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Automatic Modulation Classification
for Low-Power IoT Applications

Yasmı́n R. Mondino-Llermanos , and Graciela Corral-Briones

Abstract—The Internet of Things (IoT) has swiftly become
one of the most important technologies in recent years. Radio
spectrum access represents a stern challenge for the IoT as a
consequence of the increased use of connected devices. This is
particularly true for IoT devices operating in the unlicensed band
where the huge demand for wireless connectivity will require
techniques that use the spectrum efficiently. Avoiding training
sequences enables a more efficient spectrum usage and has the
additional advantage of reducing the power consumption of IoT
devices, but it requires modulation identification mechanisms.
This paper presents a simple yet efficient method to classify
received signals according to their modulation type. We propose
the application of a single hidden layer neural network with
a small number of trainable parameters for performing the
classification between seven different modulation types. The
designed classifier achieves a maximum accuracy of 95% when
the signal-to-noise ratio (SNR) of the input data is 12 dB, and
in the presence of multi-path fading, sample rate offset and
carrier frequency offset.

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8267

Index Terms—Internet of things, Radio spectrum access,
Automatic modulation classification, Feature extraction, Mutual
information, Artificial neural network

I. INTRODUCTION

The reduction of the communication overhead is known
to improve the spectrum efficiency and transmit power

consumption. Both of these characteristics are of paramount
importance for enabling wireless internet of things (IoT)
networking on a massive scale. For this purpose, modulation
identification techniques that do not require training or pilot
sequences for data retrieving are of particular interest [1].

Until this day, there has been a wide variety of deep neural
networks and convolutional neural networks developed that
try to accomplish this specific task. Lately, there have also
been contributions focused in reducing the complexity of the
networks to make them easier to deploy on edge devices [2].
This paper aims to propose a simple neural network of only
one hidden layer, that can provide a classification system for
signals highly corrupted by the channel. The designed model
is intended to have a low complexity with a small number
of trainable parameters, making it suitable for applications
on low-power devices with limited computational resources.
Moreover, the reduced amount of parameters would make
it suitable for situations when there is a reduced amount of
available training data.
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In this paper, Section II gives an overview of previous
papers that make use of neural networks and feature extraction
to generate classification algorithms. Section III describes the
dataset used throughout this work. Section IV presents all
the extracted features and their formulae, while Section V
presents the ultimately selected ones. The characteristics of
the neural network used for the classification are shown in
Section VI, and Section VII provides the experimental results
of it. Finally, Section VIII concludes this paper and gives an
overall evaluation.

II. RELATED WORK

Automatic modulation classification (AMC) techniques
can be classified into traditional techniques which include
decision-theoretic approaches and feature-based approaches,
along with advanced deep learning based approaches [3].

In [4], the authors carry out a survey of deep learning
architectures used for modulation classification in wireless
communications, such as deep neural networks (DNNs),
recurrent neural networks (RNNs), long short-term memory
networks (LSTMs) and convolutional neural networks
(CNNs). Their study describes the fundamental concepts
of each of these architectures and provides a list of
implementations found in the literature. It highlights not
only the used architecture, but also the modulation types,
the channel and the best results obtained by each of
these classifiers. Most of these algorithms exhibit a good
performance, achieving an accuracy of over 90% at around
10 dB; however, they consume a lot of computational
resources. Consequently their implementation in devices with
limited computing capability, low memory and small storage
space, becomes an extremely complicated task.

In recent years, new works have aimed to generate small
architectures that can be suitable for IoT devices that do not
have the capability to process large numbers of parameters.
In [5] the authors develop a novel deep learning classifier
for IoT-based systems that combines the feature extraction
capabilities from two-dimentional information of CNNs and
the capability to extract sequential correlations within time
series data of the LSTMs and the gated recurrent unit
(GRU) based RNN. The model outperformes other preexisting
models [6], [7] but without demanding a larger training
and computational requirement. In [8] the authors propose
the use of depthwise and separable depthwise convolutional
neural network architectures that can be implemented in
devices that are constrained by power and area. The developed
architectures achieve similar performances to the conventional
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CNN approaches [9] but with a significant reduction of
parameters. In [10], the authors propose an AMC method
that combines residual learning and squeeze-excitation blocks
that achieves an even higher reduction of parameters while
improving the performance in high SNR scenarios.

Even though researchers are continuously presenting new
alternatives for developing lower complexity deep learning
based classifiers, the current architectures still require tens
or hundreds of thousands of parameters [10]. For this
reason, we decide to implement a featured-based classification
method because these classifiers are known for offering
good performances with a reduced computational complexity.
Furthermore, they can be improved by applying machine
learning algorithms, as their application can provide a simpler
way to implement the decision making process and help in
reducing the dimensions of the features set [3].

Artificial neural networks (ANNs) are useful for
classification problems because they have a flexible structure
that make them easy to implement. In addition, ANNs can
adapt and learn to work with complicated signals [11]. They
have been widely used for implementing AMC systems; for
instance, the authors of [12] and [13] developed different
classifiers that make use of an ANN with seven input
features to perform the classification between eight and five
modulation schemes, respectively. The employed features are
derived from the instantaneous amplitude, frequency, and
phase of the signals. In [14] it is presented another AMC
method that implements an ANN and makes use of a different
set of statistical features to classify between seven digital
modulations. The input features of this model do not only
include information about the instantaneous amplitude, phase
and frequency of the received signal but also, higher order
statistics.

Most of the existent studies are limited to simulations and
not evaluated on actual hardware, this situation generated
that some authors started to design their own ANN based
classifiers and implement them on a software defined radio
(SDR) testbed, like the ones presented on [15] and [16].
Each of these models made use of a different set of input
features, but both of them exhibited a good performance in
the classification of two different groups of seven digital
modulation schemes in real-time. Despite achieving good
results with their architectures, the papers only present the
theoretical capabilities of each of their selected features to
distinguish different modulation schemes. However, they do
not present the selection criteria that was applied in order to
choose the features over other ones. In our work, we take into
consideration a set of 32 features and then use the mutual
information algorithm to perform the selection of the most
relevant ones. Another important aspect to consider is that
even though the authors do not make use of a synthetically
generated dataset, the configuration of their experimental
setups do not generate a dataset of signals with all the
characteristics that are considered in the dataset used within
this work.

The use of the feature selection method is based on the
work by Lee et al. [17], which presents an improved version
of previously developed ANNs for AMC. The improvement

is mainly focused on the implementation of the mutual
information algorithm to select the best subset of input features
and reduce the complexity of the model. However, while in
[17] the authors utilise it in an scenario of signals affected
only by additive white Gaussian noise and Doppler shift, we
present an implementation with signals that are more in line
with the reality of wireless signals.

III. DATASET

All the experiments within this study are made using the
RadioML 2016.10A dataset [18]. This dataset consists of
synthetically generated signals using GNU Radio. The signals
correspond to 11 different modulation types. Consisting of
eight digital; BPSK, QPSK, 8PSK, 16QAM, 64QAM, GFSK,
CPFSK, PAM4 and, three analogue modulations; WB-FM,
AM-SSB, AM-DSB. Nevertheless, only seven of the digital
modulation types are used in the classifier presented within
this paper, as the classification is performed between BPSK,
QPSK, 8PSK, 16QAM, GFSK, CPFSK and PAM4. This
subset of modulation types was selected as it was deemed
the most suitable ones for IoT devices, of those present
in the dataset. High order modulations, such as 64QAM,
are more prone to error than lower-order modulations. Due
to their sensitivity to noise, they require to be transmitted
over short distances or with a significantly high power level,
which is not feasible for remote IoT devices [19]. WB-FM
consumes a large bandwidth so its use is recommended for
applications in which spectral efficiency is not important [20],
whereas IoT devices require an efficient use of the available
spectrum. AM-DSB also requires a large bandwidth and it does
not present a high bandwidth efficiency. Whilst, the spectral
efficiency is higher with the use of AM-SSB, the hardware
implementation of this modulation scheme is complex and it
demands expensive equipment [21].

Each of the signal data examples included in the dataset
has a length of 128 samples and a SNR value from −20 dB
to 20 dB. For each combination of modulation type and SNR
value, the dataset contains 1000 signal data examples. It is
important to note that all of the signals have been affected
by additive white Gaussian noise, selective multi-path fading,
sample rate offset and carrier frequency offset. These channel
specifications make it a more realistic dataset of wireless
signals, compared to others that have been widely used in
automatic modulation classification methods and that only
include additive white Gaussian noise.

IV. FEATURE EXTRACTION

The correct feature selection is essential in this work, as
the main objective is to design a neural network with a small
number of inputs, that has a reduced computational complexity
which, produces a reliable modulation classification. The
selection is performed between 32 different features that have
been used in previous works and that are enumerated below.
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A. Time Domain Features

1) Standard deviation of the absolute value of the
normalised centered instantaneous amplitude

σaa =

√√√√ 1
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i=1

a2cn(i)

]
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1
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(1)

where acn can be formulated as

acn(i) =
a(i)

ma
− 1 (2)

where ma is the average value of the instantaneous
amplitude over the length of the signal N .

2) Standard deviation of the normalised signal amplitude
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where av can be formulated as

av(i) =

√
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− 1 (4)

3) Standard deviation of the instantaneous phase
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where ϕ(i) = angle(z(i)), being z(i) the complex
signal.

4) Standard deviation of the absolute instantaneous phase
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5) Standard deviation of the absolute value of the
normalised centered instantaneous frequency

σaf =
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where fN can be formulated as

fN (i) =
f(i)

mf
− 1 (8)

where mf is the average value of the instantaneous
frequency f(i) over the length of the signal N .

6) Standard deviation of the change in the instantaneous
phase
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7) Kurtosis of the normalised centered instantaneous
amplitude

µa
42 =

E{a4cn(i)}
E{a2cn(i)}

(10)

8) Kurtosis of the normalised centered instantaneous
frequency

µf
42 =

E{f4
N (i)}

E{f2
N (i)}

(11)

9) Ratio of the in-phase component and quadrature
component of the signal power

β =

∑N
i=1 a

2
Q(i)∑N

i=1 a
2
I(i)

(12)

where aI and aQ are the in-phase and quadrature
samples of the complex signal.

10) Skewness of amplitude
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11) Peak to average ratio

PA =
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1
N

∑N
i=1 a(i)
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12) Peak to RMS ratio
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2
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B. Transformation Based Features

1) Maximum value of the power spectral density of the
normalised centered instantaneous amplitude

γmax =
max |DFT (acn(i))|2

N
(16)

where acn(i) is the normalised centered instantaneous
amplitude defined by Equation 2.

2) Maximum value of the power spectral density of the
square of the instantaneous amplitude

Γmax =
max

∣∣DFT (a2(i))
∣∣2

N
(17)

3) Skewness of frequency

Sf =
E
[
(Ri − µi)

3
]

(σi)3
(18)

where σ2 can be formulated as

σ2 = E [(Ri − µi)(Ri − µi)
∗] (19)

where µi = E(Ri) and Ri is the Fourier transform of
the signal.
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C. Statistical Signal Characterisation Features

There are four Statistical Signal Characterisation (SSC)
parameters [22] that can be obtained if each signal is
considered as a set of consecutive segments. A segment is
bound by consecutive maximum and minimum values of the
waveform, and its amplitude is defined as An = |an − an−1|,
where An is the amplitude of the nth segment, with an and
an−1 being the amplitudes at the ending and beginning of
the segment. Additionally, the segment period is defined as
Tn = |tn − tn−1| where Tn is the period of the nth segment,
with tn and tn−1 being the elapsed time at the ending and
beginning of the segment.

The SSC parameters are defined from the two previously
mentioned segment characteristics as follows:

Ma =

Ns∑
i=1

Ai

Ns
Mt =

Ns∑
i=1

Ti

Ns
(20)

Da =

Ns∑
i=1

|Ai −Ma|
Ns

Dt =

Ns∑
i=1

|Ti −Mt|
Ns

(21)

where Ai is the amplitude of the ith segment, Ti the period
of the ith segment, Ns the number of segments in the signal,
Ma the amplitude mean, Mt the period mean, Da the standard
deviation of the amplitude mean, Dt the standard deviation of
the period mean.

To obtain good results, it is crucial to accurately detect the
maximum and minimum values of the signals. This improves
the detection of the signals segments, contributing to the
correct calculation of these parameters. Various methods have
been developed for this purpose, and in this paper, we opted
to filter the signals prior to the calculation of these four
parameters. The chosen filter is the Savitzky-Golay Smoothing
and Differentiation Filter (“savgol filter”) [23]. This filter is
often used to reduce high frequency noise in a signal due to
its smoothing properties and to reduce low frequency signals
using differentiation.

The chosen Savitzky-Golay filter calculates a polynomial fit
of order 2 in a filter window of size 7 while it moves along the

signal. The output of the filter at the center of each window
is then given by the polynomial fit at the center point.

D. Higher Order Statistical Features

These features are derived from a combination of two or
more High Order Moments (HOMs)

Mpq = E
[
zp−q(z∗)q

]
(22)

being z the complex signal.
1) High Order Cumulants (HOCs)

The formula of each of the considered HOC is shown
in Table I. However, these HOCs are then rescaled as
described in [24], with each cumulant raised to the
power 2

p , where p is the order of the cumulant.
2) Quotient between high order moments

v20 =
M42

M2
21

(23)

v30 =
M63

M3
21

(24)

V. FEATURE SELECTION

The selection of the features that are used to discriminate
between the seven modulation schemes is performed by the
application of the Maximum Relevance Minimum Redundancy
(mRMR) criterion of the mutual information algorithm [25].
As it was mentioned in Section II, this criterion was previously
used by [17] and proved to achieve good results.

The mutual information is a metric that can be used to
evaluate the relevance of a feature to the modulation class.
It is usually expressed as

I(xi, c) =

∫ ∫
P (xi, c) log

P (xi, c)

P (xi)P (c)
dxidc (25)

where xi is the ith feature and c is the class label.
The mRMR criterion is a sub-optimal way of selecting the

set of features that is less computationally demanding, as it
performs an incremental feature selection. It tends to select

TABLE I
HIGH ORDER CUMULANTS AS COMBINATIONS OF HIGH ORDER MOMENTS

HOCs HOMs Expression
C20 M20

C21 M21

C40 M40 − 3M2
20

C41 M40 − 3M20M21

C42 M42 − |M20|2 − 2M2
21

C60 M60 − 15M20M40 − 30M3
20

C61 M61 − 5M21M40 − 10M20M41 + 30M2
20M21

C62 M62 − 6M20M42 − 8M21M41 −M22M40 + 6M2
20M22 + 24M2

21M20

C63 M63 − 9M21M42 + 12M3
21 − 3M20M43 − 3M22M41 + 18M20M21M22

C80 M80 − 35M2
40 − 28M60M20 + 420M2

20M40 − 630M4
20

C81 M81 − 21M20M61 − 7M21M60 − 35M40M41 + 210M2
20M41 + 210M20M21M40 − 630M3

20M21
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TABLE II
MOST RELEVANT FEATURES

Order of relevance Feature symbol Feature name
1 C20 Cumulant of order 2
2 Sf Skewness of frequency
3 σv Standard deviation of the normalised signal amplitude
4 Da Standard deviation of the signal segments amplitude mean
5 Ma Amplitude mean of the signal segments
6 Sa Skewness of amplitude
7 σ∆ϕ Standard deviation of the change in the instantaneous phase
8 C60 Cumulant of order 6
9 Mt Period mean of the signal segments

features with a high correlation with the class and a low
correlation between themselves. It is usually expressed as

V (j) = I(xj , c)−
1

m− 1

∑
xi∈Sm−1

I(xj , xi) (26)

where Sm−1 represents the set of selected features at the
(m− 1)th iteration.

In [17], it was shown that both criteria ranked the features
in a different order of relevance depending on the scenario in
which the signals were being transmitted. Since the signals
that we use are affected by other channel effects, we perform
a new ranking of features. Our dataset consists of 1000 signal
data examples for each combination of modulation type and
SNR value. However, not all of these examples will be used in
the training and validation of the neural network, hence we can
not make use of all the dataset for the feature selection either.
Instead of that, we perform an aleatory selection of 40% of
the signals and calculate the feature importance according to
them 1. This operation is then repeated 100 times with different
aleatory selected signals of the dataset. Table II shows the 9
features most frequently ranked with the highest relevance.

VI. NEURAL NETWORK STRUCTURE

The neural network used throughout this work initially
consists of four layers. The first layer, or input layer, has the
same amount of nodes as input features. These input features
correspond to the nine highest ranked parameters according
to the mRMR criterion. Before the second layer, we perform
a batch normalisation to standardise the input values. The
second and third layers, or hidden layers, have 25 and 12
neurons each, with rectified linear activation function (ReLU).
Although these numbers of hidden layers and neurons were
originally selected to match the ones used in [16], both of them
are reduced in the following tests. Finally, the output layer has
the same number of nodes as modulation types for which the
classification is performed. This is because each neuron applies
the softmax activation function to generate a one-hot encoding

1All the calculations were performed making use of the package
mrmr selection, located at https://github.com/smazzanti/mrmr, written by
Samuele Mazzanti

output layer. For this classifier there are seven neurons in the
output layer.

VII. RESULTS

All the neural network architectures within this work are
trained, validated and tested with signals that have a SNR
value between the range of −10 and 20 dB, from the dataset
mentioned in Section III. However, before performing any
tests, the dataset is aleatory divided into two groups; 40%
of the data is selected for training, the remaining 60% is left
for testing. From the training dataset, 80% is actually used
for training, while the other 20% is used for validation. The
description of each dataset is summarised in Table III.

TABLE III
DETAILS OF THE USED DATASETS

TRAINING DATASET
Number of considered SNR values 15

Number of modulation schemes 7
Number of examples for each

combination of SNR and modulation
320

Total number of examples 33,600
VALIDATION DATASET

Number of considered SNR values 15
Number of modulation schemes 7
Number of examples for each

combination of SNR and modulation
80

Total number of examples 8,400
TESTING DATASET

Number of considered SNR values 15
Number of modulation schemes 7
Number of examples for each

combination of SNR and modulation
600

Total number of examples 63,000

The training process of a neural network depends on the
training examples that are used. This is the reason why every
test is performed multiple times, each with different training
and validation datasets, randomly separated. The results shown
in every test are then the average results obtained from 50

https://github.com/smazzanti/mrmr
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differently trained neural networks, all tested with the same
dataset.

All training processes make use of the Categorical Cross
Entropy Loss function and the parameters presented in
Table IV. Even though it is indicated that the maximum
number of training epochs is 1000, all the training processes
are stopped once the model performance stops improving on
the validation dataset.

TABLE IV
TRAINING PARAMETERS OF THE NEURAL NETWORK

Optimizer Batch
size

Max
epochsName Learning rate β1 β2 ϵ

Adam 0.005 0.9 0.999 1e− 07 50 1000

A. Neural Network with Two Hidden Layers

The neural network is first designed with two hidden layers
as mentioned in Section VI. The performance analysis of the
classifier is done by the calculation of the accuracy of the
model, defined as

Accuracy =
Number of correct predictions
Total number of predictions

(27)

Only for this test, we decide to perform two times the
training of the neural network making use of two different
datasets. First, we use the previously described one and then,
we include into the training dataset signals from the RadioML
2016.10A dataset that have a SNR value between −20 and
−10 dB. Both of the trained models are then tested with an
extended dataset that also includes signals between −20 and
20 dB. In Fig. 1 it is possible to see the average accuracy of
the models for the test set of signal examples. This graphic
evidences that the ANN is not able to learn from signals with
a SNR lower than −10 dB, as the performance of both models
is the same. It is for this reason that for the rest of this work,
we only make use of signals with a SNR value in the range
of −10 and 20 dB for both, training and testing. In Fig. 1 it is
also possible to see that the accuracy of the model for signals
of 0 dB is 72.87%, whereas for signals of 4 dB or more, it is
higher than 90%.

Other important metrics to evaluate the performance of the
model are the precision and recall of each class. The former
finds out what fraction of the predicted signals as a certain
modulation type actually belongs to that class. While the latter
measures the ability of the model to predict all the members
of a certain class. These metrics are defined as

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(28)

where we consider TP to be the number of correct predictions
of a signal as part of one specific modulation type, FP is the
number of incorrect predictions of a signal as a member of
a class, and FN is the number of incorrect predictions of a
signal as not part of a class.

The two previously mentioned metrics are captured in the
F1 Score. This metric works as an indicator of the ability of

Fig. 1. Variation of the accuracy of the classifier with the SNR value,
after being trained and validated with different datasets. The classifier
consists of a four layer neural network, with two hidden layers of 25
and 12 neurons each.

the model to capture positive cases and be accurate with the
cases it does capture. The F1 Score is formally defined as the
harmonic mean of the precision and recall. The variation of
the F1 score with the SNR value for each of the modulation
types is shown in Fig. 2. It is possible to observe that for
signals of 4 dB or more the F1 score is always higher than
0.8, despite the modulation.

Fig. 2. Variation of the F1 Score with the SNR value for each
modulation type. The classifier consists of a four layer neural
network, with two hidden layers of 25 and 12 neurons each.

For the case of 18 dB, we show a confusion matrix in Fig. 3,
in which the main errors are that of 8PSK missclassified
mainly as QPSK. This is a common error present in previous
works [5], [8], [9] and it can be explained due to the similarity
between the constellation points between these modulations.
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Fig. 3. Confusion matrix at SNR = 18 dB, generated with a classifier
of two hidden layers of 25 and 12 neurons each.

B. Neural Network with One Hidden Layer

In this next test, we modify the number of hidden layers and
neurons of the neural network. Table V contains all the tested
configurations of the neural network with their corresponding
average accuracy and F1 score across all SNR values on the
test dataset. It also presents the number of coefficients that
each model has associated according to its number of layers
and neurons. This value is important as it is a basic indicator
of the complexity of each model, i.e., a larger amount of
coefficients implies a bigger memory requirement, as well as
a higher number of multiplication operations during its use.

It is possible to see that the accuracy and F1 score
results do not vary considerably with the elimination of the
second hidden layer. This result is consistent with previously
published analysis, such as [26], which establish that for nearly
all problems the use of two hidden layers rarely improves
the model. It is also possible to observe that there is not a
significant variation between the performance of models with
one hidden layer of 15, 20 and 25 neurons. However, we can
see that choosing a model with one hidden layer and with a
reduced number of neurons has associated a smaller number
of parameters. For these reasons we decide to keep a neural
network of only one hidden layer of 15 neurons for all of the
remaining tests.

TABLE V
TEST RESULTS OF NEURAL NETWORKS WITH DIFFERENT

ARCHITECTURE

1st hidden
layer

2nd hidden
layer

Number of
coefficients

Average
accuracy

Average
F1 Score

25 12 689 72.08% 0.713

25 − 468 71.83% 0.711

20 − 383 71.60% 0.709

15 − 298 71.25% 0.704

10 − 213 70.31% 0.694

C. Variation of the Training Dataset

This next test is executed to determine what is the best
performance that could be achieved with a limited training
dataset. Table VI shows the variation of the average accuracy
and F1 score obtained across all SNR values on the test dataset
for the same model after it was trained and validated with
a different dataset. The datasets that are described on the
table refer to the combination of both training and validation
datasets, while the test dataset remains always the same.

It is possible to see that the best performance is
achieved with the originally selected dataset. As expected, the
performance of the neural network deteriorates as the size of
the training dataset is reduced. However, the reduction to half
of the number of examples for each combination of modulation
type and SNR value can be performed without producing
a significant degradation in the overall performance of the
classifier.

TABLE VI
TEST RESULTS OF NEURAL NETWORKS WITH DIFFERENT

TRAINING

Dataset
SNRs

Examples for each
SNR-modulation

Dataset
size

Average
accuracy

Average
F1 Score

[0 : 20 : 2] 400 42000 71.25% 0.704

[0 : 20 : 2] 200 21000 71.46% 0.710

[0 : 20 : 2] 100 10500 69.58% 0.689

[0 : 20 : 2] 50 5250 67.06% 0.664

[0 : 20 : 2] 10 1050 61.87% 0.611

D. Comparison with Other Classification Models

In this test we compare the performance of our classifier
with others that were also designed with feature extraction and
the use of an ANN. All of these classifiers were mentioned in
Section II and they all have a different set of input features,
hidden layers and neurons. It is important to notice that these
classifiers were not originally designed for the same group
of modulation schemes, but the comparison with our model
can help in showing that we made a correct selection of input
features. This is because we trained, validated and tested all
the models in the same way. In Fig. 4 it is shown that all the
models behave in a similar way for low SNR values, while
our proposed model has a noticeable better performance on
high SNR values.

E. Classification in the Presence of Interference

In the last test performed on the model, we intend to
evaluate its performance in the presence of interference. We
generate a new dataset of signals for testing the classifier.
Every signal present in the original testing dataset will be
combined with another signal from the dataset. Each of the
interfering signals will have an aleatory selected modulation
scheme and SNR value, higher or equal to 16 dB. Moreover,
the interference signals will overlap the original signals during
a percentage of their length, after being multiplied by an
attenuation factor α ∈ [0, 0.1,

√
10/10, 0.5].

In Fig. 5 we can appreciate the degradation of the
performance of the model in the presence of interference. It is
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Fig. 4. Variation of the accuracy of different classifiers with the SNR
value.

worth noticing that the performance of the classifier presents
a greater degradation for signals with high SNR values, rather
than for signals with an SNR closer to 0 dB, as the value of
α increases. This behaviour was previously reported in [27]
with the use of a different classifier.

Fig. 5. Variation of the accuracy of the classifier with the SNR value
of differently interfered signals.

VIII. CONCLUSION

The purpose of this paper was to propose the use of
a single hidden layer neural network to classify signals of
seven different modulation types. This architecture would be
beneficial for IoT devices that do not have the capability to
process a large number of parameters because of power or
memory restrictions.

The primary difference with many previous studies that
develop simple classification models comes from the use of
a dataset in which the signals are considered to pass through
multiple channel effects. Moreover, we perform a selection of
input features through the application of the mRMR criterion
of the mutual information algorithm.

The final neural network achieves an accuracy of more than
90% when the SNR of the input data is higher than 4 dB.
Although this performance could still be improved upon, it
is important to note that the model has a low complexity
and small number of trainable parameters, allowing it to be
trained with a reduced amount of training data examples. This
characteristic will be of great use in future works where the
intention will be not to use synthetically generated datasets,
but signals obtained through the use of SDR devices.
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