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GeneConnector: Unlocking the Full Potential of
Genbank Metadata
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Helson Mário Martins do Vale

Abstract—The Genbank database serves as a pivotal global
repository for genetic information, housing an extensive and
diverse array of data. Nonetheless, a significant proportion of its
existing records suffer from fragmented and often inadequate
metadata, thereby failing to furnish the requisite contextual
information regarding their acquisition. In response to this
challenge, we introduce GeneConnector, a novel tool designed
to harness shared information within multiple records of
the same specimen in Genbank, with the ultimate objective
of augmenting the completeness of inadequately annotated
nodes spanning various information domains. To exemplify the
capabilities of this tool, we conducted a comprehensive review
and aggregation of available data, utilizing the database for
Genera of Phytopathogenic Fungi (GOPHY) as a testbed. Our
evaluation revealed substantial improvements in information
retrieval through the analysis of shared data among nodes
that connect Genbank specimen records, yielding notable
enhancements ranging from 2% to an astonishing 60%. Our
approach equips users with the means to conduct precise,
facile, and accurate assessments of the contextual associations
of results, facilitated by two distinct metrics that assess the
current level of data annotation and the potential information
enhancement achievable through our evaluation, the Observed
Completeness Score (OCS) and the Reachable Completeness
Score (RCS).

Link to graphical and video abstracts, and to code:
https://latamt.ieeer9.org/index.php/transactions/article/view/8241

Index Terms—Genbank, NCBI, Gene-Connector, Mycology,
Phytopathology, GOPHY.

I. INTRODUCTION

G enomic data has become increasingly important in many
fields of research, including medicine [1], biotechnol-

ogy, and agriculture [2]–[4]. However, the sheer volume and
complexity of this data can make it challenging to extract
meaningful insights. Public databases, such as GenBank [5],
Ensembl [6], and UniProt [7], provide a wealth of information
on genes, genomes, and their products. However, accessing
and analyzing this information can be a time-consuming
and daunting task. Therefore, the development of tools that
can perform the aggregation of genomic metadata in public
databases is critical to advancing research in genomics.

One example of such a tool is BioMart [8], a widely
used data management system that allows users to query
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"data" (only) from multiple biological databases simultane-
ously. BioMart has been used in many studies, including the
identification of genetic markers associated with disease and
the exploration of gene expression patterns in different tissues.
Another example is Ensembl’s Biomart (see details), which
allows users to query Ensembl’s databases using the same
interface as BioMart. These tools are just a few examples of
the many resources available to researchers looking to access
and analyze genomic "data".

Box 1| The Ceratocystis mangicola [9] study-case.

ITS Submitted in Mar 4, 2005 (available under
the Genbank accession nº AY953382, [10]).

EF1 Feb 13, 2007 (EF433316, [11]).
TUB1 Feb 13, 2007 (EF433307, [11]).
RPB2 Mar 11, 2014 (KJ601618, [12]).
MS204 Mar 11, 2014 (KJ601582, [12]).

A pathogen originally described as member of the
Ceratocystis fimbriata sensu lato complex causing the
Mangifera indica disease, known as mango blight,
murcha, or seca da mangueira in Brazil. Records of C.
mangicola were registered in three different submission
events, with a large time lag between the first (the
Internal Transcribed Spacer [ITS] submission) and the
latest submission events (RNA polymerase subunit II
[RPB2] and guanine nucleotide-binding protein subunit
beta-like protein [MS204], nine years after). Such
time lag allowed the information associated to the
C. mangicola to be gradually extended. Since the
first registration of the ITS marker, the associated
information was upgraded, starting from basic source
modifiers as isolate and organism name to a well
documented record including strain, specimen-voucher,
type-materials, host, country, and others (see the Fig. 1
for details of the information gain associated to C.
mangicola).

As attempted readers can see, the "data" has been the
center of attention when it comes to data aggregation, while
metadata is much more often overlooked. Therefore, the
aggregation of genomic metadata is important because it
enables researchers to integrate data from multiple sources and
make more comprehensive and accurate analyses (important
examples includes [13]–[16]). For example, by combining
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genomic data with clinical data, researchers can identify
genetic markers associated with disease and develop more
effective treatments. The aggregation of genomic metadata
also enables the identification of patterns and trends that may
not be apparent when examining individual datasets. These
patterns and trends can provide insights into the most variable
scientific domains.

Despite the existence and importance of the tools that per-
forming aggregation of genomic metadata from single records,
and focused in high-throughput sequencing data (examples
include Metagenote [17], and ffq [18]), there are no tools that
aggregate multi-loci data. There are still challenges associated
with accessing and analyzing such data, and information con-
sistency is maybe the most important of these (see [19] for a
important study-case about Genbank information consistency).
GeneConnector works around such challenges. Our proposal is
to create connections between unique Genbank records and use
the "unique + shared" information between records to improve
single gene annotations.

When specifically dealing nucleotide data stored in Gen-
bank, it is common to observe events of information increment
associated with advancements in knowledge regarding taxo-
nomic groups (see Box 1 for an example). The phenomenon of
information increment events can be attributed to the dynamic
nature of scientific research. As researchers delve deeper into
the genetic makeup of various organisms, they uncover novel
data points and identify previously unrecognized patterns.

These discoveries, when incorporated into the Genbank
database, enhance the breadth and depth of information avail-
able for taxonomic analysis. Consequently, with each advance-
ment in our understanding of taxonomic groups, a ripple effect
occurs, influencing future studies, expanding our knowledge
base, and fostering further scientific breakthroughs (the natural
stepping stones of science [20]).

Finally, GeneConnector was designed precisely to absorb
this intrinsic characteristic of Genbank data during metadata
acquisition campaigns. Therefore, our aim is to illustrate how
this tool can enhance the metadata quality of a comprehensive
database solely by leveraging the shared information within
Genbank records. Furthermore, we introduce our novel ap-
proach, the Observed Completeness Score (OCS) and the
Reachable Completeness Score (RCS), for quantifying the
level of completeness in records associated with specimens
with available information in Genbank. To accomplish this ob-
jective, we employed the comprehensive database for Genera
of Phytopathogenic Fungi (GOPHY) as a case study ( [21]–
[24]).

II. PROBLEM STATEMENT

Genbank, a widely used repository for nucleotide sequence
data, contains an immense amount of valuable genomic in-
formation. However, the lack of consistent and standardized
metadata across the records poses a significant challenge for
researchers aiming to extract meaningful insights from this
vast collection. Existing approaches for metadata extraction
and aggregation from Genbank records are often limited,
inefficient, or require manual curation, hindering the ability
to comprehensively exploit the data for scientific research.

To address this problem, a novel software solution has
been developed to automate the process of populating and
aggregating metadata from Genbank nucleotide records. The
software aims to extract diverse metadata attributes, including
taxonomy, organism properties, sequencing techniques, geo-
graphical location, and biological features, among others, from
the extensive Genbank database. By automating this labor-
intensive task, researchers will be empowered to efficiently
access and analyze metadata associated with nucleotide se-
quences, enhancing their ability to conduct comprehensive
studies and accelerate advancements in various biological and
genomic fields.

The research article aims to evaluate the effectiveness and
reliability of the GeneConnector in extracting and aggregating
metadata from a large-scale sample of Genbank nucleotide
records. The outcomes of this research will contribute to
improving the accessibility and quality of metadata associated
with Genbank nucleotide records.

III. PROPOSED SOLUTION

A. Concepts and Information Modelling

Our tool was developed to modelling the information con-
tained in Genbank records based in three basic data models:
Metadata, Nodes, and Connections (see Fig. 1). A Connection
is a top-level object centralizing Nodes. A single Node carries
information of the accession number that originated the object,
and the gene marker from which the record was extracted,
connecting all metadata related to the original Genbank record.
Metadata objects abstract the Genbank raw qualifiers informa-
tion.

Raw Genbank qualifiers includes a list of key/value pairs
describing the context associated to given nucleotide record.
Our tool was developed to turn qualifiers into importance
groups (from here on we will call them Metadata Indicator
Groups, MIG) that mirrors the information relevance which
turn a desired specimen unique (information importance are
available in Table I, and visually explored in Fig. 1). For
example, a taxonomic key (e.g. organism [with value Bipolaris
victoriae]) is shared between multiple real world specimes, so
it must have less importance than a specimen related key (e.g.
isolate [with value CBS:327.64]).

TABLE I
METADATA INDICATOR GROUPS USED TO RANK KEYS

AND CALCULATE THE GENE CONNECTOR COMPLETENESS
SCORES

Group Score Description
SPECIMEN 8 Unique identifiers of specimen.
TAXONOMY 5 Taxonomy related keys.
HOST_SUBSTRATE 3 Identifiers for host interactions.
TIME_REFERENCES 2 Time milestones.
GEO_REFERENCES 2 Geographical indicators.
ASSAY 0 Related to gene sequencing methods.
EXTERNAL_LINKS 0 References to external databases.
ACTORS 0 Human actors related to the record.
OTHER 0 Not already mapped keys.

Based on these principles, our tool systematically punctuates
metadata from independent Genbank records, and calculates
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Fig. 1. GeneConnector information diagram. The diagram represents the main information models used by our tool to dealings with Genbank
records information: Metadata, Nodes, and Connections. Dotted arrows connecting metadata and nodes layers indicating zero scored MIG’s.
Warmer colors indicate more specific information about the specimen to which the nodes (genes) belong. Therefore, the closer to red indicates
metadata with greater power to approximate nodes.

the information completeness associated to a set of records that
represents real world specimens, improving the information
usability.

As already demonstrated in Table I, the MIG importance
score is expressed on a Fibonacci scale and enables the
differentiation of important metadata from spurious ones,
thereby facilitating the calculation of two completeness scores:
the Observed Completeness Score (OCS) and the Reachable
Completeness Score (RCS).

The OCS measures how well a connection is annotated in
terms of information domains taking into account parameters
as uniqueness (SPECIMEN), tree of life placemant (TAX-
ONOMY), ecological placement (HOST_SUBSTRATE),
temporal marks (TIME_REFERENCES), spatial marks
(GEO_REFERENCES), and less relevant ones (ASSAY, EX-
TERNAL_LINKS, ACTORS, and OTHER). The OCS is cal-
culated independently for each node.

The RCS is a metric used to assess the completeness of
connections based on the nodes they connect. Unlike the OCS,
which considers all nodes independently, the RCS takes into
account the dependencies between nodes that composes a
connection. Specifically, the RCS is calculated as the ratio
of the number of observed connections between nodes to the

number of possible connections within a given MIG. This
score reflects the degree to which the available metadata within
a given MIG is interconnected and should be used to complete
another nodes.

The three main steps of an hypothetical calculation of
the OCS and RCS are described below where the results of
individual steps are shown in Table II.

• Step 1. Finding nodes with at least one occurrence of
qualifiers of each MIG with a score greater than zero:

Let N be the set of nodes.
Let Q be the set of qualifiers.
Let M be the set of MIGs.

The condition to find such nodes can be represented as:

∀n ∈ N, ∃m ∈ M, ∃q ∈ Q with score(m) > 0 such that
occurs(n, q)

• Step 2. Annotating nodes with the MIG score (no more
than one key per MIG scored by a node):

Let S be the function that assigns a score to a node.
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The annotation can be represented as:

∀n ∈ N, ∃m ∈ M,S(n) = score(m)

• Step 3. Calculating the expected score during the second
step:

Let E represent the expected score.

The calculation can be represented as the sum of
products:

E =
∑

m∈M score(m) · number of nodes

Finally we filtering expected scores to find MIGs with
at least one member (penalizing MIGs with a zero score
if not represented):

Let F be the set of MIGs with at least one member.

The filtering can be represented as:

F = {m ∈ M | ∃n ∈ N such that occurs(n,m)}

The penalization of MIGs not represented can be
represented as:

∀m ∈ M \ F, score(m) = 0

TABLE II
THE FIRST THREE STEPS OF THE COMPLETENESS SCORES
CALCULATION WITH HYPOTHETICAL NODES A, B, C, AND

D

Step 1 Step 2 Step 3
Group A B C D E-score† 0-score‡

SPECIMEN 8 8 - 8 32 32
TAXONOMY 5 5 5 5 20 20

HOST_SUBSTRATE - 3 3 - 12 12
TIME_REFERENCES - - - - 8 0
GEO_REFERENCES 2 - 2 - 8 8

15 16 10 13 80 72
Conn. Obs. score 54

OCS 0.68
RCS 0.90

Step 1 contain four hypothetical nodes A, B, C, and D with group scores,
respective. Dash indicate groups not represented in Node. Step 2 and Step 3
includes expected scores, and non-zero group scores, respectively. † Expected
score by group. The product of the nodes number and the score value of the
given group. ‡ Non-zero score by group. The same as expected score if at last
one Node contains a given group. Otherwise is zero.

After execute the above steps we can calculate the Connec-
tion Observed Score by sum individual node scores (conn.
obs. score = 54 in Table II). Next, the OBS is calculated
being the ratio between the Connection Observed Score and
the sum of Expected scores (54 / 80 = 0.68 in Table II), and
finally the RCS should be calculated as the ratio of the step
3’s values sum and the sum of Expected scores (72 / 80 = 0.90
in Table II). This is a simple and elegant way to represents
the information completeness of arbitrary Genbank records.

B. Technologies and Code Availability

GeneConnector was developed in Python (3.11+ [25])
adopting the hexagonal architecture [26]. The complete logic
for the calculation of scores, data parsing, data validations, and
the data collection from Genbank are centered at the package
core sub-module. For curious readers, a complete metadata list
by MIG should be found at the Github repository sgelias/gene-
connector-cli) whithin the ‘metadata‘ file src/gcon/core/do-
main/dtos/metadata.py). Our tools is Open Source and the
codebase is available under the MIT license (see details).

C. Study Case: GOPHY Data Completeness

To demonstrate the performance and value proposition of
GeneConnector we downloaded and evaluate the complete
GOPHY’s database containing seventeen gene markers and
1,246 specimen records. The complete database is avail-
able as a Supplementary material into the GeneConnec-
tor Github directory (files named gcon-input-gophy.xlsx in
docs/manuscript/supplementary-material).

We value simplicity, so we make running the GeneCon-
nector possible through a single command named resolve
available after the tool installation on the host system. Cur-
rently our tool was tested only using Linux systems, thus, over
Windows or Macintosh systems we recommend to run using a
Docker environment [27]. See below the execution command
of GeneConnector CLI:

The Code snipped of Listing 1 exemplifies our package
execution. After installed GeneConnector should be called
using the gcon callable and the resolve command used to
execute the full package pipeline. Required arguments are
shown in lines 5, 6, and 7 of the previous code snippet. A
comprehensive user guide is available at the GeneConnector
Github directory.

1 # GeneConnector execution in Linux environments
2 # using the ‘ resolve ‘ command of the ‘gcon‘ package.
3
4 $ gcon resolve \
5 −−input−table input−table . tsv \
6 −−temporary−directory /tmp/gcon/ \
7 −−output− file gcon−out

Listing 1: GeneConnector execution command example. Lines
started with hashtag are code commnets, so they are not
executed.

The output generated by the aforementioned command en-
compasses a tabular file (TSV) that amalgamates several cru-
cial components: (i) input table information, (ii) OCS and RCS
scores, (iii) a statistical percentage depicting the information
gain, which quantifies the quantity of information salvaged
following the evaluation of metadata under the Nodes category,
(iv) signatures, and ultimately, (v) all metadata associated with
individual connections.

Signatures offer a streamlined mechanism enabling re-
searchers to trace, index, or effortlessly compare results across
multiple analyses conducted at disparate times. Our tool in-
corporates two distinct levels of signatures: the connection-
level and node-level signatures, grounded in standard Universal
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Unique Identifiers (UUID) of version 3 hashes. These hashes
are derived by compressing the most pivotal data elements
that constitute Nodes (comprising Genbank accession, source
genome, gene name, and metadata keys and values) and
Connections (encompassing identifiers and node signatures).
Such an approach empowers users with the capability to
replicate results and swiftly compare records when necessary.

Metadata columns are composed of the MIG keys concate-
nated to metadata keys (as example SPECIMEN.isolate). Such
way turn the further integration and indexing as a simple and
natural way to store GeneConnector results. In addition to the
above cited tabular file, the GeneConnector results includes at
default a JSON1 formatted output file as a optimal format to
be inputs into ETL2 pipelines and web integrations.

IV. RESULTS

A. MIG’s Representativity and Distribution

Analysis of the complete GOPHY’s database resulted in
414 events of information gain3 from the total of 1,246
specimen records. These amount comprises 33% of the
database records suffering information gains. Gains ranged
from 2% up to 60%, widely distributed along all fungal genus
included in our analysis. Twenty-five of the twenty-nine genera
present in GOPHY were contemplated with information gains.
The complete tabular results is available as a supplementary
material.

The most important MIG obviously was SPECIMEN, with
strain and culture_collection as the most populated keys, with
86.3% and 69.3% of coverage. It was not surprisingly due to
the nature of the GOPHY database proposal itself, including
only high quality records, mainly belonging to type materials.

Next, the TAXONOMY MIG with type_material as the sec-
ond4 most important key, with >69% of coverage in records.
Both SPECIMEN and TAXONOMY are the most important
keys to make each Connection record unique. And precisely
for this reason that both are the best scored in our tool (see
Table I).

The third most important MIG for GeneConnector approach
is HOST_SUBSTRACT. Both keys host and isolation_source
covered approximately 62% and 40%, respectively, of the full
GOPHY dataset.

The next important MIG’s is GEO_REFERENCES. It was
present in about 76% of records, however in the most cases
refereed to only as country. This key in most cases is not so
geographically resolute when dealing with countries of con-
tinental dimensions, such as Brazil or Australia. From 1,246
records, just one included information of Latitude/Longitude,
completely inhibiting the performance of geographic analyzes.

A world scale map indicating the geographic range of
the records, and including the maximum information gain
reachable by country is shown in Figure 2. The 10 countries
covered with the highest number of information gain events

1Javascript Object Notation format.
2Extract, Transform, and Load pipelines.
3Calculated as the percentage of the Reachable Completeness Score which

the Observed Completeness Score comprises.
4Organism is a required field, so it has full coverage in Genbank nucleotide

records.

Fig. 2. Information gain at the globe scale. Records with some
information gain registered in this study are highlighted in white-
to-red scale (see scale legend).

were China, United States, Australia, South Africa, Brazil,
Thailand, Netherlands, Indonesia, Japan, and Ecuador. The
maximum information gain reached by such countries ranges
between 30% and 50%. This is proportional to the country
contribution to the state of the art of the phytopathogenic fungi
records, a fully expected scenario.

Different from the previous cited MIG’s the
TIME_REFERENCE was an exception. Only about 6.9% (86
records) of the GOPHY database contains time milestones.
Despite such MIG is not highly scored in GeneConnector
(score = 2), the absence of this information inhibits temporal
interpretation of the collection effort on the phytopathogenic
important fungi around the world.

B. Phytopathogenic Completeness Along GOPHY Genus

Information gains by genus are shown in Figure 3. As above
cited, information gains ranged from 2% up to 60%. The top
ten phytopathogenic fungal genus with most number of spec-
imen records suffering information gains were Calonectria
with 73 events, Diaporte (55), Curvularia (48), Colletotrichum
(41), Ceratocystis (23), Bipolaris (21), Boeremia (19), Neofu-
sicoccum (17), Phyllosticta and Huntiella with (16).

Using our approach 8 of 25 genus with information gains
(GOPHY database include information of 29 genus) reached
the full information completeness (100% of completeness,
RCS = 1.0), grouping at last one of each MIG qualifier key
per connection. A significative information gain in terms of the
complete database. As can be seen in Fig. 3, median values of
RCS were up to 90% in nine of ten most representative genus
of GOPHY (cited in the previous paragraph).

V. CONCLUSIONS

In this study, we showcase the remarkable ability of
GeneConnector to substantially enhance the data completeness
of specimens in Genbank by exclusively leveraging shared
information within the records. Our findings demonstrate that
utilizing our tool can yield gains of up to 60% in shared
information among Genbank records, particularly for specific
phytopathogenic genera. Furthermore, on a global scale, the
data aggregation process holds the potential to benefit records
from approximately 55 countries across the globe.
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Fig. 3. Information gain by genus of phytopathogenic fungi registered in GOPHY database. Median with max/min values are presented in
first Y-axis (left). Median values of Observed Completeness Scores and Reachable Completeness Scores are shown in 2nd and 3rd Y-axis
(right), respectively. Only records with information gains greater zero were kept in chart. Numbers below zero in the X-axis indicates the
number of records evaluated for each genus (upper number), and the number of record reaching the maximum reachable completeness (100%,
lower number).

Moreover, our data aggregation process is both auditable
and interpretable through two scores: the Observed Complete-
ness Score (OCS) and the Reachable Completeness Score
(RCS). These scores provide insights into the current level
of information completeness and the attainable information
based on shared metadata among nodes of the same specimen
in Genbank.

With these comprehensive metrics, our aim is to make a
significant contribution to the ongoing improvement of the
information accumulation process, benefiting scientists world-
wide and fostering continuous advancements in knowledge
acquisition.
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