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Thresholds in Knowm’s SDC Memristors:
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Abstract—This paper presents a proposal for the charac-
terization of the set and reset thresholds for Knowm’s SDC
memristors. The purpose is to incorporate the variability of the
hysteresis cycles within the Generalized Mean Metastable Switch
(GMMS) memristor model and, in this way, be able to perform
simulations that reproduce these phenomena in a meaningful and
computationally efficient way. We depart from the assumption
that their probabilistic behavior can be well represented by
using α-stable random variables. The main advantage of using
α-stable variables is that they can capture both skewness and
high variability (i.e., heavy tails), which can be exhibited by the
observed phenomenon. At the same time, they also include the
Gaussian random variable as a particular case, thus increasing
the modeling flexibility.

Index Terms—α-stable random variable characterization, SDC
memristor modeling, SDC memristor simulating.

I. INTRODUCTION

The memristor, which is the fourth fundamental passive
circuit element, was originally conceived by Leon Chua

in the 1970s [1] being a device that presents a hysteresis
cycle for its current as a function of the potential applied on
its two electrodes and, therefore, incorporates some memory
function. In the last two decades, since it was obtained as a
solid-state component in HP laboratories in 2008 [2], it has
generated great expectations as a promising candidate for the
practical realization of new computing paradigms supported
by computational operations that are essentially performed
directly in memory such as neuromorphic computing [3]–[6].

Currently, there are some technologies for manufacturing
memristors, which have reached a certain degree of maturity.
The most popular technologies are the resistive-switching
random access memory (ReRAM) [7] and the phase-change
memory (PCM) [8]. In addition, there are devices manufac-
tured by using the self-directed channel (SDC) technique.
This kind of memristors is widely available and constitute a
subclass of the electrochemical metallization (ECM) devices
[9], [10].

Commercially available devices let us experiment with
practical applications of the memory implicitly present in
their hysteresis cycle. However, one striking feature in the

Gerardo A. Laguna-Sanchez and Miguel Lopez-Guerrero are with Univer-
sidad Autonoma Metropolitana Mexico e-mail:g.laguna@correo.ler.uam.mex
/ milo@xanum.uam.mx.

Ricardo Barron-Fernandez is with CIC, Instituto Politécnico Nacional
Mexico e-mail:rbarron@cic.ipn.mx

Manuscript received April 19, 2023; revised August 26, 2024.

physical operation of memristors, available for experimenta-
tion, is the evident variability of the hysteresis cycles around
the thresholds for transiting between the set and reset states
[11]–[14]. It should be remembered that the manufacturing
process of a memristor device is not a simple matter, it starts
with the construction of conductive channels by mobilizing
ions, i.e. atoms, within certain crystalline substrates, which in
principle involves, among other factors of a practical nature,
the operating temperature, certain inertia phenomena and the
foreseeable influence of quantum mechanical phenomena.

This variability in memristor hysteresis cycles involves
unavoidable technical challenges when using such components
in real circuits and it is no longer realistic to assume that
the memristors exhibit instantaneous, homogeneous, and pre-
dictable responses, at least not for the time being. In fact, much
of the current work is focused on exploiting the stochastic
behavior of memristors for certain applications in computing
[15], [16].

In this paper, we will employ a set of measurements ob-
tained with commercial W-SDC (tungsten-doped SDC, manu-
factured by Knowm) memristors to show the usefulness of
the proposed methodology in characterizing the variability
of switching thresholds. It is worth emphasizing that the
methodology that we explain herein can be applied to any
other SDC variant and, more importantly, to any other type of
memristor technology.

For a comprehensive overview of memristor modeling, with
emphasis on the variability phenomenon, the reader is referred
to [13] and references therein contained. In general, there are
two approaches for modeling memristor variability. The first
one addresses the phenomenon as a stochastic process and
the second one as a chaotic phenomenon. Among the works
that approach variability as a stochastic phenomenon, we
have the ones that assume stationary processes [17]–[19], the
ones that employ multivariate series [20], and more elaborate
models that recognize a non-stationary behavior [21], [22]. In
addition, within the pieces of research that approach variability
as a chaotic phenomenon, we have the ones that ponder the
convenience of a deterministic model [23] and even those that
see in memristor variability a means to model and build chaotic
circuits [24].

Specifically, regarding the characterization of SDC mem-
ristors, the accessibility of Knowm’s devices has encouraged
multiple research groups to experiment with them in an
attempt to obtain their characterization [25], [26]. It is worth
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TABLE I
RELATED WORK

Ref. Type Contribution Technology Reports
memristor
variability

[1] Seminal Theoretical NA NA
[2] Seminal Invention/Discovery T iO2 NA
[3] News NA Several Yes
[4] R&D Theoretical Generic No
[5] Review Topic review Emergent No
[6] R&D Invention/Discovery Nanotech. No
[7] Seminal Invention/Discovery ReRAM Implicit

TiON
[8] Seminal Invention/Discovery PCM Yes
[9] Seminal Invention/Discovery ECM/SDC Yes
[10] R&D Invention/Discovery ECM/SDC Yes
[11] R&D Characterization/ ReRAM Yes

Modeling
[12] R&D Characterization/ ReRAM Yes

Modeling
[13] Survey Review Several Yes
[14] Thecnical Specs SDC Yes
[15] R&D Applications Several Yes
[16] R&D Applications Several Yes
[17] R&D Characterization/ ReRAM Yes

Modeling T iO2

[18] R&D Modeling Several Yes
[19] R&D Modeling ReRAM Yes
[20] R&D Characterization/ ReRAM Yes

Modeling HfO2

[21] R&D Characterization/ ReRAM Yes
Modeling ZrO2(Y )

TaOx

[22] R&D Modeling ReRAM Yes
[23] R&D Characterization/ SDC Yes

Modeling
[24] R&D Application ReRAM Yes

emulator
[25] R&D Modeling Generic Implicit

& SDC
[26] R&D Characterization SDC Yes
[27] R&D Modeling SDC No
[28] R&D Characterization/ SDC Yes

Modeling

pointing out that the SDC memristor model developed by
Knowm researchers provides an excellent starting point to
incorporate improvements and make it more realistic and in
agreement with experimental measurements and observations.

The model proposed by Knowm is the so called Gener-
alized Mean Metastable Switch (GMMS) memristor model.
It captures switching dynamics of the memristors by using a
probabilistic approach [27]. There is also a study comparing
the VTEAM and Strukov models applied to the case of
Knowm memristors [28], as well as the specific proposal of
Ostrovskii’s team, who proposes adjustments to the GMMS
model to generate hysteresis profiles with snapbacks and some
chaotic variability [23]. Table I provides a brief comparison
among pieces of related work. It is worth mentioning that
none of these works makes use of α-stable distributions as a
modeling approach.

In this work we propose to make use of α-stable random
variables in order to characterize the variability of set and
reset thresholds of Knowm’s SDC memristors. Specifically,
it is proposed to start from the hypothesis that α-stable ran-
dom variables properly characterize the observed distribution

profiles in the sample data. To test this assumption, a data
set comprising a large number of threshold measurements
is used to estimate the distribution parameters of α-stable
random variables. The resulting model is intended to be
incorporated in the GMMS model improved by Ostrovskii’s
team (here denoted as GMMS-Os model) [23]. Additionally,
to allow interested researchers to test and eventually improve
our characterization and simulation proposal, a demonstration
code is provided in a GitHub repository [29].

In the remaining sections we will focus on the presentation
and evaluation of our proposal. In Section II, the operation
of SDC memristors is briefly described; in Section III, the
model adopted in this work for the simulation work is de-
scribed; in Section IV, some basic notions about the α-stable
random variable are provided. In section V, we briefly explain
the methodology used to characterize the variability of the
switching thresholds using α-stable random variables. These
explanations make references to the pieces of software that
accompany this paper so that the interested reader can replicate
our methodology and results. In Section VI, the results of the
empirical characterization for the set and reset thresholds of
a typical W-SDC memristor are presented; in Section VII, as
a demonstrative example, we show the results of incorporat-
ing the experimentally characterized random variables in the
GMMS-Os model. Finally, in Section VIII, we present our
conclusions.

II. OVERVIEW OF KNOWM’S SDC MEMRISTORS

Knowm’s SDC memristors do not operate like the ones
generally known as Resistive RAM (ReRAM). That is, they
are not based on the construction of a conductive filament
between two electrodes, but rather on the creation of clusters
of silver ions, within a conduction channel, whose density
and distance among them determine the net resistivity when
a potential difference is applied between its two electrodes.
These agglomerations are caused by the initial mobilization
of tin ions towards the interior of the active layer of the mem-
ristor, from an initial chemical reaction that creates fissures
inside the crystal, allowing the penetration of tin ions which,
in turn, facilitate the accumulation of silver ions which, in
addition, tend to group together to form clusters. According
to the information provided by the manufacturer [30], an SDC
memristor consists of two tungsten electrodes and several
layers (See Fig. 1, left) that include pure Ge2Se3 substrates,
a silver layer (source layer), a SnSe layer (assist layer) and
an active Ge2Se3 layer (active layer) doped with one of the
elements used in the process (i.e., W, Sn, Cr or C), which
determines the specific operation of the memristor.

The assist layer is the source of the tin ions (+Sn), which
are intended to facilitate the agglomeration of the silver ions
(+Ag), coming from the source layer to the active layer
(see Fig. 1, right). The source layer is closer to one of the
electrodes, whereas the active layer is closer to the other one.

When the potential at the electrode closer to the source layer
is higher than the potential of the electrode closer to the active
layer (so that a potential difference of the former minus the
latter is positive), the memristor transits to its low resistance
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Fig. 1. Symbol and construction sketch for a Knowm W-SDC memristor. The symbol used here for the memristor device corresponds to
the one used by Knowm’s own documentation. We also follow Knowm’s convention which considers that when the bar of the symbol is
connected to the lower potential, the device will be driven to its high conductivity state.

state (LRS) and we have a set operation. In contrast, when such
potential difference is sufficiently negative, then the memristor
transits to a high resistance state (HRS) and we have a reset
operation. For the sake of simplicity let us denote LRS and
HRS as ON and OFF states, respectively.

For example, for the case of SDC memristors with doping
made with W, Sn, or C, the forward threshold voltage (for set
operation) is specified with a typical value of VON=+0.26 V,
whereas the reverse threshold voltage (for reset operation) is
specified at VOFF =-0.11 V. When the device is driven between
the ON and OFF states, its current follows a hysteresis curve
whose distinguishing mark is a crossing point, around the
change of the polarity sign (either from positive to negative or
vice versa), which is known as the “pinch” in the hysteresis
loop. This is illustrated in Fig. 2, where 1000-cycle hysteresis
plots for a typical Knowm W-SDC type memristor are pre-
sented. They were obtained by using the test circuit shown in
Fig. 3 with a test signal V of a triangular shape varying in the
interval ±0.4 V with a frequency of 1 Hz. Note the variability
in the various hysteresis plots, particularly with respect to the
set and reset thresholds.

III. REFERENCE MODEL FOR KNOWM MEMRISTORS

Knowm has developed some models for its memristors
[27] departing from what is known as the Mean Metastable
Switch (MMS) memristor model. This model was obtained
in a semiempirical form and it describes the behavior of the
memristor’s conductive channel which, for modeling purposes,
is considered to be composed of N metastable switching
(MSS) elements that probabilistically switch between LRS
and HRS as a function of the voltage bias and temperature.
The model assumes a state variable, denoted by X , which
represents the fraction of switches that are in the ON state.
That is, this variable represents the number of switches in the

Fig. 2. I-V plots for 1000 hysteresis cycles of a typical Knowm W-
SDC memristor.

ON state, which is scaled to take on values between 0 and 1.
Thus, the change in X is defined by

dX = NOFF→ON −NON→OFF , (1)

where NOFF→ON = POFF→ON (1−X) and NON→OFF =
PON→OFFX . In turn, the switching probabilities POFF→ON

y PON→OFF depend on the applied potential difference Vm

(see Fig. 3) and are defined by

POFF→ON = ρ
[ 1

1 + e−ε(Vm−VON )

]
(2)

PON→OFF = ρ
[
1− 1

1 + e−ε(Vm−VOFF )

]
, (3)

where, as previously mentioned, VON is the forward threshold
voltage (when Vm exceeds this threshold, the memristor initi-
ates the transition to LRS) and VOFF is the reverse threshold
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Fig. 3. Reference circuit for both simulations and measurements.

voltage (when Vm falls below this threshold the device initiates
the transition to HRS); ρ = dt/τ is a fixed parameter, which
is defined in terms of the memristor time constant τ ; and,
finally, ε is a parameter that depends on the temperature T ,
the Boltzmann constant k and the elementary charge constant
q:

ε =
q

kT
(4)

With all these elements in place, we can now define dX/dt
as:

dX

dt
=

1

τ

{[ 1

1 + e−ε(Vm−VON )

]
(1−X)−[

1− 1

1 + e−ε(Vm−VOFF )

]
X

}
, (5)

so that the net resistance of the conductive channel, R, depends
on the parallel flow through the switches ON and OFF, each
with the characteristic resistance of its state, so that it is
satisfied that

1

R
=

X

RON
+

1−X

ROFF
(6)

The generalized version of this model, namely the Gener-
alized Mean Metastable Switch (GMMS) model includes the
effect of a parallel Schottky diode and its current, as a function
of the voltage drop across the memristor. In this case, the
resulting net current is expressed as:

I = φIm(Vm, t) + (1− φ)Is(Vm), (7)

where φ is a value between 0 and 1, so that there is no current
contribution from the Schottky diode when φ=1. In turn, the
Schottky diode current is the net result of the forward and
reverse current components inside the diode, given by:

Is(Vm) = Afe
BfVm −Are

BrVm , (8)

where Af , Ar, Bf , and Br are positive values that determine
the exponential growth of both current components.

Since the GMMS model is the essential reference for the
modeling and simulation of Knowm’s SDC memristors, it is
convenient to make a couple of remarks regarding its correct
parameterization to obtain results in good agreement with
reality. In general, when comparing the simulated hysteresis
curve against the one observed experimentally, for example
for the test circuit in Fig. 3, the GMMS model will result in a

Fig. 4. Hysteresis curve obtained with the GMMS model, for the test
circuit of Fig. 3, with τ = 6×10−5s, T=(298.5-190)K, RON=13kΩ,
ROFF =460kΩ, Rs=10kΩ, VON=0.2V, VOFF = -0.1V, Af = Ar =
10−7A, Bf = Br=8 y φ=0.88, and a sinusoidal input signal V of
10Hz and 0.4V peak amplitude.

Fig. 5. Plots for two hysteresis cycles of a typical Knowm W-
SDC memristor whose specifications are VON=0.26V (typical value)
and VOFF = -0.11V (typical value) and measured resistive values
of RON=6kΩ, ROFF =300kΩ. This experiment used the same test
circuit and conditions corresponding to Fig. 4, but here the snapback
phenomenon is evident.

good approximation if the temperature value is adjusted with
an offset of approximately -190 (in kelvin), at least with the
W-SDC type memristors, which are the ones with which, in
this work, the measurements were performed, a circumstance
also reported in [23]. Fig. 4 exemplifies a typical simulation
with the GMMS model.

Regarding the snapback phenomenon (see Fig. 5), it should
be noted that it mostly occurs when the memristor is in
optimal conditions (with HRS > 400kΩ and LRS < 4kΩ)
and the device has not been put under too much operation
stress, however, as the memristor degrades due to regular use,
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Fig. 6. Hysteresis curve obtained with the GMMS-Os model, for
the test circuit of Fig. 3, with τ = 6 × 10−5s, T=(298.5-190)K,
RON=13kΩ, ROFF =460kΩ, Rs=10kΩ, Vthreshold=0.14V, VOFF =
-0.1V, Af = Ar = 10−7A, Bf = Br=8 y φ=0.88, and sinusoidal
input signal V of 10Hz and 0.4V peak amplitude.

the occurrence of this phenomenon becomes intermittent and
may even disappear. To reproduce the snapback phenomenon,
Ostrovskii et al. have made a proposal to adapt the original
GMMS model [23]. Their proposal is to consider that the
forward threshold voltage varies as a function of the state
variable X according to the following expression:

VON (X) = Vthreshold +
0.1 cos( 4π

√
X

1.7−X )

1 + 10
√
X

, (9)

with Vthreshold the threshold level for VON . The GMMS
model with the improvement of Ostrovskii et al., exclusively
concerning the snapback phenomenon, is the one that will be
used in this work as a reference model, and we will denote as
GMMS-Os. Fig. 6 shows a typical simulation with this model
(using the reference circuit shown in Fig. 3).

Regarding the phenomenon of threshold variability, both
forward (VON ) and reverse (VOFF ) voltages, we recall that
Knowm has stated that this variability is a situation that derives
from the eminently dynamic circumstances of the particular
operation and history of each memristor [14], but no further
details or explanations are provided. For the simulation of
this variability Ostrovskii’s team itself proposes to resort to
a deterministic chaotic oscillator and various other proposals
exist in the literature. Here we present an alternative approach
based on an empirical characterization, under the hypothesis
that the behavior of the variability of the thresholds can be
well represented by using random variables of the α-stable
type. Our objective is not only to reproduce the variability in
the hysteresis cycles but, also to simulate this phenomenon in
a practical and relatively simple way.

IV. BACKGROUND CONCEPTS ON α-STABLE RANDOM
VARIABLES

The Central Limit Theorem states that the normalized sum
of a number of independent and identically distributed (i.i.d.)
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Fig. 7. Probability density functions (PDF) for α-stable random
variables with different values for the parameters α and β. In all
cases σ=1 and µ=0.

random variables with finite variance converges in distribution,
as the number of terms increases, to a Gaussian distribution.
A more general case arises when the condition related to
the finite variance in removed from the theorem, leading to
the Generalized Central Limit Theorem. In this case, the
convergence also happens, but to a more general type of
distributions, termed α-stable. As a consequence of this, the
Gaussian random variable can be considered as a particular
case of this family of distributions. Therefore, an α-stable
random variable is suitable for representing, with appropriate
parameterization, both normally distributed variables, as well
as cases that include skewness or asymmetries and relatively
long distribution tails (i.e., infinite variance) [31]. An α-stable
variable is defined in terms of the stability parameter, α,
such that 0 < α ⩽ 2; a skewness parameter, β, such that
−1 ⩽ β ⩽ 1; a scale parameter, σ, with σ ⩾ 0 (not to be
confused with the standard deviation); and a shift parameter, µ,
which can be any real value. The stability parameter α can be
viewed as an index indicating the rate at which the tails of the
distribution decay. The α-stable random variable becomes a
Gaussian random variable when α=2. For brevity, the notation
Sα(σ, β, µ) is used to refer to an α-stable distribution with the
parameter values indicated by the subindex and in parentheses.
As an example, Fig. 7 shows the profiles of some α-stable
distributions.

Although there is no closed form expression for the prob-
ability density function (PDF) of an α-stable variable, it can
be defined in terms of its characteristic function, namely [32]:

Φ(ω) = E[exp(jωx)] =
exp

[
jµω − |σω|α

(
1− jβ ω

|ω| tan
(
πα
2

))]
if α ̸= 1

exp
[
jµω − |σω|

(
1 + jβ 2

π
ω
|ω| ln |ω|

)]
if α = 1

(10)

Equation (10) can be sampled by using different values
of ω. Such discretized version of the characteristic function
can be used to both estimate the α-stable parameters of a
sequence of random values [31], [33] and to generate random
sequences with an α-stable distribution [34]. The basic idea
is to apply an inverse discrete Fourier transform, to obtain
the sequence corresponding to the sampling of the Probabil-
ity Density Function and, then, proceed with its numerical
integration to obtain a sampled version of the corresponding
Cumulative Distribution Function (CDF). The details, as to
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the practical realization of all this, can be found in the code
MonteCarlo_S_alpha_rand_core.py that we provide and
have made available to the interested reader [29].

V. METHODOLOGY FOR ESTIMATION OF SWITCHING
VARIABILITY USING α-STABLE RANDOM VARIABLES AND

SIMULATION

The methodology used to perform our work consisted of the
following 4 steps (see Fig. 8), which can be replicated for steps 2 to
3 with the help of the Python code available in the repository [29]:

1) The Analog Discovery 2 device as well as its SDK pro-
gramming tools, both provided by the manufacturer Digilent,
were used to perform automated measurements, on the circuit
depicted in Fig. 3, for recording a number of hysteresis cycles
of a Knowm W-SDC memristor. The purpose was to collect
a sufficiently large number of voltage values for the observed
VON and VOFF thresholds to fit probability distributions.

2) From the data set for VON and VOFF , the parame-
ters of the α-stable random variables that achieve the
best fit of the observed distributions were estimated. The
S_alpha_identification() function, found in the
MonteCarlo_S_alpha_rand_core.py code, was used
for this purpose. For more details, see the example code
alpha-stable_demo.py.

3) Assuming that the observed VON and VOFF distributions
can be represented by α-stable variables and given that these
thresholds are parameters within the memristor model, they
were incorporated within the simulation code, by means
of stochastic processes (with the help of the functions
within the MonteCarlo_S_alpha_rand_core. py and
MonteCarlo_Gaussian_rand_core.py) as specified
for the parameters α, β, σ and µ, of each of the corresponding
α-stable random variables.

4) Finally, the simulation code was run, based on the model
developed for the memristor, to corroborate that the behavior
in the variations of the VON and VOFF thresholds of the sim-
ulated hysteresis curves reproduces, in an acceptable way, the
variability that was experimentally observed. For this, a code
similar to the stochastic_GMMS_memristor_demo.py
program and statistical tools were used to measure the error in
the fit of the simulated distribution curves with respect to the
real distributions.

Fig. 8. Outline of the employed methodology.
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Fig. 9. Example of frequency distributions for reverse voltage thresh-
old (VOFF ).

VI. CHARACTERIZATION OF THE SET AND RESET
THRESHOLDS AS α-STABLE DISTRIBUTIONS

In order to exemplify the methodology to characterize the distribu-
tions with respect to the forward (VON ) and reverse (VOFF ) threshold
voltages, one of the W-SDC memristors, contained in a PCI-E-36
package, was employed. The initial resistance values were estimated
to be around 300kΩ, for HRS, and around 6kΩ, for LRS. Hysteresis
cycles (Im vs. Vm) were recorded when the input signal was a
triangular signal of 1Hz and varying in the interval ±0.4V. For this
purpose, we used Knowm’s Memristor Discovery 2.1 experimental
platform [14] with the voltage divider configuration shown in Fig.
3. The plots of 1,000 hysteresis curves were obtained, based on the
estimated current in the memristor (Im), corresponding to the voltage
drop recorded at the memristor ends (Vm), when the input voltage
(V) was applied to the test circuit. For each hysteresis cycle, the
threshold voltages were determined by inspection and by using the
criterion of detecting significant and irreversible slope changes around
the thresholds specified by the manufacturer. Fig. 9 shows the sample
histogram of VOFF , whereas Fig. 10 shows the corresponding one for
VON (for visualization purposes only we used the method proposed
by Scott [35], to estimate the number of bins used to generate each
histogram, with a Gaussian density as a reference).

We proceeded to the α-stable characterization of the memristor
thresholds based on the hypothesis that the probabilistic behavior
can be well represented by a random variable of this type. We
theorize that α-stable random variables are an appropriate way to
represent the memristor on-off transitions in accordance with the
GMMS model. This is due to the fact that, in the GMMS model, the
memristor switching behavior is the result of the aggregate effect of
a large number of metastable switches whose probabilistic behavior
is controlled by the same pdf. As previously mentioned, the α-
stable random variable is a limiting distribution arising from the
superposition of a large number of i.i.d. random variables. Thus,
there is a good agreement between the two conceptual frameworks.
Table II shows an example of the results obtained from the parameter
estimation procedures, which corresponds to one of the W-SDC
memristors, available in the previously referred package.

Table II allow us to state that, in principle, threshold VOFF behaves
as an α-stable random variable of high variability (α= 1.62), whereas
in the case of VON , the estimated value of α is 2.0 for all practical
purposes, indicating that this is a random variable with a profile like
that of a Gaussian variable. Note that, in this latter case, the value of β
is irrelevant (see Eq. (10)) so that the parameter value resulting from
the estimation procedure can be dismissed. We would like to remark
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Fig. 10. Example of frequency distributions for forward voltage
threshold (VON ).

TABLE II
ESTIMATION RESULTS FOR α-STABLE PARAMETERS

Threshold α β σ µ
[Volts] [Volts]

VOFF 1.62 -0.781 0.0135 -0.0826
VON 2.02 -1.503 0.0254 0.2169

that, in spite of the notation, the scale parameter σ of a Gaussian
random variable is not equivalent to its standard deviation (let us
denote the latter by σg). However, they are related since σg =

√
2σ

which yields 0.036V (this value can also be obtained by using the
usual procedure for the computation of the sample standard deviation
from the sample data). Also note that, in this case, the shift parameter
(µ) corresponds to the mean (µg).

In Fig. 11, one can compare the empirical cumulative distribution
(ECDF) curve for the VOFF threshold with respect to the profile
of the reference cumulative distribution function resulting from the
estimated α-stable parameters. In turn, Fig. 12 shows the comparison
between the ECDF obtained from the samples of VON and the
CDF of a Gaussian model with its mean and standard deviation
computed from the shift and scale parameters, respectively. By simple
inspection of Figures 11 and 12, it can be observed that the α-stable
characterizations of the on and off thresholds are in good agreement
with the experimental data. In addition to these visual “proofs”, some
tests of goodness of fit were also carried out.

Regarding VOFF , which exhibited high variability characterized
by an index of stability α < 2 (i.e., 1.62), a comment is in order.
Heavy tails (as well as many other mathematical properties) are
useful idealizations able to represent some characteristics that may
be present in the sample data. However, whereas a heavy-tailed
random variable can exhibit such behavior, real electric circuits have
some limitations that should not be overlooked. For instance, voltage
Vm in the voltage divider circuit of Fig. 3 cannot go beyond the
applied voltage bias, even though an α-stable model may predict the
occurrence of some sporadic samples of higher values. Nevertheless,
within its applicability range, in our tests the α-stable model proved
to be a useful approach to capture both significant deviations from
the mean value and skewness.

For the VON threshold, the one-sample Kolmogorov-Smirnov (K-
S) test was used to prove the hypothesis that a Gaussian model
indeed fits the sample data. To this end, each sample of the trace
was standardized by subtracting the sample mean and dividing by

Fig. 11. Cumulative distribution functions for the VOFF threshold,
the α-stable model uses the following parameter values: α=1.62, β=-
0.781, σ=0.0135V, and µ=-0.0826V.

Fig. 12. Cumulative distribution functions for the VON threshold, the
Gaussian model uses the following parameter values: µg=0.2169V
and σg=0.036V.

the standard deviation. By means of the K-S test it was investigated
whether an assumed standard Gaussian random variable (i.e., µg=0
and σg=1) fits the data or not. The test passed with a 5% probability
(typical value) of incorrectly rejecting the hypothesis. In other words,
with a 95% confidence level, the Gaussian random variable fits the
sample data.

VII. PRACTICAL DEMONSTRATION OF A STOCHASTIC
VERSION FOR GMMS-OS MODEL

In this section we demonstrate the practical utility of the procedure
presented in this paper for simulation purposes. We will take advan-
tage of the previously listed parameter estimates and will produce
sequences of values with the distributions of interest incorporating
these within the GMMS-Os model to introduce the desired variability
in the VOFF and VON thresholds. To this end, recall that a simple and
efficient way to generate values with a certain probability distribution,
with less computational time, although at the cost of requiring some
reserved memory space, is to employ the Monte Carlo roulette
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Fig. 13. Simulation results for 10 hysteresis cycles, for the test circuit
of Fig. 3, employing the GMMS-Os model improved with a subjacent
α-stable variable, with VOFF and VON characterized according to
the estimates in Table II and making τ = 6 × 10−5s, T=(298.5-
190)K, RON=13kΩ, ROFF =460kΩ, Rs=10kΩ, Af = Ar = 10−7A,
Bf = Br=8 and φ=0.88, sinusoidal input signal V of 10Hz and 0.4V
of peak amplitude.

principle, starting from tables of a suitable size, e.g. 1000 records, and
an index that determines the retrieved value by means of a uniform
distribution. In all cases, the table must store predetermined values,
which correspond to an ordered sequence of samples and whose
empirical distribution profile corresponds precisely to the desired
random variable.

Fig. 13 shows the results obtained in the simulation of 10 hysteresis
cycles, using an α-stable variable with α=1.62 to determine the value
of VOFF , and a Gaussian variable to determine the value of VON ,
both parameterized with the estimates shown in Table II. The proce-
dure can be as simple as defining the variables representing VOFF and
VON as global variables and determining their value in each of the
iterations of the simulation. Details of this practical realization can be
found in the code (stochastic_GMMS_memristor_demo.py)
used to produce the results shown in Fig. 13, which is available in
the repository of [29].

The example depicted in Fig. 13 shows the asymmetry and the
significant dispersion in values that can be obtained in the case of
the threshold voltage VOFF (this is the effect of using an α-stable
variable of parameter α=1.62). In contrast, the threshold voltage VON

shows a more regular and symmetric behavior due to the modeling
using a Gaussian variable (i.e., α-stable with parameter α=2). The
behavior obtained with the simulator is in complete agreement with
our own observations and those made and reported in other works
that have experimented with Knowm’s W-SDC devices [10], [23],
[26]. These results shown the enormous potential that the developed
models have in reproducing, with higher fidelity, the behavior of
memristor devices in simulation studies.

VIII. CONCLUSIONS

A practical methodology has been presented for the characteriza-
tion of the set and reset threshold variability observed in Knowm’s
SDC memristors. To this end, large traces of the observed threshold
voltages (i.e., VOFF and VON ) were recorded and, by assuming that
their probabilistic behavior can be well represented by using α-stable
distributions, the model parameters were estimated. This modelling
approach turned out to be highly appropriate to capture the proba-
bilistic behavior of the threshold voltages since this type of random
variables are able to capture both skewness and high variability in the

data, which were present in the sample traces. In addition, they also
include the Gaussian distribution as a particular case. Experimental
results demonstrate that the proposed methodology is useful and that,
in the case of a typical Knowm’s SDC memristors, both VOFF and
VON can be represented by α-stable random variables.

Additionally, as a practical reference, the GMMS model with
the necessary random variables was coded to obtain a simple and
computationally efficient stochastic model that reproduces, in an
acceptable way, the variations observed in the threshold voltages of
the memristors under study. The resulting model is intended to be
used within the GMMS model. To allow interested researchers to
experiment with our proposal, a demonstration code, available in a
freely accessible repository, is provided for both the estimation of the
α-stable parameters and the simulation with the stochastic variant of
the GMMS-Os model.
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