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Abstract—The adoption of photovoltaic (PV) systems has
increased significantly in recent years, driven by the demand
for off-grid and on-grid residential and commercial applications.
However, the high initial investment required for PV installa-
tions has limited their widespread adoption. Governments and
marketing enterprises have implemented different strategies to
promote PV systems to overcome this barrier, focusing on the
return on investment (ROI) concept. However, the conventional
approach uses limited economic factors to calculate the ROI. It
fails to consider the impact of external factors, such as system
degradation, which can vary between systems. To address this
issue, we propose a new methodology to estimate the ROI of a
photovoltaic system with greater accuracy. Our approach incor-
porates system-predicted degradation, calculated using historical
meteorological data and prediction techniques. We applied this
methodology to a photovoltaic system installed at the Universidad
Tecnologica de Bolivar (UTB) in Cartagena and evaluated it
against five different approaches. The results show that our
proposed method offers a more accurate and reliable estimation
of the ROI of a photovoltaic system, considering a broader
range of factors. Overall, our work contributes to advancing
the understanding of photovoltaic system ROI calculation and
promotes using sustainable energy sources. By providing a more
precise estimation of the ROI of a photovoltaic system, our
methodology can help potential investors make more informed
decisions and promote the adoption of clean energy sources.

Index Terms—Photovoltaic System, Performance Indicator,
Degradation Model, Return on Investment.

I. INTRODUCTION

he adoption of photovoltaic (PV) systems in Latin Amer-
Tica has increased significantly in recent years [1], as
individuals and businesses seek to utilize clean energy sources
[2]. However, the high cost of installing PV systems has
deterred many potential investors, [3] despite government
efforts to implement renewable fit schemes that reduce the
spot price of PV components [4].

Market enterprises tend to focus on promoting PV systems
using a fast ROI strategy to attract more investors. However,
calculating the ROI of a PV system is a complex process
that involves considering multiple factors, [5], such as taxes,
inflation [6], opportunity cost, regional rewards [7], energy
efficiency, and component degradation [8].

The conventional ROI calculation method assumpts an ideal
PV system that generates electricity, the customer consumes
all power [9], and the annual electric output, taxes, and
incentive policies remain constant [10]. Yet, this method needs
to account for the impact of external factors that can affect the
performance of PV systems, making it difficult to assess the
actual ROI accurately.
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Several studies have attempted to address this issue by
proposing new approaches to calculating the ROI of PV
systems [11]. However, these approaches often require consid-
erable time and resources, making them impractical for many
potential investors [12].

This study proposes a novel approach to address these chal-
lenges for designing and calculating the ROI of a photovoltaic
system situated at the Universidad Tecnoldgica de Bolivar
(UTB) in Cartagena, Colombia. Fig. 1 visually represents
the proposed installation site for the photovoltaic solar plant
at UTB. The figure is divided into four sections to offer
a comprehensive view of the location, encompassing key
features such as the UTB campus, specific areas designated for
solar plant installation, and the current location of the UTB
meteorological station, which holds significant relevance to
our research.

The proposed methodology involves a six-step approach
that first considers historical data from UTB and historical
production data of a system installed near the UTB and with
similar PV capacity. Then, we processed the historical by the
long short-term memory (LSTM) model [13] to predict the
production of the designed system. Then, we used the results
to calculate the performance indicator (PI), the degradation
curve, and the return on investment.

Estimating the ROI of photovoltaic (PV) systems is crucial
for promoting the adoption of sustainable energy sources. We
compared our proposed approach for calculating PV system
ROI with five other approaches by analyzing the actual ROI
curve. The results showed that the zero degradation, low
degradation, and middle degradation approaches estimated the
ROI at five years, while our approach estimated the ROI at
year eight. Our approach took into account the performance
indicator PI of the PV system, which enabled us to calculate
a more accurate ROI than other approaches.

Furthermore, our study reveals that the ROI takes longer
when the PV system has programmed clean sessions. This
finding suggests that future work could estimate the best times
to schedule maintenance sessions to avoid overcleaning the
system.

The accuracy of our proposed approach has significant
implications for sellers and policymakers. Sellers can provide
a more precise ROI estimate, leading to better economic
satisfaction for clients in the short and long term. Policymakers
can implement effective renewable energy policies based on
accurate ROI calculations, promoting the use of sustainable
energy sources in Latin America and contributing to a more
sustainable future.

Overall, our proposed approach for estimating PV system
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Fig. 1. Proposed Photovoltaic Solar Plant Installation Site at UTB and Current Location of UTB Meteorological Station

ROI provides a more accurate estimation of the ROI, which is
essential for promoting the use of sustainable energy sources in
Latin America that contribute to advance in the understanding
of PV system ROI calculation and can inform the development
of practical renewable energy policies.

II. RELATED WORK

Previous research has explored various aspects of estimating
photovoltaic systems’ performance and economic viability.
This section provides a concise overview of key studies and
highlights their contributions to our research. We emphasize
how our work extends and differentiates itself from prior ap-
proaches.Our research stands out by evaluating and comparing
various state-of-the-art approaches while introducing a novel
methodology that considers critical factors often overlooked in
ROI calculations. We explicitly account for system degradation
and maintenance costs, providing decision-makers with a
more accurate assessment of a photovoltaic system’s financial
performance over time.

A. Economic Factors and ROI

Muhammad et al. [14] introduced an approach that considers
economic factors to evaluate future cash flows in photovoltaic
systems. While they addressed financial considerations, our
study takes a step further by introducing a novel methodology
that explicitly incorporates critical factors often overlooked in
ROI calculations, such as system degradation and maintenance
costs.

B. Energy Return on Investment (EROI)

Zhou et al. [15] introduced the Energy Return on Investment
(EROI) concept to measure the electrical energy output versus
electrical energy inputs in photovoltaic systems. Our work
concentrates on ROI assessment but provides a unique contri-
bution by integrating degradation modeling and maintenance
cost analysis, providing a more holistic financial perspective.

C. Financial Performance and Simulation

Ozcan et al. [16] focused on ROI based on financial
performance, utilizing a photovoltaic simulator for production

estimation. In contrast, our research distinguishes itself by
introducing a comprehensive approach that explicitly considers
the impact of degradation and maintenance on ROI, leading
to more accurate financial projections.

D. Internal Rate of Return (IRR) and Net Present Value (NPV)

Ertuugrul et al. [17] used financial metrics like Internal
Rate of Return (IRR) and Net Present Value (NPV) to assess
ROL. Our study complements these metrics by incorporating
a degradation model, providing insights into long-term perfor-
mance trends and their financial implications.

E. Maintenance and Component Replacement

When calculating ROI, Formica et al. [18] factored in annual
taxes, component failures, maintenance costs, and component
replacements. Our research builds upon these considerations
by introducing a comprehensive degradation model that cap-
tures the long-term performance decline of photovoltaic sys-
tems.

F. Long-Term Efficiency and Degradation Analysis

Seo et al. [19] analyzed photovoltaic production efficiency
and degradation percentages based on seven years of data. Our
work follows a similar trajectory by considering long-term data
but distinguishes itself by incorporating a degradation model
that quantifies the impact of performance decline on ROIL.

G. Reliability and Durability Assessment

Using monthly production data, Dhimish et al. [20] presents
a straightforward method for estimating degradation rates in
photovoltaic panels by accurately quantifying power output
decline over time. This approach enhances monitoring pre-
cision and facilitates comparisons with existing degradation
estimation technologies.

III. METHODOLOGY

This section outlines our comprehensive methodology for
assessing the Return on Investment ROI of the proposed 60.8
kW (DC) photovoltaic solar system intended for installation
at the Universidad Tecnolégica de Bolivar UTB in Cartagena,
Colombia. Our approach encompasses several key compo-
nents, each contributing to a comprehensive ROI evaluation.
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TABLE 1
PRESENCE OF VARIABLES IN DATASETS

Variable Unit Dataset 1 Dataset 2 Dataset 3  Dataset 4
Date dm.Y h v’ v’ v’ v’
Irradiation W/m2 v’ v’ v’ v’
Ambient Temperature °C v’ v’ v’ v’
Module Temperature °C v’ v’ - v’
Apparent Power (S) VA v’ v’ - v’
Reactive Power (Q) VAr v’ v’ - v’
PV Production Wh v’ v’ - v’
Humidity g/m3 - - v’ -
Pressure Pa - - v’ -

A. Historical Data

Table I summarizes essential variables found in three histor-
ical datasets used for our analysis. Included variables encom-
pass date, irradiation, ambient temperature, module tempera-
ture, apparent power (S), reactive power (Q), PV production,
humidity, and pressure. Checkmarks indicate whether each
dataset contains these variables.

1) Dataset 1: Maintained Photovoltaic System: We derived
Dataset 1 from a meticulously maintained photovoltaic system
approximately 5 kilometers from UTB. This system undergoes
regular monitoring and follows a comprehensive cleaning
protocol. Every four months, a thorough cleaning process is
executed during daylight hours, utilizing demineralized water
and an advanced cleaning robot. The dataset encompasses
detailed records retrieved from the Fronius Web Platform,
which meticulously tracks the operation of a three-phase
inverter (AC) integrated into a high-capacity 60.8 kW (DC)
photovoltaic solar system. Additionally, it includes invaluable
meteorological data that holds significant relevance for our
comprehensive analysis. Historical data for this system spans
over three years, providing a rich and robust foundation for
our research.

2) Dataset 2: Non Maintained Photovoltaic System: In
contrast, Dataset 2 comes from a non-maintained 180 kW
(DC) photovoltaic system situated approximately 8.7 kilo-
meters from UTB. This dataset includes data recorded by a
three-phase inverter (AC) but lacks the structured maintenance
observed in Dataset 1.1t also incorporates essential meteoro-
logical data. The historical data for this system also spans over
two years.

3) Dataset 3: Meteorological Data from UTB’s Location:
Dataset 3 comprises a comprehensive set of meteorological
data collected over a robust five-year period. We collected
these records from a weather station atop UTB in Carta-
gena, Colombia. The dataset encompasses key parameters,
including solar irradiance, ambient temperature, humidity,
and atmospheric pressure.We applied rigorous preprocessing
procedures to eliminate anomalies, including null values and
erratic variable behavior, such as negative irradiance readings
or nighttime data points. Notably, the weather station will be
no more than 60 meters from where the UTB photovoltaic
plant will be.

4) Dataset 4: UTB Synthetic Historical Data: In addition
to the three primary datasets mentioned earlier, we employed
a supplementary dataset comprising synthetic historical data.
We generated these synthetic data using the System Advisor
Model (SAM) online simulator, a renowned software tool
developed by the National Renewable Energy Laboratory
(NREL) [21]. SAM offers robust simulation features, allowing
us to generate reference production profiles based on the UTB
system’s design specifications and geographical coordinates of
the UTB location (latitude: 10.370372147751306, longitude:
-75.46543750536256). The synthetic historical data serve as
an invaluable resource for our analysis, providing a controlled
and idealized reference for the expected energy production
of the UTB photovoltaic system under various conditions.
These synthetic data further enhance the comprehensiveness of
our ROI estimation methodology, allowing us to evaluate the
performance and financial viability of the UTB photovoltaic
system with a high degree of accuracy and confidence. To
construct our methodology, we utilized three primary datasets
to ensure robustness and relevance. We meticulously chosen
each dataset based on location proximity and historical data
availability

B. Production Predictor Model Implementation

In this research phase, we rigorously applied our produc-
tion prediction model, following the methodology proposed
by Martinez et al. (2022) for accurately predicting solar
photovoltaic (PV) energy production and associated climatic
conditions. Our primary objective, within the context of this
model, is to achieve precise and reliable forecasts of energy
production for the planned 60.8 kW (DC) PV system intended
for deployment at the UTB.

Our adaptation of Martinez et al.’s methodology consists of
two phases.

1) Phase One: Training and Validation: The initial phase
involved a systematic division of Dataset 1 and Dataset 2
into separate subsets designated for training and validation,
maintaining an 80-20 split ratio. Then, we applied the LSTM
(Long Short-Term Memory) neural network, a robust tool for
sequence prediction tasks. This phase incorporated historical
production records, irradiance levels, and temperature data.
Remarkably, our inference model achieved an impressive level
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Fig. 2. This figure depicts the projected production of the UTB PV system over 72 months using Martinez et al.’s methodology. It also compares this projection
with the idealized production estimate from the SAM simulator, enabling an assessment of real-world system performance against an idealized projection.

of accuracy, with a remarkable 94% on the training dataset and
a robust 90% on the validation dataset.

2) Phase Two: Predictive Analysis: In the second phase of
our research, we faced the challenge of predicting the energy
production expected from the upcoming UTB PV system,
armed with our meticulously trained inference model. To
achieve this, we seamlessly integrated historical irradiance and
temperature data from Dataset 3 into our model. To enhance
the accuracy of our predictions, we conducted a comparative
analysis between our production projections and the idealized
outcomes generated by the synthetic Dataset 4, as illustrated in
Fig. 2. While both projections display similar patterns, the key
distinction lies in Dataset 4’s model, which leans towards an
idealized scenario. In contrast, our model embraces a grounded
approach, aligning more closely with the nuanced fluctuations
in temperature and irradiance observed over a comprehensive
72-month timeframe. This critical differentiation underscores
the real-world applicability of our model, as it faithfully
reflects the historical climatic factors of the region, resulting
in a more conservative production estimate that aligns with
practical operational outcomes.

C. Evaluation of Performance Indicator

The Performance Indicator PI is a crucial metric that
quantifies how effectively the photovoltaic system performs
compared to its idealized simulation [22]. It establishes a
relationship between the monthly production data, recorded
hourly from the photovoltaic system, and the monthly expected
production.

This essential relationship is in Equation 1:

> Monthly System Production
N >~ Monthly Expected Production

The PI provides valuable insights into the real-world effi-
ciency of the photovoltaic system. A PI value above 100 indi-

PI

D

cates that the system outperforms its simulated expectations,
reflecting a favorable operational outcome. Conversely, a PI
below 100 suggests underperformance.

To calculate the PI, we utilize real-world production data ex-
tracted from historical records (specifically, synthetic Dataset
4) and the production projections generated by our production
prediction model, as explained in the previous section. This
combination of actual and simulated data allows us to gauge
the practical performance of the photovoltaic system against
its simulated ideal.

D. Degradation Curve

We used our knowledge of previously calculated Perfor-
mance Indicator PI values in the previous phase of our degra-
dation forecasting process. Our primary goal in this phase was
to establish a precise mathematical representation, clarifying
the temporal behavior of the Performance Indicator PI. To
achieve this, we employed an exponential decay function.
While in the preceding phase, we were able to determine
discrete PI values using production predictions and synthetic
Dataset 4, these were merely isolated data points. However,
we intended to capture a more continuous trend in the data.
Hence, we proposed an exponential decay curve shown in
equation 2, which, in this context, symbolizes the system’s
underperformance or what we refer to as the degradation
curve.

y(z)=a- e b 2)

In this equation, "x" represents time, while "y" corresponds
to the Performance Indicator at specific temporal points. Each
data pair "(x, y)" corresponds to a distinct time point and the
observed performance.

Following the formulation, we meticulously fine-tuned the

parameters "a" and "b" to ensure a precise fit of the exponential
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Fig. 3. Degradation fitted curve using the exponential non-linear regression D(t) = 99.9¢~0-001227¢

model to the empirical historical data. We conducted this
fine-tuning process using Python curve fitting techniques,
ultimately yielding the exponential decay degradation curve:

3

Within equation 3, the parameter "a" signifies the initial Per-
formance Indicator value, while "b" represents the coefficient
governing the rate of performance decay over time.

This degradation modeling approach empowers us to predict
the long-term performance decline of the photovoltaic system,
accounting for both scheduled maintenance and the passage
of time. This predictive model is valuable for estimating
the system’s future performance and optimizing maintenance
strategies.

Dit)=a- e bt

12(1+i)—1

> D)

t=127

D(i) = — “)

Equation 4 is a fundamental component of our ROI estimation

methodology, enabling us to calculate the annual returns for
the photovoltaic system over the specified period, in this case,
months.

The results of the degradation implementation are visual-
ized in Fig. 3, which exhibits the results of the exponential
regression obtained through the curve fitting evaluation system
spanning 72 months. The decay behavior of the Performance
Indicator PI over time is clearly evident in the figure. This
observation confirms that the system’s performance varies over

time, highlighting its significance in determining investment
returns.

E. Return on Investment (ROI) Calculation

In our investigation, a significant gap becomes evident
between the optimistic assurances that various companies
offer, confidently promising investors a rapid Return on In-
vestment (ROI) within just four years and the harsh reality
experienced in practical scenarios. Consider, for instance, the

photovoltaic systems in Dataset 1 and Dataset 2. Initially, these
systems would achieve a four-year ROI. However, a different
narrative unfolds as time progresses: after three and two years,
respectively, they have reached only two-thirds and a mere
half of the promised ROI duration. Surprisingly, neither has
managed to recover even half of its initial investment.

Our hypothesis revolves around a critical factor of-
ten overlooked or underestimated in these optimistic fore-
casts—degradation losses. In light of this, our subsequent ROI
analysis fully considers the substantial impact of degradation.
This approach provides us with a more comprehensive and
practical perspective, unveiling the actual financial perfor-
mance of these photovoltaic systems in real-world conditions.

Therefore, in this section, we embark on a detailed explo-
ration of the mathematical aspects underlying the calculation
of ROI, computed using equation 5:

, GFI(i) — COI
ROI(i) = COI %)

Here, the variable ¢ represents the analysis period in years.

It is crucial to clarify that the variables employed in the
ROI calculation are intrinsically connected to the degradation
model. Specifically, GF'I denotes the Gain From Investment,
while C'OI stands for the Cost Of Investment, assumed to be
$70,000 USD in this study.

To compute GF'I, we sum the annual production, mul-
tiplied by the annual kilowatt-hour (kWh) tariff kW hy,ice,
for each year within the analysis period, minus the cost of
maintenance (COM). The cost of maintenance, "COM," is
defined as COM = COI x PM, where "PM" represents
the percentage associated with annual maintenance costs. In
the context of this study conducted in Colombia in 2023,
kW hprice equals 0.26 USD (that increases every year by 7.5%
respecting the previous year), and PM represents 2% of the
initial installation cost. The full equation for GF'I(4) is given
by:

GFI(i) = PVannuat(i)) XkW hprice (i) — COM  (6)
1
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TABLE II
COMPARATIVE ANALYSIS OF ROI APPROACHES

Approach % of degradation 4 Years A ROI  Calculated ROI
Zero degradation [15] 0 345 39
Low degradation [19] 0.05 3.50 29
Middle degradation [18] 0.2 3.65 26
Degradation estimate with maintenance Calculated 6.7 -41
Degradation estimate without maintenance Calculated 6.9 -39

Within this equation, PV,,nuq represents the annual sys-
tem production, calculated as:

PVannual = PVdesignedthun S D(Z) (7)

In this equation, PVjeg;gneq represents the planned produc-
tion capacity (60.8 kW in this case), ts,, 1 equivalent to 365
days x8 hours per day, and D(¢) is the degradation factor
for year ¢. This comprehensive approach allows for a holistic
assessment of the photovoltaic system’s financial performance,
considering annual production, performance, and associated
costs.

Integrating degradation data into the ROI model enhances
the accuracy of investment return estimations.

1V. EVALUATION METHODOLOGY

Following our hypothesis, this section comprehensively
evaluates the proposed ROI method by comparing it with
three state-of-the-art approaches commonly employed for
PV system ROI calculations. It introduces two additional
methodologies proposed in this article. These comparative
assessments, detailed in Table II, aim to objectively assess
the efficacy and precision of our methodology in accounting
for dynamic system degradation. The approaches, categorized
based on their consideration of degradation, are presented with
their percentage of degradation, 4-year A ROI, and calculated
ROI values, allowing for clear and informative comparisons.
Additionally, we indicated the data sources for each approach
in the table.

A. Zero Degradation:

The zero approach serves as a baseline for evaluating
ROI methodologies. It assumes a scenario without scheduled
maintenance costs but considers the economic impact of the
kWh price.

Dq1(i) = 100 ®)

B. Low Degradation:

The low approach considers a system that experiences
a minimal 0.05% degradation rate over time and assumes
no maintenance costs, that is COM = (. Additionally, it

considers the economic impact of the annual increase in the
kWh price.

100 if i=1
Daa(i) = €))
Dgo(i — 1) x 0.0005 if 4 >1

C. Middle Degradation:

The "Middle" approach accounts for the economic effects
of the kWh price and assumes a system with a moderate 2%
degradation rate and no maintenance costs that is COM = 0.

100 if 1=1

Das(i) = (10)

Das(i—1)x 0.02 if i>1

D. Degradation Estimate with Maintenance:

In our "Estimated Maintenance" approach, we assume that
the system undergoes maintenance with an associated cost.

Daa(i) = D(i) (11)

COM = COI x 0.02 (12)

In this approach, we consider the Cost of Maintenance
(COM), where we set the Maintenance Percentage (PM) at 2%
based on common practices in the Colombian market, where
the scheduled cleanings and maintenance amount is the 2% of
the total installed capacity at the current year’s value. In other
words, each year, the cost of reassembling the entire system
is estimated, and 2% of that cost is a maintenance fee for
photovoltaic plants.

E. Degradation Estimate without Maintenance:

Our "Estimated No Maintenance" approach assumes that
the system operates without scheduled maintenance, that is
COM = 0. We calculated the degradation regression curve
f)(i) using data from a dataset representing systems without
maintenance.

D5 (i) = D(i) (13)
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Fig. 4. Evaluated ROI approaches of investment of all five approaches and its calculated difference with the ideal ROI over nine years.

V. ANALYSIS OF RESULTS

Table II concisely summarizes the evaluated ROI ap-
proaches, offering essential insights into the differences be-
tween each methodology’s predictions and the actual ROI
curve. It is worth noting that all procedures exhibit variations
from the actual ROI curve, highlighting the paramount im-
portance of accurately accounting for degradation and main-
tenance effects.

To better visualize these variations, we have included Fig.
4, which graphically represents the years required to achieve a
positive return on investment for each approach. Notably, tra-
ditional approaches such as "Zero Degradation," "Low Degra-
dation," and "Middle Degradation" begin to show positive
returns starting from the fourth year. In contrast, our proposed
methodologies, "Degradation Estimate with Maintenance" and
"Degradation Estimate without Maintenance," indicate sig-
nificantly extended return periods, as depicted in the figure.
This observation aligns with the principles of accounting for
degradation and maintenance costs, which, although extending
the ROI period, provide a more realistic representation of
financial returns.

The comparison reveals that traditional methods like "Zero
Degradation" and "Low Degradation" yield lower ROI predic-
tions, with "Zero Degradation" resulting in a calculated ROI
of 3.45. In contrast, "Low Degradation" shows a calculated
ROI of 3.50. These methods assume constant system perfor-
mance and overlook the economic implications of kWh pricing
fluctuations over time.

In contrast, our proposed methodologies, "Degradation Es-
timate with Maintenance" and "Degradation Estimate without
Maintenance," offer a more nuanced perspective on ROIL
"Degradation Estimate with Maintenance" accounts for system
degradation and maintenance costs, resulting in a calculated
ROI 6.7. Conversely, "Degradation Estimate without Mainte-

nance" predicts ROI without considering maintenance costs,
yielding a calculated ROI 6.9. These methodologies emphasize
the importance of incorporating real-world dynamics into ROI
assessments, leading to more accurate estimations.

Our results underscore the critical roles of degradation mod-
eling and maintenance cost considerations in ROI assessments.
The proposed methodologies provide an enhanced understand-
ing of ROI by considering these factors and addressing a com-
mon discrepancy observed in the field. Decision-makers can
use these insights to make well-informed decisions regarding
photovoltaic system investments, considering the long-term
implications of degradation and maintenance.

VI. CONCLUSION

In this study, we have addressed a significant challenge in
the photovoltaic (PV) industry—the accurate calculation of
Return on Investment ROI for PV systems. ROI is a pivotal
metric for decision-makers, but its accuracy hinges on the
comprehensive consideration of various factors, particularly
degradation and maintenance costs. Our research has shed light
on these critical aspects and contributed novel methodologies
to enhance the precision of ROI estimations.

Through meticulously evaluating five distinct ROI ap-
proaches, we have illuminated the disparities between tradi-
tional methodologies and those incorporating dynamic system
behavior. Our findings emphasize the importance of account-
ing for PV system degradation and maintenance costs when
assessing ROI. Traditional approaches, such as "Zero Degra-
dation" and "Low Degradation," often underestimate ROI
by neglecting these factors, ultimately leading to suboptimal
investment decisions.

In contrast, our proposed methodologies, "Degradation Es-
timate with Maintenance" and "Degradation Estimate without
Maintenance," provide a more realistic depiction of ROI by
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integrating degradation modeling and maintenance cost con-
siderations. These methodologies align ROI predictions more
closely with system performance and financial implications.
Decision-makers can use these approaches to make informed
choices, recognizing the long-term impact of degradation and
maintenance on their PV system investments.

Furthermore, our research underscores the dynamic nature
of PV systems and the necessity of adaptable ROI calcula-
tions. Continuous advancements and evolving conditions mark
the PV industry, making stakeholders need to employ ROI
methodologies that capture these changes accurately.

Finally, this study advances the PV system ROI assess-
ment field by introducing methodologies that consider degra-
dation and maintenance costs. We have demonstrated that
such considerations are crucial for achieving ROI predictions
that reflect real-world conditions. Our contributions empower
decision-makers to optimize their PV system investments,
aligning financial expectations with actual performance. As the
PV industry evolves, our research is a valuable resource for
navigating the complexities of ROI calculations and fostering
sustainable solar energy investments.
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