. The comparison tables were
constructed exclusively based on objective (numeric) results,
while qualitative and graphical results were deliberately omit-
ted.

III. THE SLAM UNIVERSE

The purpose of this section is to offer an extensive insight
into the domain of SLAM, aiming to establish a foundational
understanding of the field. Fig. 1 presents a visual summary of
this section. The existing SLAM developments can be organ-
ised based on their most common elements or aspects, such
as the type of sensors used, the source of robot commands,
and how they handle dynamics.

A. According to the Source of the Robot Commands.

A simple and general method to classify SLAM systems is
to determine whether a robot or vehicle is commanded by a
person. It allows us to distinguish between two types of SLAM
systems: active and passive.

1) Active SLAM: This type of system is capable of
traversing and mapping the environment automatically. Human
intervention is not required.

They aim to maximize the map information obtained while
minimizing a cost function variable. Map uncertainty, power
consumption, traveled distance, etc. can be used as minimiza-
tion variables. An active SLAM (A-SLAM) system has a dis-
tinctive workflow that includes: Candidate goal selection; path
generation; cost function (also known as utility) computation;
and path execution.

Fig. 1. Top: Overview of the SLAM Universe. The most common
characteristics identified among state-of-the-art systems are used to
classify them. Bottom: A detail of the classification of SLAM
systems based on the sensors used and their combinations.

Brian Yamauchi established the foundations for selecting
candidate goals based on the nearest frontier approach [16].
Frontiers refer to the regions along the boundary between ex-
plored and unknown territories, essentially representing points
on the map situated between known free space and unexplored
regions [1]. Frontier-based techniques construct a map while
navigating toward a frontier. Whenever it reaches a limit, the
system searches for the next frontier. This process is repeated
until there are no new frontiers left to detect [17]–[19].

In addition to the nearest frontier approach, other explo-
ration strategies include cost-utility [20], coordinated [21],
market based [22] and integrated [23]. For a detailed dis-
cussion of these exploration approaches, we recommend the
survey paper by Juliá et al. [24].

Path generation (also known as "path planning" or "motion
planning") and cost function computation are closely linked,
since the system’s control actions are determined by the
variables to be optimized. In this way, A-SLAM can be
formulated as an optimal trajectory planning problem [25]–
[28]. In this formulation, the control actions calculated by
the path generation algorithm are restricted by the optimal
trajectory problem.

Other A-SLAM systems concentrate on coverage of a larger
area. Bonetto et al. proposed a system that continuously selects
its camera heading to maximize environment coverage [29],
whereas Carrillo et al. devised a utility function to achieve a
balance between exploration and exploitation in [30]. As an
additional feature to the traditional A-SLAM workflow, Chen
et al. included a collision-free navigation constraint in their
system [31].



1315 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

2) Passive SLAM: The goal of these systems is to get a
precise reconstruction of the robot’s path. They are primarily
concerned with lowering pose estimation errors while main-
taining a consistent map representation.

Passive SLAM systems have an entirely different architec-
ture than A-SLAM systems. According to Cadena et al. [32], a
typical SLAM algorithm is comprised of two primary blocks:
front-end and back-end. The front-end abstracts sensor data
into models that are amenable for estimation, while the back-
end performs inference on abstracted data produced by the
front-end.

However, since the publication of ORB-SLAM [33], the
architecture presented therein has been replicated in the ma-
jority of later advances [34]–[39]. As a result, we propose in
this study to refine the front-end/back-end model described
by [32]. The proposal shown in Fig. 2 aims to fit the current
systems architecture.

Three main blocks can be distinguished: tracking, mapping,
and loop closure detection.

• Tracking: Within this block, all essential tasks and
computations are performed to establish the robot’s pose,
comprising its position and orientation. It receives the
system’s inputs and perform image rectification and/or
feature extraction, synchronisation (multi-sensor systems
only), filtering, and other necessary data preparation
tasks.
The tracking block must select representative input mea-
surements to estimate the robot’s pose in order to limit the
amount of data. For those systems equipped with a cam-
era, these measurements are referred to as keyframes [35],
[40], [41].

• Mapping: The primary goal of this block is to create,
develop, and refine a map of the environment. A map
is a simplified representation of how the robot perceives
the world. The type of sensors used, the image features
extracted, and the pose estimation technique have a
significant impact on which map representation must be
selected [42]. Occupancy grid maps [43], [44], landmark
maps [45], and dense representations [46], [47] are ex-
amples of mapping techniques.
The mapping process can be classified into two parts:
local and global mapping [35], [48], [49]. Maintaining a
set (also known as window) of recent or co-visible views
allows the system to perform operations that improve the
map’s consistency. This local window is updated with
every new input to the system. The window (local map) is
then handled to an optimization technique such as Bundle
Adjustment in order to correct the robot’s poses [50].
The global map is updated every time the loop closure
detection algorithm discovers a previously seen location.
For a complete description on mapping frameworks, we
refer the reader to [51].

• Loop Closure Detection (LCD): This module is re-
sponsible for establishing long-term data associations.
Recognizing previously visited locations aids the system
in reducing the total uncertainty caused by odometry
drift [52]. This is a decision-making block since it must
ensure the system that the robot is in a previously

Fig. 2. Architecture of a SLAM system. All the tasks that the system
needs to perform SLAM can be grouped into three building blocks:
tracking, mapping and loop closure detection. This three blocks can
operate sequentially or in parallel.

visited location. Bad data associations cause the map to
include ambiguous information, which can lead to several
localization errors.
The LCD task is highly dependent on how the system
represents its surroundings. One of the most popular
methods is to describe the scene as a Bag of Words
(BoW) [53], [54]. A vocabulary of visual "words" is built
offline in the BoW technique. The system then saves each
input image as a collection (bag) of words.
To detect loop closures, the BoW representation of two
images or sequences is compared. The system considers
a possible loop closure if the match percentage surpasses
a threshold [52], [55]–[61]. A validation step is required
to verify if the candidate is in fact a loop closure.

B. According to the Type of the Sensors Equipped.

LiDAR, visual, and inertial sensors are the three basic
instruments used in SLAM systems. The use of these sensors
and their combinations allows to classify SLAM systems as
shown in Fig. 1.

1) LiDAR SLAM: Systems included in this category per-
ceive the world through laser scans. Laser rangefinders can
generate 2D or 3D point clouds with distance and bearing
information for each point. Hector SLAM represents the tradi-
tional approach for laser-based SLAM. This system can create
2D occupancy grid maps with low computation resources.
However, its main drawback is that it does not detect loop
closures [43].

LiTAMIN (LiDAR-based Tracking And MappINg) is a
three-dimensional LiDAR SLAM system. The authors pro-
posed a change to the Iterative Closest Point (ICP) algorithm,
which is used to optimize pose graphs [62]. A second version
of the above mentioned work, combines a modified version
of the ICP algorithm with a new point reduction strategy
to reduce the computational complexity of the system [63].
Behley et al. [64] also used 3D scans in their research. They
concentrated their efforts, however, on generating globally
consistent maps. They also proposed a novel map-based cri-
terion for LCD in LiDAR SLAM.

Similar to the Visual SLAM workflow, some LiDAR based
SLAM systems perform feature extraction on range measure-



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1316

ments [65]–[67]. Point features in laser scans describe geo-
metrical characteristics of the scene, such as sharp edges and
planar surfaces. A pose estimation is obtained by conducting
a feature matching process between the current and previous
scans.

Neural networks enable efficient processing of large
amounts of information generated by laser scanners. Valente
et al. proposed to combine Long Short-Term Memory (LSTM)
neural networks and Convolutional Neural Networks (CNNs)
to estimate the pose of a vehicle given the laser informa-
tion [68]. On the other hand, Sun et al. proposed to combine a
global localization system powered by a deep neural network,
with the iterative Monte Carlo Localization algorithm [69].

2) Visual SLAM: This category encompasses all advances
that use cameras as the primary sensor. This section provides
a short introduction to Visual SLAM (V-SLAM), specifically
focusing on the concept of visual odometry. Pertinent aspects
within this domain are also outlined. An in-depth study about
this particular area will be presented in Sec. IV.

V-SLAM techniques are based on visual odometry (VO). It
can be defined as the method for estimating an agent’s egomo-
tion (human, robot, vehicle, etc.) based only on the input of
a single or several cameras [9]. The most popular method for
estimating camera poses is a combination of feature matching
and RANSAC (Random Sample Consensus) [10], [33], [70]–
[72]. The RANSAC algorithm refines the pose estimation after
the feature matching procedure delivers an initial estimate of
the camera motion.

PTAM (Parallel Tracking And Mapping) can be considered
as one of the earliest and most influential Visual SLAM
algorithms [73]. The authors proposed splitting tracking and
mapping into two threads. Under the assumption that the
mapping thread has already created a map of 3D points, visual
odometry techniques were used to estimate the relative pose
of the camera in the tracking thread. Inspired by PTAM,
Mur-Artal et al. presented ORB-SLAM (Oriented FAST and
Rotated BRIEF SLAM), where a third thread for loop closure
was added to the tracking and mapping threads [33].

Leveraging concepts from PTAM, Mur-Artal and colleagues
introduced ORB-SLAM (Oriented FAST and Rotated BRIEF
SLAM). They expanded the tracking and mapping threads
by integrating a third thread dedicated to loop closure, as
seen in Fig 2. Their contribution became a benchmark, widely
embraced by the research community.

Another innovative VO approach involves planar fiducial
markers. This minimum modification to the environment can
be used to facilitate SLAM in laboratory research. This is the
case with recent work that involves placing fiducial planar
markers with individual and unique IDs across the path of
the robot [74]–[77]. Detection algorithms can quickly process
these markers to obtain the robot’s pose. Also, whenever one
marker is detected for the second time, the system closes the
loop.

Open-source state-of-the-art SLAM systems are hard to
find. However, Schegel et al. released ProSLAM, an open-
source Visual SLAM system aimed towards teaching [37].
This system was built in a modular format to make it simple
to comprehend and implement. OpenV-SLAM (Open Visual

SLAM) is another open-source visual SLAM framework [78].
A key advantage of OpenV-SLAM is its extensive support for
various camera models, including fisheye, equirectangular, and
perspective, enhancing its applicability

OpenSLAM is a platform for SLAM researchers which
gives them the possibility to share their algorithms with the
community. Information about the authors and the original
papers is also provided. Since 2018, OpenSLAM has a Github
page (https://github.com/OpenSLAM-org) where the source
code and installation instructions for several SLAM systems
are available.

3) Inertial Odometry: Incorporating inertial odometry (IO)
techniques into SLAM systems has a series of benefits.
Reading variations in accelerations, for example, helps LiDAR
and Visual frameworks in compensating for camera movement
caused by uneven terrain. In the literature, inertial odometry
systems are frequently referred to as "Inertial Navigation
Systems" (INS).

Strapdown inertial navigation systems (SINS) and pedes-
trian dead reckoning (PDR) are the two primary types of
INS [79], [80]. The former calculates velocity by integration
of the total acceleration and computes position by integration
of the resultant velocity [81]–[85], whereas the latter estimates
trajectories by detecting steps, estimating step length and
heading, and updating locations per step [86]–[88].

Inertial navigation can also benefit from deep learning tech-
niques [83], [84]. Chen et al. proposed IoNet, a neural network
for inertial odometry drift reduction [89]. AbolDeepIO uses
an LSTM network and an inertial measurement unit (IMU)
to get a pose estimation from raw inertial data [90]. The
aforementioned above, neural networks are used to replace
traditional IO approaches. There are, however, systems that
employ neural networks to improve standard methods [85],
[87], [88].

4) LiDAR-Visual SLAM: The complementary strengths of
cameras and laser scanners are used in LiDAR-visual SLAM
approaches. Depth prediction is one of the reasons to use
laser rangefinders with cameras [91]–[93]. Depth estimation
improves the system in recovering the map’s scale in monoc-
ular V-SLAM [65].

V-LOAM (Visual-LiDAR Odometry and Mapping) illus-
trates this relationship, as it uses depth information from laser
rangefinders to enhance monocular [94]. Recently, Labbé et
al. have proposed to extend their original work RTAB-MAP
(Real-Time Appearance-Based MAPping) to support visual
and LiDAR SLAM. This new version was published as an
open source library by the authors [55], [95].

Systems using an RGB-D camera may also be deemed to
fall under this group [96]–[98]. However, unlike the LiDAR-
Camera combination, RGB-D cameras are light-sensitive and
require supplementary sensors to produce better results [99].

Finally, using LiDAR-Visual systems to detect and clas-
sify objects has facilitated the development of autonomous
vehicles [100]–[103]. However, when it comes to autonomous
driving, calibration is crucial, since a precise 6-DoF transform
between the sensors is necessary to accurately estimate the
vehicle’s pose [104], [105].

https://github.com/OpenSLAM-org


1317 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

5) Visual-inertial SLAM (VI-SLAM): Integration of IMU
measurements can improve tracking and mapping performance
of visual systems [106]–[108] .

Visual-inertial fusion can be accomplished in two ways:
loosely coupled and tightly coupled approaches. Loosely cou-
pled techniques use a vision algorithm to estimate the pose,
which is then combined with IMU readings in a separate esti-
mation step [109]–[111]. Tightly coupled systems, on the other
hand, estimate camera poses using a combined energy cost
function that minimizes photometric and IMU measurement
errors [112], [113].

The use of inertial sensors in monocular V-SLAM tech-
niques facilitates in the recovery of the map metric scale [34].
VINS-MONO (MONOcular Visual-INertial System) is a
tightly coupled VI-SLAM system that leverages IMU measure-
ments to reduce the localization inaccuracy provided by the
camera system [114]. As an extension for VINS-MONO, the
authors proposed in 2019 VINS-Fusion [115]. The algorithm
treats camera and IMU measurements as variables in a factor
graph. This optimization method provides a general framework
for evaluating multiple camera combinations (IMU+mono,
IMU+stereo).

Maplab, an open-source VI-SLAM system, provides users
with a console for experimenting with various loop closure
detection techniques, multi-session map merging, and map
optimization tools [116]. The core component of the system
is ROVIOLI (ROVIO with Localization Integration), a track-
ing/mapping block inspired in the ROVIO system [111].

Analogously to LiDAR-visual systems, initialization plays
a pivotal role in visual-inertial systems. In order to achieve
reliable measurements, the IMU model parameters must be
as well defined as possible. Campos et al. suggested a
rigorous process for camera and IMU initialization based
on the preintegration concept of Forster et al. [109]. The
covariance of the preintegrated components is estimated using
IMU measurements and a sensor noise model, reducing the
parameter uncertainty [117].

6) LiDAR-inertial SLAM: LiDAR scans can also bene-
fit from inertial measurements. LIO-SAM (LiDAR Inertial
Odometry via Smoothing And Mapping) formulates LiDAR-
inertial odometry as a factor graph optimization problem [118].
The system calculates motion from IMU pre-integration and
uses it as a starting point for LiDAR odometry optimization.
LIPS SLAM (LiDAR-Inertial 3D Plane SLAM) on the other
hand, strongly integrates inertial and planar primitive observa-
tions for state estimation. When facing dynamic scenarios, the
authors used inertial data to better restrict the low frequency
LiDAR sensor [119].

Neuhaus and Koß suggested an alternative for LiDAR-
Inertial Fusion [120]. They built their system on top of a
LiDAR SLAM system, to which they added IMU motion
compensation measures. Similarly, Opromolla et al. proposed
a hybrid solution that combines attitude data from an IMU
with position estimation from a 2D LiDAR sensor for track-
ing [121].

C. According to How They Handle Dynamic Scene Content.

1) Static SLAM Approaches: Many SLAM systems are
engineered with the assumption of a static environment, where
the elements within a scene remain consistent over time. This
entails that when a robot revisits a specific location, it should
encounter the same set of features.

In real-world circumstances, this assumption is difficult to
maintain. Moving objects, people and vehicles present a diffi-
culty for static SLAM techniques. Feature-based approaches,
for example, could extract features from pedestrians crossing
in front of the camera (see Sec. IV-B). These features will
then become a part of the map if the SLAM system does not
reject them. This makes it more difficult to use the map for
tracking and relocalization.

Some methods can deal with a small number of dynamic
features by treating them as outliers [38], [39], [98]. RANSAC
is the most commonly used outlier rejection method. This
approach fits a model to experimental data. Values that are
too far away from the fitting line are discarded.

In feature-based approaches, the RANSAC algorithm is
used after the feature matching procedure. The algorithm will
correctly fit common features from different images. Those
that do not have a strong correspondence will be considered
outliers and will be dismissed.

2) Dynamic SLAM Approaches: Addressing the presence
of moving elements within a scene can be achieved by directly
eliminating non-static content. In order to obtain a static
image, Bescós et al. suggested a method for detecting and
removing dynamic objects [72], [122], [123]. The algorithm
employs a Mask R-CNN (Mask Region-based CNN) [124]
to pixel-wise segment dynamic objects in the input frames.
Dynamic pixels are deleted from the image after segmentation.
The authors also added an inpainting method to fill in the gaps
left by the removed pixels, resulting in a static image. This
makes it very difficult for the system to extract features from
dynamic objects. Sun et al., on the other hand, proposed to
pre-process input data with a motion removal approach, which
filters out information on moving objects [97].

Other strategies aim to identify dynamic information in an
image without deleting it. For instance, DM-SLAM (SLAM
Method for Rigid Dynamic Scenes), employs the segmented
output from Mask R-CNN to prevent the tracking system
from extracting features from mobile objects [125]. DS-SLAM
(Semantic Visual SLAM towards Dynamic Environments)
operates similarly to DM-SLAM but relies on a distinct neural
network architecture [126]. In contrast, DMS-SLAM (SLAM
system for Dynamic Scenes with Multiple sensors) proposes
the combination of an ultra-robust feature correspondence
algorithm with ORB-SLAM2 [127]. The resulting system
provides a general platform that supports monocular, stereo,
and RGB-D visual sensors in dynamic scenes. A recent
advancement in this domain is STDyn-SLAM, a sophisticated
dynamic SLAM system introduced by Esparza et al. [128].
The authors suggest an integrated strategy, merging SegNet
segmentation outputs with optical flow techniques applied to
stereo cameras, aiming to enhance both visual odometry and
3D map reconstruction.



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1318

To improve tracking accuracy, PLD-SLAM (Point Line
Dynamic SLAM) proposes extracting point and line char-
acteristics [129]. For motion estimation, features that relate
to dynamic areas are removed. Cheng et al. on the other
hand, suggested a method based on optical flow to reduce the
amount of point features extracted from moving objects [130].
Similarly, DRSO-SLAM [131] also leverages semantic infor-
mation of the Mask R-CNN. In this case, the authors combined
semantics with optical flow to improve the performance of
tracking, local mapping, and loop detection in ORB-SLAM2.
Dynamic objects optical flow is tracked using pixel-level
semantic information and fundamental matrix calculations, in
order to isolate them from the static feature points.

Finally, there are more sophisticated approaches to dealing
with dynamics. Li and Lee proposed to assign a weight to each
image point, that indicates how likely it is that the point relates
to a dynamic object [96]. This information is included into an
Intensity Assisted Iterative Closest Point (IAICP) algorithm to
reduce the effect of moving objects on the motion estimation
process.

IV. THE VISUAL SLAM DOMAIN

Cameras are the primary sensor choice for SLAM because
low-cost video sensors provide rich information about the
environment. Due to the large number of articles in this
topic, we propose here to explain the general taxonomy of
V-SLAM. Two significant elements that help in understanding
how visual SLAM is organised are the type of cameras used
in implementations and how the systems process the incoming
frames.

A. Camera Types

By camera type, we refer to the physical structure of the
device itself. Monocular cameras have a single lens, while
stereo cameras feature two lenses

Monocular SLAM systems perform pose estimation from a
single image, configuring the most cheap way to do this task
in V-SLAM [49], [132]. Due to its low weight and power
consumption with respect to other sensor configurations,
monocular cameras are widely used in many applications, but
specially on flying robots [133].

This SLAM type presents one significant weakness: Depth
estimation. Monocular cameras are incapable of perceiving
depth. As a result, the map produced by the SLAM system
has scale ambiguity.

To tackle the scale recovery issue, an inertial sensor can
be attached to the camera, thus performing Visual-Inertial
SLAM as indicated in Sec III-B5. However, Yang et al.
proposed an alternative solution to help monocular cameras
perceive depth without the need of IMU’s. By leveraging Deep
Neural Networks (DNNs), their system is able to estimate the
stereo disparity from a single image [134]. Another valid (yet
expensive) solution would be having multiple robots equipped
with monocular cameras, as proposed in [135].

Stereo SLAM techniques do not have scale recovery issues.
This is due to the fact that given two images of the same
view, the metric scale can be determined with geometric

calculations [136], [137]. However, stereo cameras are more
expensive than monocular cameras and are equally susceptible
to motion blur. As a result, under such conditions, they may
require also the assistance of another sensor to obtain the
motion estimation.

RGB-D cameras like the well known Kinect and Intel
RealSense, have gained significant attention and utility in the
SLAM field [138], [139]. These cameras provide both color
(RGB) and depth (D) information, enabling more accurate
and detailed scene perception. By combining RGB and depth
data, SLAM algorithms can extract robust feature points,
estimate camera poses, and build dense 3D maps of the
environment [140], [141]. The depth information enhances the
perception capabilities of SLAM systems, allowing for better
understanding of the scene geometry and improved obstacle
avoidance.

Event-based cameras, also known as neuromorphic or event-
driven cameras, have emerged as a novel sensing technology
for SLAM. Unlike traditional cameras, that capture images at
a fixed rate, they asynchronously measure per-pixel brightness
changes, and output a stream of events that encode the time,
location and sign of the brightness changes [142]. This unique
characteristic allows event-based cameras to provide high
temporal resolution, low latency, and a high dynamic range,
making them particularly suitable for fast motion and dynamic
scenes [143], [144]. Additionally, event-based cameras con-
sume significantly less power compared to traditional cameras,
making them suitable for resource-constrained applications. As
event-based cameras continue to evolve, their integration into
SLAM systems shows great potential for enhancing real-time
perception and navigation capabilities.

It is worth mentioning that most V-SLAM algorithms are
designed to work with a single camera type. To address
this situation, Sumikura et al. proposed OpenVSLAM (Open
Visual SLAM), an open-source framework compatible with a
variety of camera types [78]. Users can compare how different
types of cameras perform in a pipeline similar to ORB-SLAM
using their system.

B. Input Frame Processing
V-SLAM systems perform motion estimation by processing

the input images provided by cameras. Two main approaches
to image processing can be recognized: Direct methods, that
use the pixel values of an image to perform motion estimation,
and feature based or indirect methods, that create a represen-
tation of the scene before performing the calculations.

Figure 3 depicts a generalized flow diagram of this ap-
proaches. Direct methods apply a pixel selection strategy to
choose the pixel set to be used for pose estimation. After this
step, a direct image alignment process is applied to estimate
camera motion. Indirect methods on the other hand, start by
extracting a set of features from the input frame. Then, the
system tries to find this features in the previous image through
a process named feature matching. After that, a rigid-body
transformation to represent the camera motion is estiamted
with the matched features.

The paper series by Engel et al. [40], [137], [145] is the
key to understand how direct approaches work. They set the



1319 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

Fig. 3. Generalized flow diagram of the main input frame processing methods. Left: direct methods apply pixel selection strategies to select
the best pixels to perform motion estimation. Right: indirect methods use features to perform calculations. To select the best features, the
system combines an image feature extraction algorithm with a feature matching process.

path for many recent articles in this field who followed their
ideas [112], [134], [146]–[148]. The formulation of the motion
estimation performed by a direct system is explained below,
based on Engel’s work [40].

Since the available information is the measured intensity
level of a set of selected pixels in the image, direct methods
estimate the change in camera position performing direct
image alignment. This is achieved by optimizing a photometric
error such as (1)

Ephoto :=
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Ep,j , (1)

where i runs over all frames F , p over all points Pi in frame
i, and j over all observed frames obs(p) in which the point p
is visible. Ep,j represents the weighted photometric error of a
point p in keyframe Ii observed from a target frame Ij , with
respect to a local neighborhood Np of pixels around it. Let

Ep,j :=
∑
p∈Np

wp

∥∥∥∥(Ij [p′]− bj)−
tje

aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

, (2)

where ∥.∥γ is the Huber norm, and p′ represents the projected
position of p.

It is worth noting that the exposure times ti and tj for
images Ii and Ij are required for this formulation. This
information isn’t always readily available, and so requires the
use of a calibrated dataset. As a result, some authors argue
that these variables should be removed from the equation (2).
Further information on the gradient-dependent weights wp

and brightness transfer function parameters ai,bi,aj ,bJ can be
found on [40]

Indirect approaches, on the other hand, generate a scene
representation before performing calculations. The image’s
principal points (also known as keypoints) are extracted, and
for each of them, a descriptor is calculated. An image feature
is comprised of a keypoint and a descriptor. Features contain
position information, which allows the camera movement to be
tracked by geometric calculations. Therefore, these approaches
optimize a geometric error.

There are several local image feature extractors in the
literature. Some of the most commonly used algorithms in-
clude SIFT [149], SURF [150], ORB [151], BRIEF [152],
FAST [153], and BRISK [154]. Neural networks can also
be used for feature extraction [155]. GCN (Geometric Corre-
spondence Network) and GCNv2 (version 2) generate binary
descriptors designed to replace ORB features in systems
like ORB-SLAM 2 [156], [157]. Analogously, the SPHORB
algorithm allows to extract ORB features from spherical
images [158].

The cornerstone of current Indirect methods [36], [38], [39],
[57], [158], [159] is ORB-SLAM [33]. A brief description of
the tracking thread of this approach is presented below, based
on [35].

The tracking algorithm starts by extracting a set of ORB
descriptors from the input frame. Then, the system performs
descriptor matching with the previous image. For each key
point, this process looks for a correspondence in the previ-
ous frame. If enough correspondences are found, the system



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1320

calculates a rigid-body transformation to represent the camera
motion. This transformation provides an initial guess for the
vehicle’s pose. After that, the pose is refined by a process
named motion-only Bundle Adjustment.

From the input frame, the tracking algorithm extracts a set
of ORB descriptors. The machine then compares descriptors
with the prior image. This procedure looks for a match in
the previous frame for each key point. The system calculates
a rigid-body transformation to represent the camera motion
if enough correspondences are detected. This transformation
yields a first guess about the vehicle’s position. After that, a
method known as motion-only Bundle Adjustment is used to
fine-tune the position.

Let R ∈ SO(3) and t ∈ R3 be the camera rotation and
translation respectively. The motion-only Bundle Adjustment
algorithm optimizes these two variables by minimizing the
reprojection error between matched 3D points Xi ∈ R3 in
world coordinates and keypoints xi

(.), either monocular xi
m ∈

R2 or stereo xi
s ∈ R3, with i ∈ X the set of all matches:

{R, t} = argmin
R,t

∑
i∈X

ρ

(∥∥∥xi
(.) − π(.)(RXi + t)

∥∥∥2
Σ

)
(3)

where ρ is the Huber cost function and Σ the covariance matrix
associated to the scale of the keypoint. The projection function
π(.) is defined by (4) in the monocular case, and by (5) for
stereo cameras.

πm

XY
Z

 =

[
fx

X
Z + cx

fy
Y
Z + cy

]
(4)

πs

XY
Z

 =


fx

X
Z + cx

fy
Y
Z + cy

fx
X−b
Z + cx

 (5)

where fx, fy are the camera’s focal lengths, cx,cy the principal
points and X,Y, Z the matched keypoint world coordinates.

If the system is unable to locate sufficient matches, tracking
is considered lost, and relocalization techniques are required
to recover it.

Indirect techniques exhibit suboptimal performance in two
scenarios: Texture-less environments and repetitive scenarios.
Because of the low gradients in the scene, the former prevents
feature extraction techniques from working. The latter con-
fuses the loop closure thread because all of the images appear
to be from the same location.

Hybrid V-SLAM methods are a third type of V-SLAM
system that aims to combine the benefits of direct and indirect
approaches [160], [161]. To support direct image alignment
methods, this systems rely on the robustness of feature match-
ing, giving them the name of semi-direct because of this [41],
[162], [163]. In most of the cases, hybrid approaches match
the performance of direct and indirect methods. They do not,
however, bring about a significant increase in accuracy.

V. THE INFLUENCE OF ARTIFICIAL INTELLIGENCE IN
CURRENT SLAM SYSTEMS

Artificial intelligence (AI) and particularly deep learning
algorithms, have gained great popularity among academics

from different disciplines. This section discusses the influence
of AI on the development of algorithms for SLAM.

A. Feature Extraction Process

After being appropriately trained, one of the fundamental
strengths of neural networks is their capacity to generate an
output with a single pass of information. To accomplish this,
researchers have diligently focused on training networks for
image feature extraction. This approach seeks to efficiently
incorporate iterative algorithms into the network’s internal
weights, leading to a reduction in computational time [156],
[157].

SuperPoint [155] is a fully-convolutional neural network
trained in a self-supervised manner able to extract SIFT-like
key points and their corresponding descriptors from the image.
Another example is the Learned Invariant Feature Transform
(LIFT) network [164]. LIFT was end-to-end trained to per-
form the full feature extraction process: detection, orientation
estimation, and feature description. It produces descriptor
vectors, which served as the foundational components for
LIFT-SLAM [49].

In terms of integration of deep features, DxSLAM [165]
showed that feature extraction with deep convolutional neu-
ral networks (CNNs) can be seamlessly incorporated into a
modern SLAM framework. It utilized a state-of-the-art CNN
to detect keypoints in each image frame and to give not only
keypoint descriptors, but also a global descriptor of the whole
image. These local and global features are then used by differ-
ent SLAM modules, resulting in much more robustness against
environmental changes and viewpoint changes compared with
using the hand-crafted features

Weyand et al. harnessed this capability to develop PlaNet,
a network capable of geolocating outdoor images anywhere
on Earth [166]. In this system, localization is approached
as a classification problem, where the world is partitioned
into discrete cells. When an image is fed into the network,
it computes the likelihood that it corresponds to a particular
location.

B. Loop Closure Detection

Conventional methods for loop closure detection face chal-
lenges in distinguishing between two locations with subtle
differences. Additionally, an error in the loop closure mod-
ule could potentially lead to the complete loss of the map.
These limitations, combined with developments in machine
learning, have encouraged researchers to examine data-driven
approaches as a complement to existing SLAM systems [15],
[167].

It has been demonstrated that the intermediate layers of a
deep network can extract information from the inputs that
allows for a more accurate characterization of them. In this
way, this information can be used to enhance the performance
of loop closure detection algorithms. An illustrative instance of
this concept can be found in [168] where the authors combined
the output of a CNN-based loop closure detection block with
the output of traditional sequence-based matching algorithm
to handle the viewpoint and condition variance problem.



1321 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

While the Bag of Words (BoW) algorithm plays a pivotal
role in many Loop Closure Detection (LCD) strategies, re-
searchers have been actively exploring ways to enhance or
replace it. Memon et al. [169] proposed a solution to speed-
up the process of LCD in long trajectories. They combine
supervised and unsupervised learning methods to compare
scenes faster. On one front, they employ an autoencoder
architecture to determine whether the current scene has been
previously visited. If the scene has been encountered before,
the autoencoder’s reconstruction error falls below a predefined
threshold, identifying the current frame as a loop closure
candidate. Concurrently, they introduce the concept of a "su-
perdictionary" that works in tandem with the BoW dictionary
to mitigate the risk of overlooking genuine loop closures.
This innovative approach aims to improve the efficiency and
accuracy of loop closure detection."

In contrast, Gao et al. [170] proposed a transition from the
traditional BoW method to a denoising auto-encoder (SDA),
a multi-layer neural network designed to autonomously learn
a compressed representation from raw input data. In this
approach, newly generated keyframes are introduced as inputs
to the SDA, which generates a feature response. Subsequently,
a similarity metric is computed with respect to previous
keyframes to determine the presence of a loop.

C. Pose Estimation

Pose estimation techniques have undergone a remarkable
transformation, thanks to the advancements in neural networks
and deep learning. One of the most important contributions
to pose estimation with neural networks is the seminal work
by Kendall et al. [171]. The PoseNet network outputs the
camera pose p = [x,q], given by a 3D translation vector x
and a rotation vector represented by quaternion q. To obtain
the camera pose, the authors propose to jointly optimize a
translation related term Lx and a rotation term Lq defined as:

Lx = ∥x̂− x∥2 Lq = ∥q̂− q∥2 (6)

where x,q are ground truth and x̂, q̂ are the values estimated
by the net. These two elements are combined into a single
Euclidean loss function to be minimized, expressed by

L = Lx + βLq , (7)

where β is a scale factor. Analogously, Walch et al. [172]
proposed to regress the camera pose wit a combination of
CNN+LSTM networks. They add four LSTM units at after
the last fully connected layer of a GoogLeNet, and train the
network with (7).

The pose estimation obtained by PoseNet can be improved
if the fixed parameter β in (7) is replaced with trainable
parameters [173]. The resulting loss function is (8), where
ŝx and ŝq are learnable parameters for translation and rotation
respectively.

L = Lx exp(−ŝx) + ŝx + Lq exp(−ŝq) + ŝq (8)

Recent studies in pose estimation utilize multiple data
sources. DeepICN [174], for instance, employs RGB and depth
data as inputs for the inverse compositional algorithm (ICA) to

estimate relative pose. The authors proposed a modification to
the ICA where the image feature extraction and optimization
information are learned by the neural networks. An et al.
proposed in [175] a visual-LiDAR odometry with a multi-
channel recurrent convolutional neural network (RCNN). This
method fuses RGB images and LiDAR data to estimate the
pose. A hybrid architecture consisting of CNN and multiple
BiLSTM layers is proposed in [176]. HVIOnet is an end-to-
end trained hybrid network that allows to combine raw camera
and raw IMU measurements for position estimation. A key
aspect of this work is that by taking raw measurements it
eliminates the need for camera calibration adjustments.

D. Depth Perception to Improve Pose Estimation
In the context of Simultaneous Localization and Mapping

(SLAM), the utilization of neural networks for depth pre-
diction contributes significantly to pose estimation. Neural
networks have proven to be an effective method for accom-
plishing this goal and overcoming the limitations of monocular
cameras in terms of depth perception [177]–[180]. Yang et
al. proposed using monocular images to do stereo depth
prediction, in order to improve odometry estimations [134].
UnDeepVO (Visual Odometry through Unsupervised Deep
learning), on the other hand, is a neural network-based system
that can generate a depth map and 6-DoF pose estimation for
a monocular image [181].

SfMLearner (Structure from Motion Learner), for instance,
implements a direct image alignment method augmented by
depth measurements [182]. This approach concurrently de-
ploys a Depth CNN and a PoseNet network, with the former
generating a depth map from monocular imagery and the latter
determining camera pose. A similar strategy is seen in the
CNN SLAM framework [183], where a predicted dense depth
map is fused with depth values estimated by a monocular
SLAM system called LSD-SLAM [145]. This integration helps
address a common challenge in monocular SLAM: scale
estimation.

Inspired by the parallel structure of SfMLearner [182],
Yang et al. introduced D3VO (Deep Depth, Deep Pose, and
Deep Uncertainty for Monocular Visual Odometry), a SLAM
system primarily based on neural networks [148]. D3VO
employs a Depth CNN to calculate pixel-wise photometric
uncertainty in input images, thereby enhancing the accuracy
of depth estimation. The system is further equipped with pose
refinement and map optimization modules.

In a different approach detailed in [184], the authors propose
a bundle adjustment network (BANet) capable of jointly
optimizing the map and camera poses through a differentiable
Levenberg–Marquardt algorithm. In order to achieve this goal,
the system initially generates several basis depth maps ac-
cording to the input image, and optimizes the final depth as
a linear combination of these basis depth maps using feature-
metric bundle adjustment. At the same time, a feature pyramid
constructor generates multi-scale feature maps. These depth
and feature maps are then fed into the bundle adjustment layer
to refine both the camera pose and map estimation.

Traditional direct image alignment algorithms use all pixels
to optimize the pose estimation. However, not all pixels con-



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1322

tribute to the convergence of the optimizer. FlowNorm [185]
introduces an optical flow graph to identify pixels that have
a poor impact on optimizer convergence. These pixels are
assigned smaller weights, thereby expanding the convergence
range of the optimization process.

E. NNs and LiDAR Measurements

Artificial intelligence algorithms are also being used in
LiDAR-based techniques [186], [187]. Spampinato et al. pro-
posed a sequential convolutional NN that determines the robot
pose given two consecutive laser scans [188]. This network
outputs a vector T = [∆x,∆y,∆α], where ∆x and ∆y are
the translation coefficients and ∆α the rotation coefficient.
Chen et al. on the other hand, proposed the OverlapNet for
loop closure detection [189]. This two-legged network can
estimate the percentage of overlap between two consecutive
laser scans. According to the authors, a threshold based on
the overlap percentage can be used to determine whether two
LiDAR scans are in the same location and/or whether a loop
closure can be performed.

At the same time, Lu et al. presented L3-net (Learning based
LiDAR Localization), a global localization method based on
3D convolutions [190]. L3-net is comprised of three neural
networks. A PointNet is used to extract feature descriptors
first. Then, the ideal pose is calculated using a combination
of a CNN and a recurrent neural network (RNN). Similar
to L3-net, DeepLo (Deep LiDAR Odometry) combines the
action of two neural networks. A VertexNet is used to extract
features from LiDAR scans, and a PoseNet to estimate the
6-DoF camera pose [191].

F. Aiding VI SLAM

Long Short-Term Memory neural networks are well-known
for their ability to classify, process, and predict data from time
series. As a result, they’re suitable for processing inertial mea-
surements. This feature is used in Visual-Inertial techniques to
combine IMU and camera information [192], [193].

Several approaches stand out among Visual-Inertial method-
ologies. VINet, for instance, combines LSTM and convolu-
tional networks to perform motion estimation [194]. Similarly,
DeepVIO [195] consists of a CNN for image flow calculations,
an LSTM for IMU measurements processing, and fully con-
nected layers for data fusion. This integrated design enables
the system to concurrently compute continuous trajectories by
leveraging monocular images and IMU data.

However, LSTMs are note the only option. In [196],
Shamwell et al. presented VIOLearner, a system that forgoes
the use of LSTMs and instead employs Convolutional Neural
Networks for multiple instances of pose refinement. This
approach demonstrates the diverse strategies employed within
the field of Visual-Inertial techniques for enhancing pose
estimation and trajectory tracking.

In recent times, advanced systems have emerged as cutting-
edge solutions. In their study [197], Aslan et al. introduced
VIIONet (Visual-Inertial Image-Odometry Network), a sophis-
ticated end-to-end trained system designed for estimating the
pose of an Unmanned Aerial Vehicle (UAV). The system

initially takes image and IMU measurement inputs to generate
both camera optical flow (OF) frames and IMU-OF frames.
This information is processed separately by two Inception
V3 [198] networks to extract abstract features, which are
subsequently used in the final step of pose regression. In
contrast, SelfVIO (Self-supervised deep learning-based VIO)
performs camera pose estimation and depth map recovery in
a self supervised way [199]. By using adversarial training and
self-adaptive visual–inertial sensor fusion, this system, learns
the joint estimation of 6-DoF ego-motion and a depth map of
the scene from unlabelled monocular RGB image sequences
and inertial measurement unit (IMU) readings.

G. Semantic Image Segmentation

Recent advances in computing power have opened up a
new source of data: Semantic image segmentation. Semantic
segmentation is a task that involves labeling categories at the
pixel level of an image, and it has direct applications in the
field of computer vision [200], [201].

SLAM systems can benefit from a more comprehensive
understanding of the scene, achieved through the incorpora-
tion of data on static/dynamic behavior and object classifi-
cation [202]–[204]. Take, for instance, VLocNet++ (Visual
Localization Network), which introduces an additional term to
the loss function (8) that directly accounts for image semantic
information [205]. This strategy allows to add geometric and
semantic knowledge of the world into the pose regression
network.

Jin et al. propposed to add semantic information to the
multi-view geometry method in the tracking thread of ORB-
SLAM2 to filter out feature points belonging to dynamic
objects in the environment [206]. To maintain consistent
performance in real-world scenarios, their system underwent
training using adversarial transfer learning techniques to mit-
igate potential performance degradation within the semantic
segmentation network.

Furthermore, Zhao et al. introduced a novel system in [207],
known as KSF-SLAM (Key Segmentation Frame-based Se-
mantic SLAM), designed for dynamic environments. This
system implements a frame selection strategy to determine
whether image segmentation is required in the current frame.
This optimization approach results in a reduced computational
load, as it minimizes the frequency of segmentation proce-
dures.

H. Mapping

The map generated by SLAM systems that integrate arti-
ficial intelligence typically benefits indirectly. Consequently,
it is challenging to identify articles that specifically con-
tribute to this component of the system. Nevertheless, certain
noteworthy contributions can be highlighted. Valada et al.
proposed to modify the equation (8) to integrate the relative
motion between the current image and the previous predicted
pose [208]. This modification helps to maintain the consistency
of the map. Fusion++ uses object-level SLAM to produce a
more comprehensive map representation [209]. As a result,
a 3D map containing reconstructed objects in the scene is



1323 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

generated, allowing the user to better understand the scene
observed by the robot. Lastly, it is noteworthy to mention
the groundbreaking research by Sucar et al. in [210]. Their
work on iMAP (Implicit Mapping and Positioning) introduces
a cutting-edge real-time SLAM system. iMAP leverages an
implicit neural scene representation and is capable of jointly
optimizing a full 3D map and camera poses. A particularly
salient feature of this system is its capacity for real-time
training, achieved without the reliance on prior data.

I. Practical Considerations About Using AI in SLAM

1) Hardware Resources: The implementation of neural
networks requires careful consideration of hardware com-
ponents to ensure efficient and effective operation. Firstly,
the choice of the central processing unit (CPU) or graphics
processing unit (GPU) plays a pivotal role. While CPUs are
versatile and suitable for many tasks, GPUs excel in parallel
processing, making them particularly well-suited for deep
learning tasks.

Memory capacity is another critical aspect, as large neural
networks require substantial memory resources. High-speed
RAM, such as Graphics Double Data Rate (GDDR) memory
for GPUs, is vital for rapid data access during training and
inference. Additionally, storage solutions with fast read and
write speeds are essential for managing large datasets. Special-
ized hardware accelerators, like tensor processing units (TPUs)
or field-programmable gate arrays (FPGAs), are emerging as
dedicated options for neural network tasks.

Finally, it is noteworthy that the majority of AI research
applied to SLAM is conducted using desktop computers,
while the intended deployment targets mobile robots. This
presents a noteworthy challenge given the power limitations
of autonomous systems. Systems incorporating diverse data
sources or employing complex deep neural networks may
demand substantial computational and thermal management
capabilities to achieve real-time operation and high precision.
Nonetheless, greater computational capacity corresponds to
increased power consumption. Conversely, reduced compu-
tational capacity reduces power consumption but imposes
limitations on the volume of data the system can effectively
handle. Consequently, there is a need to calibrate accuracy
and timing objectives accordingly. This inherent trade-off is
explored further in [133], where multiple systems are evaluated
across various hardware platforms.

2) Training Sets, Generalization, and Learning Strategies:
Data preparation is a crucial step in the training of neural
networks. The selected training set (images, IMU readings,
LiDAR measurements, etc.) must strike a delicate balance.
It should span a diverse array of scenarios that the system
might encounter during operation, while also minimizing the
computational time required for training. The system’s ability
to generalize effectively in real-world scenarios highly depends
on the careful selection of a training dataset.

Generalization poses a challenge when employing neural
networks in general, and particularly within the context of
SLAM systems. For instance, consider the PLD-SLAM sys-
tem discussed in Section III-C2. Within its architecture, it

incorporates a dynamic object detection module based on
MobileNet [129], [203]. Nevertheless, MobileNet is limited
to classifying a finite number of objects. Any dynamic ob-
ject not included during the training phase may encounter
misclassification, consequently leading to a decline in system
performance.

Similarly, CNN-SVO (CNN Sparse Visual Odometry) [225]
serves as another illustration. This system leverages CNNs
to reduce pose estimation uncertainty, aiming to enhance
the overall algorithmic performance of the original SVO.
While it exhibits strong performance when tested with the
training dataset, its performance diminishes when subjected
to unfamiliar datasets.

However, in recent years, researchers have actively explored
alternatives to address this issue. The primary focus was
centered on novel network training strategies, giving rise to
solutions such as Unsupervised Learning or Self-Supervised
Learning [134], [196], [199], Adversarial Training [206], and
Reinforcement Learning [226].

VI. METHODS COMPARISON

This section provides a performance comparison of the
diverse systems analyzed in this article. We begin by outlining
practical considerations for implementing SLAM systems,
followed by a concise explanation of the selected metrics for
system comparison. We then proceed to present performance
comparison tables.

A. Practical Details of SLAM Systems Implementation

1) Operating System and System Requirements: While
this may appear evident, given the rapid pace of technological
advancement, verifying the operating system version on which
a system is developed is a necessary first step in imple-
mentation. The selection of the operating system significantly
impacts crucial aspects such as the required library versions
and the specific ROS (Robot Operating System) version being
employed.

Take ORB-SLAM as an example. Suppose you want to
implement and test the system exactly as the authors have
published it on their Github page (https://github.com/raulmur/
ORB_SLAM). In the system description, the authors delineate
the testing environment, which included Ubuntu 12.04 with
ROS versions Fuerte, Groovy, and Hydro, as well as Ubuntu
14.04 with ROS Indigo. Furthermore, the system is compatible
with OpenCV library version 2.4. It’s essential to note that if,
during your implementation, any of these specified libraries are
no longer accessible, the system may not work as intended.

Another seemingly trivial yet indispensable factor is the
evaluation of the hardware prerequisites of the system. While
numerous existing developments have undemanding prereq-
uisites, this aspect becomes paramount when implementing
SLAM in embedded systems. Systems involving computations
like image segmentation or those utilizing artificial intelligence
have specific hardware needs that must be taken into account.

https://github.com/raulmur/ORB_SLAM
https://github.com/raulmur/ORB_SLAM


GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1324

TABLE I
COMMONLY USED DATASETS FOR SLAM

Dataset Year Sequences Path Length Ground Truth GPS IMU Laser Scans Image Scenario Source

KITTI 2012 22 50 km Yes Yes Yes Yes Stereo Grayscale 1392x512 @ 10 fps Outdoor [211]
Stereo RGB 1392x512 @ 10 fps

EuRoC 2016 11 0.9 km Yes No Yes No Stereo Grayscale 752x480 @ 20 fps Indoor [212]
RobotCar 2015 - 1010.46 km No No Yes Yes Stereo RGB 1280x960 Outdoor [213]

Monocular Grayscale 1024x1024
TUM RGB-D 2012 39 0.514 km Yes No No No Monocular RGB-D 640x480 @30 fps Indoor [214]
TUM Mono 2016 50 - Yes No No No Monocular Grayscale 1280x1024 @ 20-50 fps Indoor/ Outdoor [215]
TUM VI 2018 28 20 km Yes No Yes No Monocular Grayscale 1024x1024 @ 20 fps Indoor/ Outdoor [216]
Málaga 2009 6 6 km Yes Yes Yes Yes Stereo RGB 1024 x 768 @ 7.5 fps Outdoor [217]
Ford Campus 2011 - 6 km Yes Yes Yes Yes Omnnidirectional RGB 1600 x 600 @ 8 fps Outdoor [218]
ICL NUIM 2014 8 < 1 km Yes No No No Monocular RGB-D - Indoor Artificial [219]
Michigan North Campus 2013 27 147.4 km Yes Yes Yes Yes Omnidirectional RGB 1600X200 @ 5fps Indoor/ Outdoor [220]
MIT Sata 2012 42 km Yes No Yes Yes Monocular RGB-D - Indoor [221]

Stereo RGB
7 scenes 2013 7 - Yes No No No Monocular RGB-D 640x480 @30fps Indoor [222]
Málaga Urban 2014 15 36.8 km No Yes Yes Yes Stereo RGB 1024 x 768 @ 20 fps Outdoor [223]
MIT DARPA 2010 3 90 km Yes Yes Yes Yes Stereo RGB 376 x 240 @ 10 fps Outdoor [224]

Mono RGB 752 x 480 @ 22.8 fps

2) Required Sensors: While SLAM systems explicitly state
this condition (visual, visual-inertial, lidar SLAM, etc.) a
priori, it’s crucial to delve into the details. Unfortunately, this
often entails carefully evaluating the code, as the system may
internally require proprietary libraries or specific drivers.

One way to address this is to opt for systems that publish
measurements as ROS topics. This simplifies the replacement
of sensors within the system. All you need to do is ensure that
the new sensor publishes a topic with the same name as the
original.

B. Accuracy Metrics

To evaluate the performance of any SLAM system, it is
necessary to have evaluation metrics. There are two main ways
to estimate the accuracy of a SLAM system: the relative pose
error (RPE) and the absolute trajectory error (ATE). The RPE
measures the local accuracy over a fixed time interval ∆, while
the ATE measures the global consistency of the estimated
trajectory.

Given a sequence of poses from the estimated trajectory
P1, ...,Pn ∈ SE(3) and from the ground truth trajectory
poses Q1, ...,Qn ∈ SE(3), the RPE at time step i is defined
as

Ei =
(
Q−1

i Qi+∆

)−1 (
P−1

i Pi+∆

)
(9)

From a sequence of n poses, m = n−∆ individual RPEs can
be obtained. Taking into account these errors, the root mean
squared error (RMSE) over all time indices of the translational
and rotational components of (9) is calculated as

RMSE(E1:n,∆)trans =

√
1

m

∑m
i=1 ∥trans(Ei)∥2

RMSE(E1:n,∆)rot =

√
1

m

∑m
i=1 ∥rot(Ei)∥2

(10)

These two values help to determine the precision of SLAM
systems in terms of both translation and rotation errors. The
translational and rotational components of the RPE will be
referred to as trel and rrel, respectively, in the following
notation.

Unlike the RPE, the ATE computes the absolute distances
between points in the estimated and ground truth trajectories.
It is a global measurement that needs both trajectories being
aligned in the same coordinate frame beforehand. One way
to achieve this goal is to use the Horn method [227], which
finds the rigid-body transformation P that maps the estimated
trajectory S1:n onto the ground truth trajectory Q1:n.

Given a rigid body transformation between the estimated
trajectory and the ground truth data, the ATE at time step i
can be computed as

ATEi = Q−1
i SPi (11)

Analogous to the RPE, the RMSE value of (11) is calculated.
However, this time only the translational component is con-
sidered.

ATERMSE =

√√√√ 1

n

n∑
i=1

∥trans(ATEi)∥2 (12)

C. Available Datasets

A SLAM dataset includes a number of trajectories recorded
in different scenarios. The measurements acquired by a variety
of sensors throughout the execution of the trajectories are
different for each dataset. Researchers can use this information
to develop and test their algorithms. The obtained results are
compared to the reference data provided by the dataset (also
referred as ground-truth) through the use of accuracy metrics.

A SLAM dataset contains numerous trajectories recorded
across diverse scenarios, storing measurements from different
sensors. Researchers leverage this data to develop and test
their algorithms. Once their system is tested, they can compare
their results to the reference data provided by the dataset (also
referred as ground-truth) through the use of accuracy metrics.
Therefore, it is important to take into account how many
datasets are available and what types of data they contain.
Table I lists the properties of some of the most popular SLAM
datasets.

The Karlsruhe Institute of Technology and Toyota Techno-
logical Institute dataset (KITTI) is one of the most widely used
for SLAM applications [211]. It covers around fifty kilometers
of a urban environment, divided in twenty-two sequences. This



1325 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

TABLE II
MEDIAN 6D LOCATION ERROR FOR 7 SCENES DATASET

SEQUENCES∗

System Measure Chess Fire Heads Office Pumpkin Kitchen Stairs

DSAC1 [228]
Trans. [m] 0,020 0,040 0,030 0,040 0,050 0,050 1,170
Rot. [deg] 1,20 1,50 2,70 1,60 2,00 2,00 33,10

DSAC ++ [229]
Trans. [m] 0,020 0,020 0,010 0,030 0,040 0,040 0,090
Rot. [deg] 0,50 0,90 0,80 0,70 1,10 1,10 2,60

VLocNet [208]
Trans. [m] 0,036 0,039 0,046 0,039 0,037 0,039 0,097
Rot. [deg] 1,71 5,34 6,64 1,95 2,28 2,20 6,48

VLocNet ++ [205]
Trans. [m] 0,023 0,018 0,016 0,024 0,024 0,025 0,021
Rot. [deg] 1,44 1,39 0,99 1,14 1,45 2,27 1,08

PoseNet [171]
Trans. [m] 0,320 0,470 0,290 0,480 0,470 0,590 0,470
Rot. [deg] 4,06 7,33 6,00 3,84 4,21 4,32 6,93

* Best results for each sequence in Bold.
The symbol ’-’ stands for no results reported and ’X’ for tracking failure.

1 Data extracted from [229].

dataset provides information from GPS, IMU, laser scanners
and stereo images (both in color and grayscale). Additionally,
the sequences are separated for training (00-10) and testing
(11-22). It also provides accurate ground truth, making it
suitable for all kinds of SLAM systems.

In the context of the European Robotics Challenge (EuRoC),
a dataset for visual inertial systems was recorded with a
micro-aerial vehicle (MAV) [212]. The EuRoC MAV dataset
contains eleven sequences, ranging from slow flights under
good visual conditions to dynamic flights with motion blur and
poor illumination. The available information includes raw IMU
measurements, stereo grayscale images and 6-DOF gruond
truth poses, recorded in an indoor industrial area.

Recent neural network-based systems are being tested on
the Microsoft 7-scenes dataset [222]. It contains 7 sequences
recorded in different indoor environments with a handheld
Kinect RGB-D camera. Also, it offers ground truth poses for
every frame. This set up makes it a suitable platform for neural
network-based algorithms with depth prediction.

D. Comparison Tables

This section presents tables containing performance data for
the SLAM systems discussed in this article. Only works who
reported objective (i.e. numeric) results were considered to
draw comparison tables. Those with qualitative and graphical
results were excluded. Simulations were not conducted; in-
stead, the tables were populated with data directly extracted
from the original publications of the respective systems. It’s
important to note that any alteration in this approach is clearly
stated inside the tables.

Best results are emphasized with bold numbers for trans-
lation and underlined numbers for rotation. The ’-’ symbol
denotes sequences where the system failed to report results,
whereas the "X" denotes sequences where tracking was lost.

Table II allows to compare the performance of neural
network-based methods on the Microsoft 7-scenes dataset. The
accuracy of the results is determined by the median pose error
acquired after each sequence has been executed.

Although there isn’t much difference between the perfor-
mance of the different systems, the best overall performance
can be attributed to VLocNet++. This could be caused by the
extra term in the training loss function of this system, that takes
into account semantic information when estimating pose.

When evaluating systems using the KITTI dataset re-
searchers prefer to use only the training sequences (00-10).
This is related to the KITTI Benchmark Suite’s proposal to
use testing sequences to develop a performance ranking [230].
LOAM and V-LOAM are the highest performers in the KITTI
Benchmark Suite among the systems evaluated in this article
at the time of publication. However, because the authors did
not publish quantitative results of the system’s accuracy in the
original article, they are not included in the comparison tables.

Table III shows the systems that provided results for the
KITTI dataset’s training sequences in terms of the ATE.
Looking at the table, it is easy to notice that most systems
don’t present data for KITTI sequence 01 or lose track of it.
This could be related to the fact that Sequence 01 is a highway
with a limited number of trackable close objects.

The best results were obtained by Log-SLAM, which has
the most constant performance. However, the results for se-
quences 01, 03, 04, 05, 06, and 10 were not presented by
the authors. The LIFT-SLAM results and Ali’s proposal stand
out among those who finish all of the sequences. It is also
worth mentioning that, while Ali’s LiDAR SLAM technique
completes all of the sequences, its error rate is considerable
when compared to the results obtained by other algorithms.

Systems that reported results for the training sequences of
the KITTI dataset in terms of the RPE are listed in Table IV
(next page). Results for the SfM Learner algorithm were
extracted from [146], whereas for ORB-SLAM 2, data was
taken from [49].

DeepLo has the best overall performance for the KITTI
sequences 00-10. Nevertheless, these results should be read
carefully. DeepLo is a neural network-based system that
was trained using the 00-08 sequences. This explains his
performance in these sequences. Furthermore, as shown by the
results for sequences 09 and 10, the system seems unable to
generalize to other cases. In light of this, the table additionally
includes the second best results for sequences 00-08.

The RMSE of the absolute trajectory error is the standard
metric for evaluating the performance of a system in the
EuRoC MAV dataset (RMSE ATE). Table V lists the systems
that submitted data for this dataset. It is clear that all systems
perform consistently and produce similar outputs. However,
the proposal of Luo et al. and visual-inertial ORB-SLAM 3
showed the best results.

The evaluation of processing time for SLAM systems is
beyond the scope of this paper. However, time response
can be critical for rescue and assistance applications, which
require real-time data analysis. In this way, a trade-off between
three critical aspects must be found: power consumption, time
response and accuracy.

Systems that use a multiple data sources (e.g., images,
inertial measurements, semantics, etc.) may require a large
computational capacity. If high degrees of accuracy and real-
time operation are desired, the developer must keep in mind
that higher computational capacity means more power con-
sumption. Also, whether or not a SLAM system can be placed
on a robot is determined by its power consumption.

Reduced computing capacity, on the other hand, demands
lower power consumption while limiting the quantity of data



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1326

TABLE III
SYSTEMS WHO REPORTED RESULTS ON THE KITTI SEQUENCES 00-10 IN TERMS OF THE ABSOLUTE TRAJECTORY

ERROR (ATE). VALUES EXPRESSED IN METERS∗

KITTI Sequence

Approach 00 01 02 03 04 05 06 07 08 09 10

LSD-SLAM 1 [145] 0,471 - 0,648 - - - - 4,321 0,798 3,013 -
LoG-SLAM [167] 0,233 - 0,288 - - - - 1,316 0,233 0,716 5,022
D3VO [148] - 1,070 0,800 - - - 0,670 - 1,000 0,780 0,620
CNN-SVO [225] 17,527 X 50,512 3,459 2,441 8,151 11,509 6,514 10,976 10,687 4,835
DSO 2 [40] 113,184 - 116,811 1,394 0,422 47,461 55,617 16,719 111,083 52,225 11,090
LDSO [147] 9,322 11,680 31,980 2,850 1,220 5,100 13,550 2,960 129,020 21,640 17,360
LIFT-SLAM3 [49] 9.84 X 34.23 0.97 0.42 11.5 16.58 3.98 82.61 54.91 30.34
Ali et. al [67] 6,982 18,779 13,733 1,481 0,810 3,697 3,258 3,093 11,473 5,659 4,379
ORB-SLAM [33] 5,33 X 21,28 1,51 1,62 4,85 12,34 2,26 46,68 6,62 8,80

* Best results for each sequence in Bold.
The symbol ’-’ stands for no results reported and ’X’ for tracking failure.

1 Large-Scale Direct SLAM. Data extracted from [167]
2 Data extracted from [225]
3 Results correspond to the LIFT-SLAM Fine tuned With EuRoC version of the algorithm.

TABLE IV
SYSTEMS WHO REPORTED RESULTS ON THE KITTI SEQUENCES 00-10 IN TERMS OF THE RELATIVE POSE ERROR

(RPE)∗

KITTI Sequence
System Measure 00 01 02 03 04 05 06 07 08 09 10

Stereo DSO [146] trel % 0,84 1,43 0,78 0,92 0,65 0,68 0,67 0,83 0,98 0,98 0,49
rrel [deg/m] 0,26 0,09 0,21 0,16 0,15 0,19 0,2 0,36 0,25 0,18 0,18

DVSO [134] trel % 0,71 1,18 0,84 0,77 0,35 0,58 0,71 0,73 1,03 0,83 0,74
rrel [deg/m] 0,24 0,11 0,22 0,18 0,06 0,22 0,2 0,35 0,25 0,21 0,21

SFMLearner1 [182] trel % 66,35 35,17 58,75 10,78 4,49 18,67 25,88 21,33 21,9 18,77 14,33
rrel [deg/m] 6,13 2,74 3,58 3,92 5,24 4,1 4,8 6,65 2,91 3,21 3,3

DeepVIO [195] trel % 11,62 - 4,52 - - 2,86 - 2,71 2,13 1,38 0,85
rrel [deg/m] 2,45 - 1,44 - - 2,32 - 1,66 1,02 1,12 1,03

VIOLearner [196] trel % 1,5 - 1,2 - - 0,97 - 0,84 1,56 2,27 2,74
rrel [deg/m] 0,61 - 0,43 - - 0,51 - 0,66 0,61 1,52 1,35

DeepLO [191] trel % 0,32 0,16 0,15 0,04 0,01 0,11 0,03 0,08 0,09 13,35 5,83
rrel [deg/m] 0,12 0,05 0,05 0,01 0,01 0,07 0,07 0,05 0,04 4,45 3,53

SuMa [64] trel % 0,7 1,7 1,1 0,7 0,4 0,5 0,4 0,4 1 0,5 0,7
rrel [deg/m] 0,3 0,5 0,4 0,5 0,3 0,2 0,2 0,3 0,4 0,3 0,3

ORB-SLAM [33] trel % 4,46 X - 9,75 3,71 3,35 8,11 7,43 12,16 26,51 8,65
rrel [deg/m] 3,28 X - 2,78 2,15 3,57 2,88 3,58 3,05 11,13 3,62

LIFT-SLAM2 [49] trel % 3,49 X 9,84 0,86 2,22 5,35 7,05 2,6 28,99 19,16 9,81
rrel [deg/m] 2,63 X 2,1 0,46 0,5 1,91 2,36 3,64 1,95 2,08 2,2

Stereo LSD-SLAM [137] trel % 0,63 2,36 0,79 1,01 0,38 0,64 0,71 0,56 1,11 1,14 0,72
rrel [deg/m] 0,26 0,36 0,23 0,28 0,31 0,18 0,18 0,29 0,31 0,25 0,33

ORB-SLAM 23 [35] trel % 0,7 1,39 0,76 0,71 0,48 0,4 0,51 0,5 1,05 0,87 0,6
rrel [deg/m] 0,25 0,21 0,23 0,18 0,13 0,16 0,15 0,28 0,32 0,27 0,27

MVL-SLAM3 [175] trel % 2,53 3,76 3,95 2,75 1,81 3,49 1,84 3,27 2,75 3,7 4,65
rrel [deg/m] 0,79 0,80 1,05 1,39 1,48 0,79 0,83 1,51 1,61 1,83 0,51

* Best results for each sequence in Bold.
The symbol ’-’ stands for no results reported and ’X’ for tracking failure.

1 Data extracted from [146].
2 Results correspond to the LIFT-SLAM Fine tuned With EuRoC version of the algorithm.
3 Data extracted from [49].



1327 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

TABLE V
ABSOLUTE TRAJECTORY ERROR (RMSE) FOR EUROC DATASET SEQUENCES∗

System V1_01 V1_02 V1_03 V2_01 V2_02 V2_03 MH_01 MH_02 MH_03 MH_04 MH_05

LoG-SLAM [167] 0,031 0,018 0,031 - - - 0,041 0,026 0,210 0,087 0,057
D3VO [148] - - 0,110 - 0,050 0,190 - - 0,080 - 0,090
LIFT-SLAM1 [49] 0,100 - 0,370 - - - 0,117 0,062 0,053 - -
ORB-SLAM 2 [35] 0,035 0,020 0,048 0,037 0,035 - 0,035 0,018 0,028 0,119 0,060
LSD-SLAM [145] 0,066 0,074 0,089 - - - - - - - -
LCSD-SLAM [163] 0,099 0,111 0,825 0,114 0,191 0,238 0,039 0,036 0,045 0,074 0,060
Kimera (RPGO) [110] 0,050 0,110 0,120 0,070 0,100 0,190 0,080 0,090 0,110 0,150 0,240
SVL (Visual) [162] 0,097 0,108 - - - - 0,046 0,045 - - -
Luo et al. [41] 0,036 0,035 0,139 0,026 0,036 - 0,018 0,015 0,039 0,093 0,054
OKVIS [48] 0,090 0,200 0,240 0,130 0,160 0,290 0,160 0,220 0,240 0,340 0,470
VINS-Mono [114] 0,068 0,084 0,190 0,081 0,160 0,220 0,120 0,120 0,130 0,180 0,210
ORB-SLAM Atlas [38] 0,036 0,022 0,051 0,034 0,028 0,218 0,036 0,021 0,026 0,103 0,054
VI-SLAM [34] 0,027 0,028 X 0,032 0,041 0,074 0,075 0,084 0,087 0,022 0,082
ORB-SLAM 3 (Stereo+IMU) [39] 0,038 0,014 0,024 0,032 0,014 0,024 0,036 0,033 0,035 0,051 0,082
VINS-Fusion (Mono+IMU) [115] 0,060 0,090 0,180 0,060 0,110 0,260 0,180 0,090 0,170 0,210 0,250
ROVIO [111] 0,100 0,100 0,140 0,120 0,140 0,140 0,210 0,250 0,250 0,190 0,520
SVO(Edgelets+prior) [161] 0,040 0,040 0,070 0,050 0,090 0,790 0,040 0,070 0,270 0,170 0,120
VI-DSO [112] 0,059 0,067 0,096 0,040 0,062 0,174 0,062 0,044 0,117 0,132 0,121
HVIOnet [176] 0,110 0,087 0,190 0,053 0,183 0,183 - - - - -

* Best results for each sequence in Bold.
The symbol ’-’ stands for no results reported and ’X’ for tracking failure.

1 Results correspond to the LIFT-SLAM Fine tuned With EuRoC version of the algorithm.

that the system can handle. As a result, the accuracy and
timing requirements of the system must be modified. In [133],
multiple systems were tried on different hardware platforms
to further assess this trade-off idea.

Finally, it is worth mentioning the recent work by Bujanca
et al. called SLAMBench [231], [232]. It is an SLAM bench-
marking platform that allows users to quantify quality-of-result
with instrumentation of accuracy, execution time, memory
usage and energy consumption for several state-of-the-art sys-
tems such as ORB-SLAM2, ORB-SLAM3 DSO,SVO,etc. It
also includes a graphical interface to visualize this information,
and runs on desktop, laptop, mobile and embedded platforms.

VII. CURRENT TRENDS, POSSIBLE FUTURE DIRECTIONS
AND DISCUSSION

This section starts by introducing a discussion: Will SLAM
always remain an open problem?. Afterward, we briefly delve
into the current trends in SLAM advancements and assess
prospective approaches to address the SLAM problem.

A. Discussion: Will SLAM always remain an open problem?

Initially, the fundamental question researchers in SLAM
grappled with was: Is there a way to solve the localization
and mapping of a mobile robot? A thorough exploration of
this topic will reveal to the reader that current research articles
increasingly focus on developing highly specific navigation
systems that cater to particular needs (e.g., dark environments,
underwater, high-speed, in aerial vehicles, etc.), where the
functioning of localization and mapping is adapted to these
circumstances, rather than presenting a novel solution.

Take mapping, for instance. There are dense map repre-
sentations, sparse representations, grid maps, and landmarks.
Each of these is used interchangeably by researchers based
on the resources they have or the objectives they pursue. For
some, detail might be crucial (e.g., in disaster zones), while for

others, a coarse map suffices (e.g., underwater). Seen in this
light, one might conclude that the SLAM problem has already
been widely solved, and there is nothing novel to contribute.
It suffices to intelligently use the available developments.

On the contrary, we propose that the reader consider that
current systems aim to address the following question: Is it
possible to create a SLAM system that adheres to specific de-
sign specifications, is computationally efficient, and consumes
minimal energy? This question has as many answers as there
are challenges for researchers. Viewed this way, the SLAM
problem will always remain open, as humans continuously
face new challenges.

B. The AI Era.
The integration of neural networks has become an enduring

trend in recent years. Researchers are consistently exploring
innovative ways to leverage neural networks to replace or
enhance tasks within the SLAM pipeline [174], [184], [189],
[233]. A notable focus has been on evolving neural network
training techniques. While it’s challenging to encompass all
of them in detail, prevalent techniques frequently discussed in
the context of SLAM include adversarial training [234], unsu-
pervised learning [181], [199], reinforcement learning [235],
[236], and transfer learning [49], [206].

The opening statement in Sec I states "Robots must always
be able to determine their location". It would be interesting
to complete that sentence by adding "while also adapting
and learning in the process". A potential avenue for future
exploration could involve systems with continuous learning.
Pioneering works such as [210] and [237] have taken initial
strides toward achieving this objective, charting a path for the
development of more intelligent systems.

The revolutionary impact of artificial intelligence on our
day-to-day lives, utilizing tools such as ChatGPT and Bard,
brings to light a wealth of possibilities for conceiving naviga-
tion systems that autonomously respond to their environments.



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1328

C. Collaboration over Combination

Both image processing approaches presented in Sec. IV-B,
have their drawbacks. Indirect methods struggle to extract
features in textureless environments, being unable to compute
the camera pose in such scenarios. This limitation directly
affects its trajectory tracking capability, since geometric error
calculations are highly dependent on the number of features
extracted, and whether they can be tracked in the subsequent
frame.

On the other hand, direct methods face challenges in
cases of sudden changes in illumination, leading to a loss
of tracking. These methods rely on pixel brightness values
for pose calculations, and if the pixel values change abruptly,
consecutive images cannot be accurately aligned. Therefore,
the pose estimation algorithm fails, and tracking is considered
lost.

Hybrid image processing approaches that aim to take ad-
vantage of both direct and indirect methods can also be found
in the literature [160], [161]. The general concept of a hybrid
(or semi- direct) system is to take one of the main image
processing methodologies and insert it into the other: e.g. to
utilize the robustness of feature matching to support direct
image alignment algorithms [41], [162], [163]. The goal is to
combine the strengths of both approaches to mitigate their
respective limitations. However, hybrid approaches do not
outperform the main methods separately [162].

The foregoing paragraphs reveal that the fusion of direct
and indirect algorithms might not be a definitive solution
to the issue of tracking loss. To address the limitations of
current systems, a fresh paradigm for tackling the SLAM
problem is needed. An alternative approach could involve
the collaboration (e.g. parallel execution) of the two main
image processing algorithms under the same system, instead
of blending them. In this way, the advantages of both systems
would be exploited while minimizing their disadvantages. This
way, the strengths of both systems can be harnessed while
mitigating their respective drawbacks.

VIII. CONCLUSIONS

The literature on SLAM can be organized in a straight-
forward and general manner. Several classifications can be
established to explain the overall taxonomy of this field of
research, taking into account the most frequent elements that
constitute existing systems.

The overwhelming amount of systems in the literature
makes it difficult to understand how a SLAM system is
actually composed. We proposed a comprehensive description
of the contemporary architecture of a SLAM algorithm. Each
fundamental component was elucidated, along with insights
into their interactions within the system.

Artificial intelligence is a clear trend in this field of research,
either by substituting certain building blocks or replicating
entire systems using neural networks. We conducted an in-
depth analysis of how AI techniques are integrating with
SLAM and their implications for current navigation systems.

Furthermore, we devised several comparative tables to facil-
itate an unbiased assessment and comparison of the accuracy

achieved by various existing SLAM advancements. Finally,
we explored current trends and future prospects in the field,
engaging in a discussion on whether SLAM remains an
ongoing challenge.

APPENDIX

This section contains a summary of symbols used in this pa-
per (Table VI), as well as a list of acronyms and abbreviations
(Table VII).



1329 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

TABLE VI
SYMBOLS SUMMARY

Text reference Symbol Description

Ephoto Photometric error for direct methods to minimize.
F Set of frames considered for direct image alignment.
Pi Set of points in frame F considered for direct image alignment.
obs(p) Set of observed frames in which a point p is visible.
Ep,j Weighted photometric error of a point p in keyframe Ii

observed from a target frame Ij .
Photometric error optimization Np Local neighborhood of pixels around a point p.

∥.∥γ Huber norm.
p′ Projected position of a point p.
ti , tj Exposure times for images Ii and Ij respectively.
ai,bi,aj ,bJ Brightness transfer function parameters of a camera.
wp Gradient-dependent weight.
e Number e.

R Camera rotation matrix.
t Camera translation vector.
R3 Euclidean 3D space.
SO(3) Group of all rotations about the origin of three-dimensional Euclidean space R3

under the operation of composition.
xi
(.)

Image keypoints for feature matching.
Xi ∈ R3 Matched keypoints between images in world coordinates.

Geometric error optimization

XY
Z

 Matched keypoint world coordinates.

X Set of all matched keypoints.
ρ Huber cost function.
Σ Covariance matrix associated to the scale of a keypoint.
πm,πs Camera projection function for monocular and stereo cameras respectively.
fx,fy Camera focal length in x and y directions.
cx,cy Camera principal point in x and y directions.
b Baseline for stereo cameras.

p = [x,q] Output camera pose for PoseNet.
x 3D translation vector.
q Rotation vector represented by quaternions.
Lx Translation related term for pose estimation.

Artifficial intelligence Lq Rotation related term for pose estimation.
cost functions L Euclidean loss function for pose estimation.

β Scale factor used in the Euclidean loss function L.
ŝx,ŝq Learnable parameters for translation and rotation to replace β in L.

SE(3) Special Euclidean Group in 3 dimensions. Is the
group of simultaneous rotations and translations for a vector.

P1, ...,Pn ∈ SO(3) Sequence of poses from an estimated trajectory.
Q1, ...,Qn ∈ SO(3) Ground truth trajectory poses.
Ei Relative pose error at time step i

Relative pose error trans(Ei) or trel Translational component of Ei.
calculation rot(Ei) or rrel Rotational component of Ei.

n Quantity of camera poses considered for the error calculations.
∆ Fixed time interval.
m = n−∆ Quantity of individual relative pose errors that can be obtained from n camera poses

S1:n Estimated trajectory.
Absolute trajectory error Q1:n Ground truth trajectory
calculation P Rigid body transformation between

the estimated trajectory and the ground truth data.
trans(ATE) Translational component of the absolute trajectory error.



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1330

TABLE VII
LIST OF ACRONYMS AND ABBREVIATIONS

Acronym / Abbreviation Description

A-SLAM Active SLAM.
AI Artificial Intelligence.
ATE Absolute Trajectory Error.
BA Bundle Adjustment.
BoW Bag of Words.
BRIEF Binary Robust Independent Elementary Features.
BRISK Binary Robust Invariant Scalable Keypoints.
CNN Convolutional Neural Networks.
CNN-SVO CNN Sparse Visual Odometry.
D3VO Deep depth, Deep pose and

Deep uncertainty for monocular Visual Odometry.
Deep When used as part of a name,

refers to deep learning based systems.
DeepLo Deep LiDAR Odometry.
DM-SLAM SLAM Method for rigid Dynamic scenes.
DoF Degrees of Freedom.
DS-SLAM Semantic visual SLAM towards Dynamic environments.
EuRoC MAV European Robotics Challenge Micro-Aerial Vehicle.
FAST Features from Accelerated Segment Test.
FCN Fully Convolutional Network.
GCN Geometric Correspondence Network.
GCNv2 Geometric Correspondence Network version 2.
HVIOnet Hybrid Visual Inertial Odometry network
IAICP Intensity Assisted Iterative Closest Point.
ICP Iterative Closest Point.
IMU Inertial Measurement Unit.
INS Inertial Navigation Systems.
IO Inertial Odometry.
KITTI Karlsruhe Institute of Technology and

Toyota Technological Institute.
L3-net Learning based LiDAR Localization.
LCD Loop Closure Detection.
LiDAR Light Detection and Ranging.
LiDAR SLAM LiDAR based SLAM algorithms.
LIO-SAM LiDAR Inertial Odometry via Smoothing And Mapping.
LIPS SLAM LiDAR-Inertial 3D Plane SLAM.
LiTAMIN LiDAR-based Tracking And MappINg.
LOAM LiDAR Odometry and Mapping.
LoG Laplacian of a Gaussian operator.
LSD SLAM Large-Scale Direct SLAM.
LSTM Long Short-Term Memory neural networks.
Mask R-CNN Mask Region-based CNN.
MVL-SLAM Multi-channel Visual-LiDAR SLAM.
NN Neural Network.
OpenVSLAM Open Visual SLAM.
ORB Oriented FAST and Rotated BRIEF.
ORB-SLAM Oriented FAST and Rotated BRIEF SLAM.
PDR Pedestrian Dead Reckoning.
PLD-SLAM Point Line Dynamic SLAM.
PTAM Parallel Tracking And Mapping.
RANSAC Random Sample Consensus.
RNN Recurrent Neural Networks.
ROS Robot Operating System.
RPE Relative Pose Error.
RTAB-MAP Real-Time Appearance-Based MAPping.
SelfVIO Self-supervised deep learning-based VIO.
SfM Structure from Motion.
SfMLearner Structure from Motion Learner.
SIFT Scale-Invariant Feature Transform.
SINS Strapdown Inertial Navigation Systems.
SLAM Simultaneous Localization and Mapping.
SPHORB SPHerical ORB.
SURF Speeded Up Robust Features.
Un When used as part of a name (e.g. UnDeepVO),

refers to unsupervised learning.
UnDeepVO Visual Odometry through Unsupervised Deep learning.
V-LOAM Visual-LiDAR Odometry and Mapping.
V-SLAM Visual SLAM.
VI Visual inertial.
VI-SLAM Visual inertial SLAM.
VINS-MONO MONOcular Visual-INertial System.
VIO Visual inertial odometry.
VIIONet Visual-Inertial Image-Odometry Network.
VLocNet Visual Localization Network.
VO Visual Odometry.



1331 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

FUNDING

This research did not receive additional support from any
organization beyond the authors’ academic institutions

CONFLICT OF INTERESTS

The authors have no relevant financial or non-financial
interests to disclose.

REFERENCES

[1] I. Lluvia, E. Lazkano, and A. Ansuategi, “Active mapping and robot
exploration: A survey,” Sensors, vol. 21, no. 7, p. 2445, 2021.

[2] R. C. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” The international journal of Robotics Research,
vol. 5, no. 4, pp. 56–68, 1986.

[3] H. F. Durrant-Whyte, “Uncertain geometry in robotics,” IEEE Journal
on Robotics and Automation, vol. 4, no. 1, pp. 23–31, 1988.

[4] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” IEEE robotics & automation magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[5] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (slam): Part ii,” IEEE robotics & automation magazine, vol. 13,
no. 3, pp. 108–117, 2006.

[6] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An overview to
visual odometry and visual slam: Applications to mobile robotics,”
Intelligent Industrial Systems, vol. 1, no. 4, pp. 289–311, 2015.

[7] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Technical report, Ver. 2.3
EBSE Technical Report. EBSE, 2007.

[8] S. Huang and G. Dissanayake, “A critique of current developments
in simultaneous localization and mapping,” International Journal of
Advanced Robotic Systems, vol. 13, no. 5, p. 1729881416669482, 2016.

[9] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[10] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii: Matching,
robustness, optimization, and applications,” IEEE Robotics & Automa-
tion Magazine, vol. 19, no. 2, pp. 78–90, 2012.

[11] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simulta-
neous localization and mapping: A review,” Journal of Field Robotics,
vol. 33, no. 1, pp. 3–46, 2016.

[12] B. Huang, J. Zhao, and J. Liu, “A survey of simultaneous localization
and mapping with an envision in 6g wireless networks,” arXiv preprint
arXiv:1909.05214, 2019.

[13] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
tion and mapping: A survey of current trends in autonomous driving,”
IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220,
2017.

[14] M. R. U. Saputra, A. Markham, and N. Trigoni, “Visual slam and
structure from motion in dynamic environments: A survey,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–36, 2018.

[15] C. Chen, B. Wang, C. X. Lu, N. Trigoni, and A. Markham, “A survey
on deep learning for localization and mapping: Towards the age of
spatial machine intelligence,” arXiv preprint arXiv:2006.12567, 2020.

[16] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97.’Towards New Com-
putational Principles for Robotics and Automation’, pp. 146–151,
1997.

[17] B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration
and map-building with continuous localization,” Proceedings. 1998
IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), vol. 4, pp. 3715–3720, 1998.

[18] C. Zhu, R. Ding, M. Lin, and Y. Wu, “A 3d frontier-based exploration
tool for mavs,” 2015 IEEE 27th International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 348–352, 2015.

[19] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leuteneg-
ger, “Fast frontier-based information-driven autonomous exploration
with an mav,” 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9570–9576, 2020.

[20] H. H. González-Banos and J.-C. Latombe, “Navigation strategies for
exploring indoor environments,” The International Journal of Robotics
Research, vol. 21, no. 10-11, pp. 829–848, 2002.

[21] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collab-
orative multi-robot exploration,” Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 476–
481, 2000.

[22] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer, “Multi-robot exploration
controlled by a market economy,” Proceedings 2002 IEEE international
conference on robotics and automation (Cat. No. 02CH37292), vol. 3,
pp. 3016–3023, 2002.

[23] A. A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-
Whyte, “An experiment in integrated exploration,” IEEE/RSJ interna-
tional conference on intelligent robots and systems, vol. 1, pp. 534–539,
2002.

[24] M. Juliá, A. Gil, and O. Reinoso, “A comparison of path planning
strategies for autonomous exploration and mapping of unknown envi-
ronments,” Autonomous Robots, vol. 33, no. 4, pp. 427–444, 2012.

[25] R. Sim and N. Roy, “Global a-optimal robot exploration in slam,”
Proceedings of the 2005 IEEE international conference on robotics
and automation, pp. 661–666, 2005.

[26] J. Vallvé and J. Andrade-Cetto, “Active pose slam with rrt,” 2015
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2167–2173, 2015.

[27] C. Leung, S. Huang, and G. Dissanayake, “Active slam using model
predictive control and attractor based exploration,” 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5026–
5031, 2006.

[28] I. Maurović, M. Seder, K. Lenac, and I. Petrović, “Path planning for
active slam based on the d* algorithm with negative edge weights,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48,
no. 8, pp. 1321–1331, 2017.

[29] E. Bonetto, P. Goldschmid, M. Pabst, M. J. Black, and A. Ahmad,
“irotate: Active visual slam for omnidirectional robots,” Robotics and
Autonomous Systems, p. 104102, 2022.

[30] H. Carrillo, P. Dames, V. Kumar, and J. A. Castellanos, “Autonomous
robotic exploration using a utility function based on rényi’s general
theory of entropy,” Autonomous Robots, vol. 42, no. 2, pp. 235–256,
2018.

[31] Y. Chen, S. Huang, and R. Fitch, “Active slam for mobile robots with
area coverage and obstacle avoidance,” IEEE/ASME Transactions on
Mechatronics, vol. 25, no. 3, pp. 1182–1192, 2020.

[32] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[33] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[34] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 796–803, 2017.

[35] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[36] F. Nobis, O. Papanikolaou, J. Betz, and M. Lienkamp, “Persistent map
saving for visual localization for autonomous vehicles: An orb-slam
2 extension,” 2020 Fifteenth International Conference on Ecological
Vehicles and Renewable Energies (EVER), pp. 1–9, 2020.

[37] D. Schlegel, M. Colosi, and G. Grisetti, “Proslam: graph slam from
a programmer’s perspective,” 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3833–3840, 2018.

[38] R. Elvira, J. D. Tardós, and J. M. Montiel, “Orbslam-atlas: a robust and
accurate multi-map system,” 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 6253–6259, 2019.

[39] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Transactions on Robotics, 2021.

[40] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[41] H. Luo, C. Pape, and E. Reithmeier, “Hybrid monocular slam using
double window optimization,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 4899–4906, 2021.

[42] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

[43] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible
and scalable slam system with full 3d motion estimation,” 2011



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1332

IEEE international symposium on safety, security, and rescue robotics,
pp. 155–160, 2011.

[44] H. Carrillo, P. Dames, V. Kumar, and J. A. Castellanos, “Autonomous
robotic exploration using occupancy grid maps and graph slam based
on shannon and rényi entropy,” 2015 IEEE international conference on
robotics and automation (ICRA), pp. 487–494, 2015.

[45] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam:
A factored solution to the simultaneous localization and mapping
problem,” Aaai/iaai, vol. 593598, 2002.

[46] J. Zhang, W. Sui, X. Wang, W. Meng, H. Zhu, and Q. Zhang, “Deep
online correction for monocular visual odometry,” 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 14396–
14402, 2021.

[47] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davi-
son, “Codeslam—learning a compact, optimisable representation for
dense visual slam,” Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2560–2568, 2018.

[48] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[49] H. M. S. Bruno and E. L. Colombini, “Lift-slam: a deep-learning
feature-based monocular visual slam method,” Neurocomputing,
vol. 455, pp. 97–110, 2021.

[50] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” International workshop on
vision algorithms, pp. 298–372, 1999.

[51] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual place recognition: A survey,” IEEE Trans-
actions on Robotics, vol. 32, no. 1, pp. 1–19, 2015.

[52] Y. Latif, G. Huang, J. J. Leonard, and J. Neira, “An online sparsity-
cognizant loop-closure algorithm for visual navigation.,” Robotics:
Science and Systems, 2014.

[53] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” Workshop on statistical learning
in computer vision, ECCV, vol. 1, no. 1-22, pp. 1–2, 2004.

[54] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast
place recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188–1197, 2012.

[55] M. Labbe and F. Michaud, “Appearance-based loop closure detection
for online large-scale and long-term operation,” IEEE Transactions on
Robotics, vol. 29, no. 3, pp. 734–745, 2013.

[56] D. Filliat, “A visual bag of words method for interactive qualitative
localization and mapping,” Proceedings 2007 IEEE International Con-
ference on Robotics and Automation, pp. 3921–3926, 2007.

[57] D. Schlegel and G. Grisetti, “Visual localization and loop closing
using decision trees and binary features,” 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4616–4623,
2016.

[58] J. Chen, J. Li, Y. Xu, G. Shen, and Y. Gao, “A compact loop
closure detection based on spatial partitioning,” 2017 2nd International
Conference on Image, Vision and Computing (ICIVC), pp. 371–375,
2017.

[59] Z. Yang, Y. Pan, L. Deng, Y. Xie, and R. Huan, “Plsav: Parallel loop
searching and verifying for loop closure detection,” IET Intelligent
Transport Systems, vol. 15, no. 5, pp. 683–698, 2021.

[60] N. Kejriwal, S. Kumar, and T. Shibata, “High performance loop closure
detection using bag of word pairs,” Robotics and Autonomous Systems,
vol. 77, pp. 55–65, 2016.

[61] H. Zhang, F. Han, and H. Wang, “Robust multimodal sequence-based
loop closure detection via structured sparsity.,” Robotics: Science and
systems, 2016.

[62] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “Litamin: Lidar-based
tracking and mapping by stabilized icp for geometry approximation
with normal distributions,” 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5143–5150, 2020.

[63] M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “Litamin2: Ultra
light lidar-based slam using geometric approximation applied with kl-
divergence,” 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 11619–11625, 2021.

[64] J. Behley and C. Stachniss, “Efficient surfel-based slam using 3d laser
range data in urban environments.,” Robotics: Science and Systems,
vol. 2018, p. 59, 2018.

[65] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.,” Robotics: Science and Systems, vol. 2, no. 9, pp. 1–9, 2014.

[66] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-optimized
lidar odometry and mapping on variable terrain,” 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 4758–4765, 2018.

[67] W. Ali, P. Liu, R. Ying, and Z. Gong, “6-dof feature based lidar slam
using orb features from rasterized images of 3d lidar point cloud,”
arXiv preprint arXiv:2103.10678, 2021.

[68] M. Valente, C. Joly, and A. de La Fortelle, “An lstm network for real-
time odometry estimation,” 2019 IEEE Intelligent Vehicles Symposium
(IV), pp. 1434–1440, 2019.

[69] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner, and
T. Duckett, “Localising faster: Efficient and precise lidar-based robot
localisation in large-scale environments,” 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4386–4392, 2020.

[70] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[71] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis, “Monocular visual odom-
etry in urban environments using an omnidirectional camera,” 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2531–2538, 2008.

[72] B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

[73] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” 2007 6th IEEE and ACM international symposium on
mixed and augmented reality, pp. 225–234, 2007.

[74] R. Munoz-Salinas and R. Medina-Carnicer, “Ucoslam: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,” Pattern Recognition, vol. 101, p. 107193, 2020.

[75] R. Munoz-Salinas, M. J. Marin-Jimenez, and R. Medina-Carnicer,
“Spm-slam: Simultaneous localization and mapping with squared pla-
nar markers,” Pattern Recognition, vol. 86, pp. 156–171, 2019.

[76] B. Pfrommer and K. Daniilidis, “Tagslam: Robust slam with fiducial
markers,” arXiv preprint arXiv:1910.00679, 2019.

[77] J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial
detection,” 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4193–4198, 2016.

[78] S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: A versatile
visual slam framework,” Proceedings of the 27th ACM International
Conference on Multimedia, pp. 2292–2295, 2019.

[79] P. G. Savage, “Strapdown inertial navigation integration algorithm
design part 1: Attitude algorithms,” Journal of guidance, control, and
dynamics, vol. 21, no. 1, pp. 19–28, 1998.

[80] S. Beauregard and H. Haas, “Pedestrian dead reckoning: A basis for
personal positioning,” Proceedings of the 3rd Workshop on Positioning,
Navigation and Communication, pp. 27–35, 2006.

[81] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian, “Strapdown inertial navigation
system algorithms based on dual quaternions,” IEEE transactions on
aerospace and electronic systems, vol. 41, no. 1, pp. 110–132, 2005.

[82] W. Sun, D. Wang, L. Xu, and L. Xu, “Mems-based rotary strapdown
inertial navigation system,” Measurement, vol. 46, no. 8, pp. 2585–
2596, 2013.

[83] S. Cortés, A. Solin, and J. Kannala, “Deep learning based speed esti-
mation for constraining strapdown inertial navigation on smartphones,”
2018 IEEE 28th International Workshop on Machine Learning for
Signal Processing (MLSP), pp. 1–6, 2018.

[84] M. Brossard, A. Barrau, and S. Bonnabel, “Rins-w: Robust inertial nav-
igation system on wheels,” 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2068–2075, 2019.

[85] H. Yan, Q. Shan, and Y. Furukawa, “Ridi: Robust imu double inte-
gration,” Proceedings of the European Conference on Computer Vision
(ECCV), pp. 621–636, 2018.

[86] M. Ren, K. Pan, Y. Liu, H. Guo, X. Zhang, and P. Wang, “A novel
pedestrian navigation algorithm for a foot-mounted inertial-sensor-
based system,” Sensors, vol. 16, no. 1, p. 139, 2016.

[87] B. Wagstaff and J. Kelly, “Lstm-based zero-velocity detection for
robust inertial navigation,” 2018 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pp. 1–8, 2018.

[88] C. Chen, Y. Miao, C. X. Lu, L. Xie, P. Blunsom, A. Markham, and
N. Trigoni, “Motiontransformer: Transferring neural inertial tracking
between domains,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, pp. 8009–8016, 2019.

[89] C. Chen, X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning to
cure the curse of drift in inertial odometry,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, 2018.



1333 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

[90] M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “Aboldeepio: A
novel deep inertial odometry network for autonomous vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 5,
pp. 1941–1950, 2019.

[91] J. Ku, A. Harakeh, and S. L. Waslander, “In defense of classical image
processing: Fast depth completion on the cpu,” 2018 15th Conference
on Computer and Robot Vision (CRV), pp. 16–22, 2018.

[92] F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse
depth samples and a single image,” 2018 IEEE international conference
on robotics and automation (ICRA), pp. 4796–4803, 2018.

[93] S. S. Shivakumar, T. Nguyen, I. D. Miller, S. W. Chen, V. Kumar,
and C. J. Taylor, “Dfusenet: Deep fusion of rgb and sparse depth
information for image guided dense depth completion,” 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 13–20, 2019.

[94] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift,
robust, and fast,” 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2174–2181, 2015.

[95] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of Field Robotics, vol. 36,
no. 2, pp. 416–446, 2019.

[96] S. Li and D. Lee, “Rgb-d slam in dynamic environments using static
point weighting,” IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2263–2270, 2017.

[97] Y. Sun, M. Liu, and M. Q.-H. Meng, “Improving rgb-d slam in dynamic
environments: A motion removal approach,” Robotics and Autonomous
Systems, vol. 89, pp. 110–122, 2017.

[98] Y. Wang and S. Huang, “Motion segmentation based robust rgb-d
slam,” Proceeding of the 11th World Congress on Intelligent Control
and Automation, pp. 3122–3127, 2014.

[99] Y. Xu, Y. Ou, and T. Xu, “Slam of robot based on the fusion of vision
and lidar,” 2018 IEEE International Conference on Cyborg and Bionic
Systems (CBS), pp. 121–126, 2018.

[100] D. Xu, D. Anguelov, and A. Jain, “Pointfusion: Deep sensor fusion for
3d bounding box estimation,” Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 244–253, 2018.

[101] K. Shin, Y. P. Kwon, and M. Tomizuka, “Roarnet: A robust 3d
object detection based on region approximation refinement,” 2019 IEEE
Intelligent Vehicles Symposium (IV), pp. 2510–2515, 2019.

[102] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3d
proposal generation and object detection from view aggregation,” 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1–8, 2018.

[103] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pp. 1907–
1915, 2017.

[104] J. Levinson and S. Thrun, “Automatic online calibration of cameras
and lasers.,” Robotics: Science and Systems, vol. 2, p. 7, 2013.

[105] A. Dhall, K. Chelani, V. Radhakrishnan, and K. M. Krishna, “Lidar-
camera calibration using 3d-3d point correspondences,” arXiv preprint
arXiv:1705.09785, 2017.

[106] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 3565–3572,
2007.

[107] D. Zou, Y. Wu, L. Pei, H. Ling, and W. Yu, “Structvio: visual-inertial
odometry with structural regularity of man-made environments,” IEEE
Transactions on Robotics, vol. 35, no. 4, pp. 999–1013, 2019.

[108] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cre-
mers, “Visual-inertial mapping with non-linear factor recovery,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 422–429, 2019.

[109] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[110] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1689–1696, 2020.

[111] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual
inertial odometry using a direct ekf-based approach,” 2015 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
pp. 298–304, 2015.

[112] L. Von Stumberg, V. Usenko, and D. Cremers, “Direct sparse visual-
inertial odometry using dynamic marginalization,” 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2510–2517,
2018.

[113] V. Usenko, J. Engel, J. Stückler, and D. Cremers, “Direct visual-inertial
odometry with stereo cameras,” 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1885–1892, 2016.

[114] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[115] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based
framework for local odometry estimation with multiple sensors,” arXiv
preprint arXiv:1901.03638, 2019.

[116] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschen-
ski, and R. Siegwart, “maplab: An open framework for research in
visual-inertial mapping and localization,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 3, pp. 1418–1425, 2018.

[117] C. Campos, J. M. Montiel, and J. D. Tardós, “Inertial-only optimization
for visual-inertial initialization,” 2020 IEEE International Conference
on Robotics and Automation (ICRA), pp. 51–57, 2020.

[118] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“Lio-sam: Tightly-coupled lidar inertial odometry via smoothing and
mapping,” 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5135–5142, 2020.

[119] P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “Lips: Lidar-inertial
3d plane slam,” 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 123–130, 2018.

[120] F. Neuhaus, T. Koß, R. Kohnen, and D. Paulus, “Mc2slam: Real-time
inertial lidar odometry using two-scan motion compensation,” German
Conference on Pattern Recognition, pp. 60–72, 2018.

[121] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, and A. Savvaris,
“Lidar-inertial integration for uav localization and mapping in complex
environments,” 2016 International Conference on Unmanned Aircraft
Systems (ICUAS), pp. 649–656, 2016.

[122] B. Bescos, J. Neira, R. Siegwart, and C. Cadena, “Empty cities: Image
inpainting for a dynamic-object-invariant space,” 2019 International
Conference on Robotics and Automation (ICRA), pp. 5460–5466, 2019.

[123] B. Bescos, C. Cadena, and J. Neira, “Empty cities: A dynamic-object-
invariant space for visual slam,” IEEE Transactions on Robotics, 2020.

[124] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” Pro-
ceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[125] J. Cheng, Z. Wang, H. Zhou, L. Li, and J. Yao, “Dm-slam: A feature-
based slam system for rigid dynamic scenes,” ISPRS International
Journal of Geo-Information, vol. 9, no. 4, p. 202, 2020.

[126] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “Ds-
slam: A semantic visual slam towards dynamic environments,” 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1168–1174, 2018.

[127] G. Liu, W. Zeng, B. Feng, and F. Xu, “Dms-slam: A general visual slam
system for dynamic scenes with multiple sensors,” Sensors, vol. 19,
no. 17, p. 3714, 2019.

[128] D. Esparza and G. Flores, “The stdyn-slam: a stereo vision and
semantic segmentation approach for vslam in dynamic outdoor envi-
ronments,” IEEE Access, vol. 10, pp. 18201–18209, 2022.

[129] C. Zhang, T. Huang, R. Zhang, and X. Yi, “Pld-slam: A new rgb-d
slam method with point and line features for indoor dynamic scene,”
ISPRS International Journal of Geo-Information, vol. 10, no. 3, p. 163,
2021.

[130] J. Cheng, Y. Sun, and M. Q.-H. Meng, “Improving monocular visual
slam in dynamic environments: an optical-flow-based approach,” Ad-
vanced Robotics, vol. 33, no. 12, pp. 576–589, 2019.

[131] N. Yu, M. Gan, H. Yu, and K. Yang, “Drso-slam: A dynamic rgb-d slam
algorithm for indoor dynamic scenes,” in 2021 33rd Chinese Control
and Decision Conference (CCDC), pp. 1052–1058, IEEE, 2021.

[132] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“Monocular vision based slam for mobile robots,” 18th International
Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 1027–1031,
2006.

[133] J. Delmerico and D. Scaramuzza, “A benchmark comparison of
monocular visual-inertial odometry algorithms for flying robots,” 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2502–2509, 2018.

[134] N. Yang, R. Wang, J. Stuckler, and D. Cremers, “Deep virtual stereo
odometry: Leveraging deep depth prediction for monocular direct
sparse odometry,” Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 817–833, 2018.

[135] P. Schmuck and M. Chli, “Ccm-slam: Robust and efficient centralized
collaborative monocular simultaneous localization and mapping for
robotic teams,” Journal of Field Robotics, vol. 36, no. 4, pp. 763–781,
2019.



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1334

[136] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “A constant-
time efficient stereo slam system,” Proceedings of the British machine
vision conference, vol. 1, no. 2009, 2009.

[137] J. Engel, J. Stückler, and D. Cremers, “Large-scale direct slam with
stereo cameras,” 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 1935–1942, 2015.

[138] G.-x. Xin, X.-t. Zhang, X. Wang, and J. Song, “A rgbd slam algorithm
combining orb with prosac for indoor mobile robot,” in 2015 4th In-
ternational Conference on Computer Science and Network Technology
(ICCSNT), vol. 1, pp. 71–74, IEEE, 2015.

[139] Q. Li, X. Wang, T. Wu, and H. Yang, “Point-line feature fusion based
field real-time rgb-d slam,” Computers & Graphics, vol. 107, pp. 10–
19, 2022.

[140] Y. Wang, K. Xu, Y. Tian, and X. Ding, “Drg-slam: A semantic rgb-
d slam using geometric features for indoor dynamic scene,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1352–1359, IEEE, 2022.

[141] Y. Liu, M. Xu, G. Jiang, X. Tong, J. Yun, Y. Liu, B. Chen, Y. Cao,
N. Sun, and Z. Li, “Target localization in local dense mapping
using rgbd slam and object detection,” Concurrency and Computation:
Practice and Experience, vol. 34, no. 4, p. e6655, 2022.

[142] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, et al., “Event-
based vision: A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[143] W. Chamorro, J. Solà, and J. Andrade-Cetto, “Event-based line slam
in real-time,” IEEE Robotics and Automation Letters, vol. 7, no. 3,
pp. 8146–8153, 2022.

[144] A. G. Gelen and A. Atasoy, “An artificial neural slam framework for
event-based vision,” IEEE Access, 2023.

[145] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” European conference on computer vision, pp. 834–
849, 2014.

[146] R. Wang, M. Schworer, and D. Cremers, “Stereo dso: Large-scale direct
sparse visual odometry with stereo cameras,” Proceedings of the IEEE
International Conference on Computer Vision, pp. 3903–3911, 2017.

[147] X. Gao, R. Wang, N. Demmel, and D. Cremers, “Ldso: Direct sparse
odometry with loop closure,” 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2198–2204, 2018.

[148] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, “D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1281–1292, 2020.

[149] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp. 91–
110, 2004.

[150] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” European conference on computer vision, pp. 404–417, 2006.

[151] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” 2011 International conference on computer
vision, pp. 2564–2571, 2011.

[152] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” European conference on computer
vision, pp. 778–792, 2010.

[153] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” European conference on computer vision, pp. 430–443,
2006.

[154] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust in-
variant scalable keypoints,” 2011 International conference on computer
vision, pp. 2548–2555, 2011.

[155] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” Proceedings of
the IEEE conference on computer vision and pattern recognition
workshops, pp. 224–236, 2018.

[156] J. Tang, J. Folkesson, and P. Jensfelt, “Geometric correspondence
network for camera motion estimation,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1010–1017, 2018.

[157] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, “Gcnv2: Efficient
correspondence prediction for real-time slam,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3505–3512, 2019.

[158] J. Li, X. Wang, and S. Li, “Spherical-model-based slam on full-view
images for indoor environments,” Applied Sciences, vol. 8, no. 11,
p. 2268, 2018.

[159] T. Pire, T. Fischer, G. Castro, P. De Cristóforis, J. Civera, and J. J.
Berlles, “S-ptam: Stereo parallel tracking and mapping,” Robotics and
Autonomous Systems, vol. 93, pp. 27–42, 2017.

[160] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” 2014 IEEE international conference on
robotics and automation (ICRA), pp. 15–22, 2014.

[161] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“Svo: Semidirect visual odometry for monocular and multicamera
systems,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 249–265,
2016.

[162] S.-p. Li, T. Zhang, X. Gao, D. Wang, and Y. Xian, “Semi-direct
monocular visual and visual-inertial slam with loop closure detection,”
Robotics and Autonomous Systems, vol. 112, pp. 201–210, 2019.

[163] S. H. Lee and J. Civera, “Loosely-coupled semi-direct monocular
slam,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 399–
406, 2018.

[164] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant
feature transform,” European conference on computer vision, pp. 467–
483, 2016.

[165] D. Li, X. Shi, Q. Long, S. Liu, W. Yang, F. Wang, Q. Wei, and F. Qiao,
“Dxslam: A robust and efficient visual slam system with deep features,”
in 2020 IEEE/RSJ International conference on intelligent robots and
systems (IROS), pp. 4958–4965, IEEE, 2020.

[166] T. Weyand, I. Kostrikov, and J. Philbin, “Planet-photo geolocation with
convolutional neural networks,” European Conference on Computer
Vision, pp. 37–55, 2016.

[167] G. Zhang, X. Yan, Y. Xu, and Y. Ye, “Neural guided visual slam system
with laplacian of gaussian operator,” IET Computer Vision, vol. 15,
no. 3, pp. 181–196, 2021.

[168] B. Dongdong, W. Chaoqun, B. Zhang, Y. Xiaodong, Y. Xuejun, et al.,
“Cnn feature boosted seqslam for real-time loop closure detection,”
Chinese Journal of Electronics, vol. 27, no. 3, pp. 488–499, 2018.

[169] A. R. Memon, H. Wang, and A. Hussain, “Loop closure detection
using supervised and unsupervised deep neural networks for monocular
slam systems,” Robotics and Autonomous Systems, vol. 126, p. 103470,
2020.

[170] X. Gao and T. Zhang, “Unsupervised learning to detect loops using
deep neural networks for visual slam system,” Autonomous robots,
vol. 41, pp. 1–18, 2017.

[171] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” Proceedings of the
IEEE international conference on computer vision, pp. 2938–2946,
2015.

[172] F. Walch, C. Hazirbas, L. Leal-Taixe, T. Sattler, S. Hilsenbeck, and
D. Cremers, “Image-based localization using lstms for structured
feature correlation,” Proceedings of the IEEE International Conference
on Computer Vision, pp. 627–637, 2017.

[173] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose
regression with deep learning,” Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5974–5983, 2017.

[174] Z. Lv, F. Dellaert, J. M. Rehg, and A. Geiger, “Taking a deeper look at
the inverse compositional algorithm,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4581–
4590, 2019.

[175] Y. An, J. Shi, D. Gu, and Q. Liu, “Visual-lidar slam based on unsu-
pervised multi-channel deep neural networks,” Cognitive Computation,
vol. 14, no. 4, pp. 1496–1508, 2022.

[176] M. F. Aslan, A. Durdu, A. Yusefi, and A. Yilmaz, “Hvionet: A deep
learning based hybrid visual–inertial odometry approach for unmanned
aerial system position estimation,” Neural Networks, vol. 155, pp. 461–
474, 2022.

[177] W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Neural window fully-
connected crfs for monocular depth estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3916–3925, 2022.

[178] A. Agarwal and C. Arora, “Attention attention everywhere: Monocular
depth prediction with skip attention,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 5861–5870,
2023.

[179] R. Mahjourian, M. Wicke, and A. Angelova, “Unsupervised learning
of depth and ego-motion from monocular video using 3d geometric
constraints,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5667–5675, 2018.

[180] H. Zhan, R. Garg, C. S. Weerasekera, K. Li, H. Agarwal, and I. Reid,
“Unsupervised learning of monocular depth estimation and visual
odometry with deep feature reconstruction,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 340–349,
2018.



1335 IEEE LATIN AMERICA TRANSACTIONS , Vol. 21, No. 12, DECEMBER 2023

[181] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: Monocular visual
odometry through unsupervised deep learning,” 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 7286–7291,
2018.

[182] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1851–1858,
2017.

[183] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time
dense monocular slam with learned depth prediction,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[184] C. Tang and P. Tan, “Ba-net: Dense bundle adjustment network,” arXiv
preprint arXiv:1806.04807, 2018.

[185] K. Wang, K. Wang, and S. Shen, “Flownorm: A learning-based
method for increasing convergence range of direct alignment,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2109–2115, IEEE, 2020.

[186] S. Wen, T. Wang, and S. Tao, “Hybrid cnn-lstm architecture for lidar
point clouds semantic segmentation,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 5811–5818, 2022.

[187] A. Diab, R. Kashef, and A. Shaker, “Deep learning for lidar point cloud
classification in remote sensing,” Sensors, vol. 22, no. 20, p. 7868,
2022.

[188] G. Spampinato, A. Bruna, I. Guarneri, and D. Giacalone, “Deep learn-
ing localization with 2d range scanner,” 2021 7th International Confer-
ence on Automation, Robotics and Applications (ICARA), pp. 206–210,
2021.

[189] X. Chen, T. Läbe, A. Milioto, T. Röhling, O. Vysotska, A. Haag,
J. Behley, and C. Stachniss, “Overlapnet: Loop closing for lidar-based
slam,” arXiv preprint arXiv:2105.11344, 2021.

[190] W. Lu, Y. Zhou, G. Wan, S. Hou, and S. Song, “L3-net: Towards learn-
ing based lidar localization for autonomous driving,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6389–6398, 2019.

[191] Y. Cho, G. Kim, and A. Kim, “Deeplo: Geometry-aware deep lidar
odometry,” arXiv preprint arXiv:1902.10562, 2019.

[192] R. Buchanan, V. Agrawal, M. Camurri, F. Dellaert, and M. Fallon,
“Deep imu bias inference for robust visual-inertial odometry with factor
graphs,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 41–
48, 2022.

[193] Z. Wang, Y. Zhu, K. Lu, D. Freer, H. Wu, and H. Chen, “Attention
guided unsupervised learning of monocular visual-inertial odometry,”
in 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 651–657, IEEE,
2022.

[194] R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “Vinet:
Visual-inertial odometry as a sequence-to-sequence learning problem,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
2017.

[195] L. Han, Y. Lin, G. Du, and S. Lian, “Deepvio: Self-supervised deep
learning of monocular visual inertial odometry using 3d geometric
constraints,” 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6906–6913, 2019.

[196] E. J. Shamwell, K. Lindgren, S. Leung, and W. D. Nothwang, “Unsu-
pervised deep visual-inertial odometry with online error correction for
rgb-d imagery,” IEEE transactions on pattern analysis and machine
intelligence, vol. 42, no. 10, pp. 2478–2493, 2019.

[197] M. F. Aslan, A. Durdu, and K. Sabanci, “Visual-inertial image-
odometry network (viionet): A gaussian process regression-based deep
architecture proposal for uav pose estimation,” Measurement, vol. 194,
p. 111030, 2022.

[198] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 2818–2826, 2016.

[199] Y. Almalioglu, M. Turan, M. R. U. Saputra, P. P. de Gusmão,
A. Markham, and N. Trigoni, “Selfvio: Self-supervised deep monoc-
ular visual–inertial odometry and depth estimation,” Neural Networks,
vol. 150, pp. 119–136, 2022.

[200] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet:
Efficient residual factorized convnet for real-time semantic segmenta-
tion,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 1, pp. 263–272, 2017.

[201] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: In-
corporating depth into semantic segmentation via fusion-based cnn
architecture,” Asian conference on computer vision, pp. 213–228, 2016.

[202] G. Marchesi, C. Eichhorn, D. A. Plecher, Y. Itoh, and G. Klinker,
“Envslam: Combining slam systems and neural networks to improve
the environment fusion in ar applications,” ISPRS International Journal
of Geo-Information, vol. 10, no. 11, p. 772, 2021.

[203] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[204] A. Valada, J. Vertens, A. Dhall, and W. Burgard, “Adapnet: Adaptive
semantic segmentation in adverse environmental conditions,” 2017
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4644–4651, 2017.

[205] N. Radwan, A. Valada, and W. Burgard, “Vlocnet++: Deep multitask
learning for semantic visual localization and odometry,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 4407–4414, 2018.

[206] S. Jin, L. Chen, R. Sun, and S. McLoone, “A novel vslam framework
with unsupervised semantic segmentation based on adversarial transfer
learning,” Applied Soft Computing, vol. 90, p. 106153, 2020.

[207] Y. Zhao, Z. Xiong, S. Zhou, Z. Peng, P. Campoy, and L. Zhang,
“Ksf-slam: a key segmentation frame based semantic slam in dynamic
environments,” Journal of Intelligent & Robotic Systems, vol. 105,
no. 1, p. 3, 2022.

[208] A. Valada, N. Radwan, and W. Burgard, “Deep auxiliary learning for
visual localization and odometry,” 2018 IEEE international conference
on robotics and automation (ICRA), pp. 6939–6946, 2018.

[209] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger,
“Fusion++: Volumetric object-level slam,” 2018 international confer-
ence on 3D vision (3DV), pp. 32–41, 2018.

[210] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit map-
ping and positioning in real-time,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6229–6238, 2021.

[211] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[212] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari,
M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle
datasets,” The International Journal of Robotics Research, vol. 35,
no. 10, pp. 1157–1163, 2016.

[213] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km:
The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[214] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” 2012 IEEE/RSJ
international conference on intelligent robots and systems, pp. 573–
580, 2012.

[215] J. Engel, V. Usenko, and D. Cremers, “A photometrically cali-
brated benchmark for monocular visual odometry,” arXiv preprint
arXiv:1607.02555, 2016.

[216] D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cre-
mers, “The tum vi benchmark for evaluating visual-inertial odometry,”
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1680–1687, 2018.

[217] J.-L. Blanco, F.-A. Moreno, and J. Gonzalez, “A collection of outdoor
robotic datasets with centimeter-accuracy ground truth,” Autonomous
Robots, vol. 27, no. 4, pp. 327–351, 2009.

[218] G. Pandey, J. R. McBride, and R. M. Eustice, “Ford campus vision
and lidar data set,” The International Journal of Robotics Research,
vol. 30, no. 13, pp. 1543–1552, 2011.

[219] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A bench-
mark for rgb-d visual odometry, 3d reconstruction and slam,” 2014
IEEE international conference on Robotics and automation (ICRA),
pp. 1524–1531, 2014.

[220] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of michigan north campus long-term vision and lidar dataset,” The
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2016.

[221] M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard, “The mit
stata center dataset,” The International Journal of Robotics Research,
vol. 32, no. 14, pp. 1695–1699, 2013.

[222] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi, “Real-time rgb-d
camera relocalization,” 2013 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pp. 173–179, 2013.

[223] J.-L. Blanco-Claraco, F.-A. Moreno-Duenas, and J. González-Jiménez,
“The málaga urban dataset: High-rate stereo and lidar in a realistic
urban scenario,” The International Journal of Robotics Research,
vol. 33, no. 2, pp. 207–214, 2014.



GAIA et al.: MAPPING THE LANDSCAPE OF SLAM RESEARCH 1336

[224] A. S. Huang, M. Antone, E. Olson, L. Fletcher, D. Moore, S. Teller, and
J. Leonard, “A high-rate, heterogeneous data set from the darpa urban
challenge,” The International Journal of Robotics Research, vol. 29,
no. 13, pp. 1595–1601, 2010.

[225] S. Y. Loo, A. J. Amiri, S. Mashohor, S. H. Tang, and H. Zhang,
“Cnn-svo: Improving the mapping in semi-direct visual odometry
using single-image depth prediction,” 2019 International Conference
on Robotics and Automation (ICRA), pp. 5218–5223, 2019.

[226] J. A. Placed and J. A. Castellanos, “A deep reinforcement learning
approach for active slam,” Applied Sciences, vol. 10, no. 23, p. 8386,
2020.

[227] B. K. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Josa a, vol. 4, no. 4, pp. 629–642, 1987.

[228] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel,
S. Gumhold, and C. Rother, “Dsac-differentiable ransac for camera
localization,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6684–6692, 2017.

[229] E. Brachmann and C. Rother, “Learning less is more-6d camera local-
ization via 3d surface regression,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4654–4662, 2018.

[230] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.

[231] M. Bujanca, X. Shi, M. Spear, P. Zhao, B. Lennox, and M. Luján, “Ro-
bust slam systems: Are we there yet?,” 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021.

[232] M. Bujanca, P. Gafton, S. Saeedi, A. Nisbet, B. Bodin, M. F. O’Boyle,
A. Davison, P. Kelly, G. Riley, B. Lennox, M. Luján, and S. Furber,
“Slambench 3.0: Systematic automated reproducible evaluation of
slam systems for robot vision challenges and scene understanding,”
2019 International Conference on Robotics and Automation (ICRA),
pp. 6351–6358, 2019.

[233] R. Duan, Y. Feng, and C.-Y. Wen, “Deep pose graph-matching-based
loop closure detection for semantic visual slam,” Sustainability, vol. 14,
no. 19, p. 11864, 2022.

[234] J. Wu, Q. Shi, Q. Lu, X. Liu, X. Zhu, and Z. Lin, “Learning invariant
semantic representation for long-term robust visual localization,” En-
gineering Applications of Artificial Intelligence, vol. 111, p. 104793,
2022.

[235] S. Wen, Y. Zhao, X. Yuan, Z. Wang, D. Zhang, and L. Manfredi, “Path
planning for active slam based on deep reinforcement learning under
unknown environments,” Intelligent Service Robotics, vol. 13, pp. 263–
272, 2020.

[236] K. Naveed, M. L. Anjum, W. Hussain, and D. Lee, “Deep introspective
slam: Deep reinforcement learning based approach to avoid tracking
failure in visual slam,” Autonomous Robots, vol. 46, no. 6, pp. 705–724,
2022.

[237] A. Safa, T. Verbelen, I. Ocket, A. Bourdoux, H. Sahli, F. Catthoor, and
G. Gielen, “Fusing event-based camera and radar for slam using spiking
neural networks with continual stdp learning,” in 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2782–2788,
IEEE, 2023.

Jeremías Gaia In 2019, he completed his degree in
Electronic Engineering and progressed to pursue a
PhD. Concurrently, he serves as a research fellow
at CONICET (Consejo Nacional de Investigaciones
Científicas y Tecnológicas). His research focuses
on high-speed embedded designs, computer vision,
robotics, and artificial intelligence. Presently, he
holds a position at the Chair of Microprocessors and
Digital Electronics.

Eugenio Orosco Eugenio Conrado Orosco was
born, raised, and educated in the city of San Juan,
Argentina. In 2008, he graduated from the Facultad
de Ingeniera de la Universidad Nacional de San Juan
(UNSJ) with a bachelor’s degree in Electronic En-
gineering. Then, in 2013, he obtained his PhD from
the same university’s Doctoral program in Control
Systems Engineering. He previously worked as a re-
search fellow and is now an Assistant Researcher at
the Consejo Nacional de Investigaciones Cientificas
y Tecnológicas (CONICET). At the moment, he is

a Tenured Professor in the Laboratorio de Electrónica Digital, Departamento
de Electrónica y Automática, UNSJ, teaching Microprocessors and Digital
Electronics III. His expertise and research interests include embedded systems,
signal processing, and deep learning. He is a human resource trainer at the
undergraduate and postgraduate levels, as well as director of different research
projects and technology transfers.

Francisco Rossomando Was born in San Juan,
Argentina. He received the electronic engineering
degree and the master degree in engineering from
the Universidad Nacional de San Juan (UNSJ), Ar-
gentina, in 1997 and 2002, respectively. From 2002
to 2006, he worked on his doctorate degree at the
Universidad Federal of Espirito Santo (ES-Brazil);
with a thesis on the modelling and control of hot
rolling mills. He also completed an executive MBA
in administration and management in science and
technology at the Getulio Vargas Foundation (Brazil)

He is currently asociate researcher of the National Council for Scientific and
Technical Research of Argentina (CONICET), at the Universidad Nacional de
San Juan (UNSJ).

Carlos Soria Carlos Miguel Soria was born in
Tucumán, Argentina on November 27, 1970. He
graduated as an electrical engineer from the Faculty
of Exact Sciences of the National University of
Tucumán (UNT) in 1996. In 2000 he graduated as
Master in Control Systems Engineering from the
School of Engineering of the National University
of San Juan (UNSJ). He obtained a PhD degree in
Control Systems Engineering at the same University.
From 1997 to 2000 he received a scholarship from
the FOMEC (Fondo para la Mejora en la Educación)

program to complete his Master’s degree and from 2001 to 2004 he received
a scholarship from the Consejo Nacional de Investigaciones Científicas y Tec-
nológicas (CONICET). He is currently a Professor at the National University
of San Juan and an Independent Researcher for the National Council for
Scientific and Technological Research (CONICET, Argentina).


	Introduction
	Search Guidelines 
	The SLAM Universe
	According to the Source of the Robot Commands.
	Active SLAM
	Passive SLAM

	According to the Type of the Sensors Equipped.
	LiDAR SLAM
	Visual SLAM
	Inertial Odometry
	LiDAR-Visual SLAM
	Visual-inertial SLAM (VI-SLAM)
	LiDAR-inertial SLAM

	According to How They Handle Dynamic Scene Content.
	Static SLAM Approaches
	Dynamic SLAM Approaches


	The Visual SLAM Domain
	Camera Types
	Input Frame Processing

	The Influence of Artificial Intelligence in Current SLAM systems
	Feature Extraction Process
	Loop Closure Detection
	Pose Estimation
	Depth Perception to Improve Pose Estimation
	NNs and LiDAR Measurements
	Aiding VI SLAM
	Semantic Image Segmentation
	Mapping
	Practical Considerations About Using AI in SLAM
	Hardware Resources
	Training Sets, Generalization, and Learning Strategies


	Methods Comparison
	Practical Details of SLAM Systems Implementation
	Operating System and System Requirements
	Required Sensors

	Accuracy Metrics
	Available Datasets
	Comparison Tables

	Current Trends, Possible Future Directions and Discussion
	Discussion: Will SLAM always remain an open problem?
	The AI Era.
	Collaboration over Combination

	Conclusions
	Appendix
	References
	Biographies
	Jeremías Gaia
	Eugenio Orosco
	Francisco Rossomando
	Carlos Soria


