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Abstract—Multi-outfeed configuration of high voltage direct 
current (HVDC) links is being increasingly developed in China’s 
power source grids. Although CIGRE has provided many indices 
for assessing the security of asynchronous interconnected power 
grids, massive stochastic renewables significantly induce challenges 
for dispatchers in determining how numerous operational variables 
affect these indices, such that it can be difficult to plan a power grid 
that well bears multi-outfeed HVDCs. To solve this problem, an 
index integration-combined global sensitivity analysis (GSA) 
method is proposed. First, several indices that quantify voltage 
stability, frequency stability, and transient stability are provided. 
These indices are then fused by the proposed entropy weight-fuzzy 
analytic hierarchy process (EWF-AHP) method, such that the 
original massive indices are reduced to only one. Finally, a Gaussian 
process-based GSA method is applied to analyze the sensitivity of 
the syncretic index versus the uncertainty variables. The collected 
sensitivity information can further inform the planning strategies 
for multi-HVDC outfeed power grids. A real-world case in 
Southwest China proved the effectiveness of the proposed 
framework, and implied the potential of the method for tuning or 
planning operational modes. 

Index Terms—Analytic hierarchy process, Gaussian process, 
global sensitivity analysis, multi-outfeed HVDC, stability index.  
 

I. ITRODUCTION 

ue to the geographic divergence of energy in China, the 
development of China’s power grid is continually turning 

into high-capacity and long-distance HVDC transmission [1]. 
Renewable energy resources and flexible demand assets are 
being proliferated in power systems to enhance energy 
sustainability and efficiency [2]. The uncertainty of renewable 
energy affects the reliable operation of power system [3]. In 
order to realize transregional power utilization from rich clean 
energy in Southwest China to load centers in East China, 
Southwest power grid made great efforts to develop multi-
outfeed ultra-HVDC power system [4], [5]. Multi-outfeed 
HVDC power system is made up of two or more DC lines with 
relatively close electrical distances and the fed AC power grid. 
In such a system, the rectifier stations of the multi-circuit DC 
system are concentrated in the same region, and there is close 

 
This paper was submitted for review on March 13, 2023.This work is 

supported by the science and technology project of State Grid Southwest 
Branch Corporation (SGSW0000FGJS2310063). 

Li Shen, Li Jiang, Qing Wang, and Yiyu Wen is with the State Grid Southw
est Branch Corporation, State Grid Corporation of China, Chengdu, Sichuan (e
-mail: slklillua@163.com; 375310472@qq.com; 464615873@qq.com;  28761
8178@qq.com). 

Qiao Ming* is studying at the Colledge of Electric Engineering, Sichuan 
University, Chengdu, China (e-mail: 2643741059@qq.com). 

coupling between the rectifier stations. Up to now, several 
asynchronous HVDC lines that connect the Southwest power 
grid and the East China power grid have been put into operation 
successively [6]. Based on this fact, as the sending-end power 
grid, the operating patterns of the Southwest power grid have 
changed a lot, e.g., the contradiction between the strong DC 
outfeed and the weak AC grid [7]. The current sending-end 
power grid operational practice shows that the system faults 
easily trend to produce a cascading failure, which threatens the 
safety of both sides of HVDC links. As a result, it is significant 
to develop intact sets of indices for multi-outfeed power grids 
in order to understand operational conditions and plan more 
reliable operating patterns. 

At present, there have been studies on the security 
assessment of asynchronous HVDC systems. Yet, the most 
efforts can only be found in multi-infeed HVDC (MIDC) 
systems. For instance, an on-line power/voltage stability index 
for MIDC has been proposed in [8], but it is not proven to be 
applicable in multi-outfeed systems. The load margin index in 
[9] can effectively evaluate the static voltage stability of the 
power grid. In [10], a control strategy based on the sensitivity 
index of the singular value of the Jacobian matrix is proposed 
to increase the stability of the AC/DC system. But the physical 
significance of the sensitivity index is not clear. Considering 
inter-inverter interactions, a multi-infeed voltage interaction 
factor index is proposed for the voltage stability evaluation of 
MIDC [11]. In [12], two generic indices, i.e., the multi-infeed 
effective short-circuit ratio and the multi-infeed interaction 
factor, for linking power grid structural strength and operational 
stability of multi-outfeed HVDC systems were proposed. The 
maximum available power (MAP) has been investigated in 
[13], it enables aware of stability margin for HVDC. In [1], the 
effect of transmission capacity of multi-outfeed HVDC system 
on transient voltage stability was analyzed, and attained 
quantitative evaluation indices. Although many independent 
indices have been carried out, one trouble for dispatchers is that 
one can be quite exhausting to catch the trends of these indices 
themselves, which are vital for dispatching or planning tasks. 
The other obstacle comes from the truth that, current research 
still lacks a holistic perspective to figure out exactly how the 
critical operational variables or their combinations will affect 
the existing indices. In this regard, controlling or optimizing the 
massive indices via power system planning or operating can be 
a burdensome task, especially in an environment full of 
uncertainties. 

Many researchers noticed the above issues and proposed a 
novel solution, namely sensitivity analysis (SA). Generally, two 
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categories can be declared, i.e., local SA (LSA) and global SA 
(GSA) [14]. LSA intends to derive how a variable shift will 
change a concerned response in the vicinity of a specified 
operational condition. It greatly adapts to conduct stepwise 
control [15], however, can be incomplete sight to clarify the 
dominated factors in a system. In light of this, GSA becomes 
necessary. It can provide more integrated information about the 
global relationship between operations and the concerned 
indices by establishing sensitivity to covering the entire feasible 
region [16]. Back to our task, GSA can strip down all weak-
related inputs from such a tremendous operational region of 
multi-outfeed HVDC systems, and precisely expose the most 
leading inputs for further planning or operating. Nevertheless, 
in our concerned task, GSA can still undergo computational 
burden from traversing all indices.  

 

 
Fig. 1.  The technical roadmap. 
 

Therefore, to fix the above problems, this paper provides two 
major ideas shown as follows, which are also our contributions: 

a) We involved several indices (e.g., multi-outfeed effective 
short circuit ratio, frequency deviation factor, and DC power 
transfer impact factor) for comprehensively quantifying voltage 
stability, frequency stability, and transient stability in a multi-
outfeed HVDC system. To further allow dispatchers to 
explicitly master the operating conditions, an entropy weight 
fuzzy analytic hierarchy process (EWF-AHP) is proposed. This 
method intends to reduce the dimensionality of the mentioned 
indices, and draw the sending-end operational patterns with 
only a few compound indices. 

b) A Sobol’s GSA method is adopted to help dispatchers 
deeply understand how operational variables affect the 
provided indices. It is notable that the Sobol method can be 
time-consuming for our task, because of some indices may ask 
for laborious iterative computation or time-domain simulations. 

To conquer this cumber, Gaussian process is introduced to 
enhance Sobol. It significantly accelerates index calculations 
via its parameterized random process and modelled stochastic 
variables. 

The overall technical roadmap of the paper is shown in Fig. 1. 
First, establish indices layer with indices DCPTIF, FDF, and 
MOESCR. Then, calculate their fusion weights by using EWF-
AHP, and obtain the integrated index value. Finally, use 
uncertainty operational variables as inputs and the integrated 
index as the objective function to construct a GPR model. Based 
on the GPR model, analyze the global sensitivity using the Sobol 
method and output the key operational variables that affect the 
integrated index. The GPR module can be used for real-time 
decision-making, while the Sobol module can be used for early 
detection of critical conditions. 

The remainder of this paper is organized as follows: In 
Section II, the indices for evaluating multi-outfeed HVDC 
systems are introduced. In Section III, basic principle of 
reducing multiple indices via EWF-AHP is introduced. In 
Section IV, on the application scenarios of multi-outfeed 
HVDC system, Sobol GSA improved with Gaussian process 
surrogate is advanced. The proposed method is verified in the 
Southwest China power grid in Section V. Section VI concludes 
the paper.  

II. THE APPLIED INDICES FOR EVALUATING STABILITY OF 

MULTI-OUTFEED HVDC SYSTEMS 

Existing studies render copious indices for evaluating the 
stability of multi-outfeed HVDC systems, mainly focusing on 
establishing nexus between HVDC transmission lines and AC-
side power grid structure. To cover key concerned stability 
issues of dispatchers in multi-outfeed HVDC systems, which 
are transient stability, voltage stability, and frequency stability, 
this paper introduced three highly related indices, i.e., DC 
power transfer impact factor (DCPTIF), multi-outfeed effective 
short-circuit ratio (MOESCR), and frequency deviation factor 
(FDF). These indices measure AC/DC hybrid system security 
with only steady variables or parameters. 

A. Transient Stability Index 

To enable generalized dispatch tasks such as unit 
commitment and economic dispatch, transient stability 
constraints of AC systems are usually mapped into several 
power flow limits of several critical AC power transfer 
corridors. Follow this truth, a tricky alternative to measure 
transient stability of AC/DC systems is to figure out how much 
power will retransfer from DC out-feeders to the critical AC 
inter-corridors if commutation failures or blockings occur at 
HVDC lines. Thus, DCPTIF is proposed. It is an index for 
quantifying the strength of AC systems sustaining outfeed 
HVDC lines with regard to transient stability. The DCPTIF 
index for each AC line can be described as: 

𝐹 =
𝛥𝑃 × 𝑃 × 𝑐

𝑆 × 𝑃
(1) 

where 𝐹  is the DCPTIF index, ∆𝑃  is the power 
transfer from HVDC to AC inter-corridors after HVDC 
blocking, 𝑆  is the short circuit capacity on both sides of each 
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AC line, 𝑃  is the actual transmission power of the AC line, 
𝑃  is the power transfer limit for the AC line, c is the 
amplification factor introduced to facilitate result identification. 

The DCPTIF index intends to depict an acknowledged 
phenomenon that, when disturbances occur in some outfeed 
HVDC lines, it is inevitable that a certain capacity of DC power 
will be retransferred to adjacent AC system power grid, 
affecting transient stability of the AC power grid. In this paper, 
we use DCPTIF to measure the transient stability of multi-
outfeed HVDC power grids. 

B. Voltage Stability Index 

In the CIGRE Conference, the multi-infeed effective short 
circuit ratio (MIESCR) index is proposed to evaluate the 
voltage support strength of AC system to multiple HVDC lines 
[17]. 

MIESCR of the i-th converter can be described as follows: 

𝐼 =
𝑆 − 𝑄

𝑃 + ∑ 𝐼 𝑃,

(2) 

where 𝑆  is the three phase short-circuit capacity at AC bus 
connecting the i-th converter, 𝑃  is rated power of the i-th 
HVDC line, 𝑄  is the reactive power provided by AC filter 
and shunt capacitor in converter station when the voltage AC 
bus coupling the i-th converter station is rated, 𝐼  is the 
multi-infeed interaction factor of the i-th converter w.r.t. the j-
th converter, which can be estimated by perturbation 
simulation, as given below: 

𝐼 =
𝛥𝑈

𝛥𝑈
(3) 

where ∆𝑈  is the voltage disturbance of AC bus connecting the 
i-th converter station, about 1% in general. ∆𝑈  is the voltage 
variation of AC bus connecting the j-th converter station. 

At present, MIESCR has been widely recognized and used 
[18], [19]. MIESCR is also proven to be applicable for multi-
outfeed HVDC systems, which is known as multi-outfeed 
interaction factor (MOIF) and multi-outfeed effective short-
circuit ratio (MOESCR) [20]. The calculation process of MOIF 
and MOESCR are highly consistent with MIIF and MIESCR. 
The difference is that MOIF and MOESCR conduct 
computation on rectifier side of HVDC lines, instead of inverter 
side. 

C. Frequency Stability Index 

Once HVDC lines are largely disturbed by commutation 
failure or DC blocking, tremendous imbalanced power will 
inject into the adjacent AC power grid, including sending-end 
and receiving-end. The large power disturbance can cause 
severe issue in frequency stability of AC power grid. Earlier 
works show that frequency deviation factor (FDF) can be used 
for quantifying frequency supporting strength of AC power grid 
[21]. This index is also workable for our case, thus it is 
introduced in this paper. FDF index is defined as: 

𝛽 =
1

𝑅
+ 𝐷 (4) 

where 𝑅  is the equivalent speed change rate for all generators, 
𝐷  is the equivalent frequency regulation factor of active 
loads. The two variables depend on unit commitment and load 
configuration, which are calculated by using (5) and (6). 

1

𝑅
=

1

𝑅

𝑃

𝑓
(5) 

where 𝑃  is the rated power of the i-th generator, 𝑓  is the 
system rated frequency and 𝑅 = (𝜔 − 𝜔 )/𝜔 × 100% is 
speed change rate of the i-th generator, 𝜔  is the no-load static 
speed, 𝜔  is the full-load static speed, 𝜔  is the rated speed. 
The active load frequency regulation factor 𝐷  is computed by 
using (6).  

𝐷 =
𝛥𝑃

𝛥𝑓
(6) 

where Δ𝑃  is the overall active load variation, Δ𝑓  is the 
frequency variation. 

Consequently, three indices are introduced to build the basic 
index set in this paper. Interestingly, some of these indices are 
quite hard to obtain. For example, the 𝐷  in (4) is highly 
dependent on load configuration in a power grid. It can only be 
estimated based on power system simulator and historical 
operational data. Another instance is that the 𝑄  in (2) usually 
must be operated following some engineering rules. Under such 
circumstance, the mentioned indices can be troublesome to be 
acquired. Mastering these indices over the operational region in 
a realistic large multi-outfeed HVDC is thus pretty laborious for 
dispatchers. 

III. ENTROPY WEIGHT-FUZZY ANALYTIC HIERARCHY 

PROCESS-BASED INDEX SET REDUCTION 

As mentioned before, dispatchers face challenges to 
precisely and simultaneously master multiple indices. This 
section introduces an index integration method to reduce these 
indices into few ones, such that dispatchers only need to take 
care of few principal information, which improves efficiency in 
planning or dispatching a sending-end grid. The method is 
carried out upon traditional analytical hierarchy process (AHP). 
However, AHP is difficult to ensure the consistency of the 
evaluation process, and can be inaccurate in integrating 
multiple indices. Therefore, an entropy weight-fuzzy analytic 
hierarchy process (EWF-AHP) is proposed to lessen the impact 
of experts' subjective preferences and decrease reliance on 
original data [22].  

EWF-AHP first calculates the subjective weight using the 
fuzzy analytic hierarchy process, and then it calculates the 
objective weight using the entropy weight method. The 
comprehensive weight is derived after taking each index's own 
variation degree into account. The following are the precise 
steps for implementation: 

1) Calculate subjective weights and check consistency. 
Apply the fuzzy analytic hierarchy process, form a fuzzy 
complementary judgment matrix  𝑨  according to expert 
opinions: 
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𝑨 =

𝑎 … 𝑎
⋮ ⋱ ⋮

𝑎 ⋯ 𝑎
×

(7) 

where n is the number of indices, specifically referring to the 
three applied indices MOESCR, FDF and DCPTIF. The 𝑎  
represents the importance level of indicator i relative to 
indicator j, 𝑎 = 1, 𝑎 = 1/𝑎 . Using the 1-9 Scale method 
[23], experts can compare the indices of the same level pairwise 
based on subjective opinions to obtain 𝑨. The 1-9 Scale method 
is shown in Table I. 

TABLE I 
THE 1-9 SCALE METHOD 

Scale of 𝑎  Meaning 

1 Element i is as important as j 

3 Element i is slightly more important than j 

5 Element i is obviously more important than j 

7 Element i is stronger than j 

9 Element i is extremely important than j 

2, 4, 6, 8 The median of the above two adjacent judgments 

reciprocal 𝑎 = 1/𝑎  

 
If the experts' comparisons of the n indices are absolutely 

objective, that is, 𝑎 × 𝑎 = 𝑎 , then the matrix 𝑨  has 
consistency. If 𝑨  is consistent, the normalized form of the 
positive eigenvector corresponding to its maximum positive 
eigenvalue represents the weight vector of each index.  

The maximum positive eigenvalue of 𝑨  and its 
corresponding eigenvector are denoted as 𝜆  and 𝒘, 𝒘 =
 (𝑤 , 𝑤 , ⋯ , 𝑤 ) . Normalize the vector according to 𝑤 =
𝑤 / ∑ 𝑤 , obtain the subjective weight 𝑾: 

𝑾 = (𝑤 , 𝑤 , ⋯ , 𝑤 ) (8) 

Then, check the consistency of judgment matrix 𝑨: 

𝐶 =
𝜆 − 𝑛

𝑛 − 1
(9) 

Generally, if the consistency index 𝐶 ≠ 0 , the consistency 
ratio 𝐶  will be calculated to check the consistency. 

𝐶 =
𝐶

𝑅
(10) 

where  𝑅  is the average random consistency indicator. When 
𝐶 < 0.1 , it is considered that the judgment matrix 𝑨  has 
satisfactory consistency; otherwise, it is essential to readjust 
the value of the judgment matrix and repeat the above stages 
until the consistency test is satisfied. 

2) Calculate objective weights. Considering the correlation 
between the actual sample data, the entropy weight method is 
introduced. Establish the original data matrix 𝑿 based on the 
indicator data. 

𝑿 =

𝑥 … 𝑥
⋮ ⋱ ⋮

𝑥 ⋯ 𝑥
×

(11) 

where m is the number of data samples and n is the number of 
indices. 

To eliminate the error caused by different measurement 
range and value interval of all indicators, we must make sure 
that all data are processed in a dimensionless manner. For 
positive indices and negative indices, min-max 
standardization (MMS) is adopted. 

For positive indices  

𝑣 =
𝑥 − min( 𝑥 )

max( 𝑥 ) − min( 𝑥 )
(12) 

For negative indices  

𝑣 =
max( 𝑥 ) − 𝑥

max( 𝑥 ) − min( 𝑥 )
(13) 

where 𝑣  is the value of each indicator data standardized, 𝑥  
is the given indicators.  

The objective weight 𝑯 is calculated by using (14)-(17) 

𝑝 =
𝑣

∑ 𝑣
(14) 

𝑒 = −
1

𝑙𝑛 𝑚
𝑝 ln 𝑝 (15) 

ℎ =
1 − 𝑒

∑ 1 − 𝑒
(16) 

𝑯 = (ℎ , ℎ , … , ℎ ) (17) 

where 𝑖 = 1,2,···, 𝑚 , 𝑗 = 1,2,···, 𝑛, 𝑝  is the normalized data 
of the j-th index of sample i, 𝑒  is the j-th index's entropy, ℎ  
is its objective weight. 

3) Calculate the comprehensive weight. The combined 
weight of 𝑾 and 𝑯 is calculated and normalized to obtain the 
comprehensive weight 𝑭. 

𝑓 =
𝑤 ℎ

∑ 𝑤 ℎ
(18) 

𝑭 = (𝑓 , 𝑓 , … , 𝑓 ) (19) 

where 𝑓  is the comprehensive weight of the j-th index. 

IV. GAUSSIAN PROCESS REGRESSION-BASED GLOBAL 

SENSITIVITY ANALYSIS FOR CRITICAL FACTOR 

IDENTIFICATION IN MULTI-OUTFEED HVDC SYSTEM 

Although EWF-AHP has reduced the dimensionality of the 
applied indices, the well-integrated indices after EWF-AHP 
are not intuitive enough for help operating or planning tasks. 
Dispatchers prefer to know what exactly the variables in a 
sending-end system impact stability of the power grid. 
Towards this end, a Gaussian process regression (GPR)-based 
GSA is presented. GPR works for parameterizing operational 
patterns, then it forwards to realize efficient GSA, such that 
computationally-intensive physical simulation can be 
circumvented. 
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A. Equations of Gaussian Process Regression for Capturing 
Operational Patterns 

Gaussian process regression (GPR) is a non-parametric 
machine learning algorithm for regression analysis of data 
based on a Bayesian framework, which is used to deal with 
the problem of small samples, high dimension and linear 
inseparability [24]. The Gaussian process function 𝑓(𝑥) can 
be expressed as: 

𝑓(𝑥) = 𝐺𝑃 𝑚(𝑥), 𝑘(𝑥, 𝑥 ) (20) 

where,  𝑚(𝑥)  is the mean value function, 𝑘(𝑥, 𝑥 ) is the 
covariance kernel, 𝑥 and 𝑥′ are the value of the two predictive 
variables. In general, data is preprocessed to make the mean 
value zero. 

Consider a model: 

𝑦 = 𝑓(𝑥) + 𝜀 (21) 

𝜀~𝑁(0, 𝜎 ) (22) 

where 𝑥 is the input vector of observed value, 𝜀 is the noise, 
𝜎  is the standard deviation. In our task, 𝑥 particularly refers 
to the generator output and load in different regions, and 𝑦 is 
the integrated index. 

We can get the prior distribution of the observed value 𝑦 
and the joint prior distribution of the observed value 𝑦 and the 
predictive value 𝑓∗. 

𝑦~𝑁(0, 𝐾(𝑋, 𝑋) + 𝜎 𝐼 ) (23) 

𝑦
𝑓∗

~𝑁 0,
𝐾(𝑋, 𝑋) + 𝜎 𝐼      K(X,𝑥∗) 

      𝐾(𝑥∗, 𝑋)          K(𝑥∗, 𝑥∗) 
(24) 

where 𝑥∗  is test point, 𝐾(𝑋, 𝑋) = 𝐾 = (𝑘 ) , 𝐼  is n-order 
identity matrix. 𝐾(𝑋, 𝑥∗) = 𝐾(𝑥∗, 𝑋)  represent covariance 
matrix of 𝑋 and 𝑥∗. 

Therefore, we can get the posterior distribution of 𝑓∗: 

𝑓∗ 𝑋, 𝑦, 𝑥∗~𝑁 𝑓∗, 𝑐𝑜𝑣( 𝑓∗ (25) 

where  

𝑓∗ = 𝐾(𝑥∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎 𝐼 ] 𝑦 (26) 

𝑐𝑜𝑣( 𝑓∗) = 𝐾(𝑥∗, 𝑥∗) − 𝐾(𝑥∗, 𝑋) ×

[𝐾(𝑋, 𝑋) + 𝜎 𝐼 ] 𝐾(𝑋, 𝑥∗) (27)
 

The mean value  𝑢∗  and the covariance 𝜎∗  of 𝑓∗  are as 
follows: 

𝑢∗ = 𝑓∗

𝜎∗ = 𝑐𝑜𝑣( 𝑓∗)
(28) 

Assuming covariance function has square exponential 
covariance: 

𝑘(𝑥, 𝑥 ) = 𝜎 𝑒𝑥𝑝( −
1

2
𝑥 − 𝑥 ) (𝑥 − 𝑥 ) (29) 

where 𝑀 = 𝑑𝑖𝑎𝑔(𝑙 ) , 𝑙  is the variance measure,  𝜎  is the 
signal variance. 

Establishing negative logarithmic likelihood function 𝐿(𝜃) 
for conditional probability of training samples, and then we 

can obtain the optimal solution of the hyperparameter 𝜃 =

𝑀, 𝜎 , 𝜎 . 

𝐿(𝜃) =
1

2
𝑦 𝐶 𝑦 +

1

2
𝑙𝑜𝑔 | 𝐶| +

𝑛

2
𝑙𝑜𝑔 2 𝜋 (30) 

𝜕𝐿(𝜃)

𝜕𝜃
=

1

2
𝑡𝑟((𝛼𝛼 − 𝐶 )

𝜕𝐶

𝜕𝜃
) (31) 

where 

𝐶 = 𝐾 + 𝜎 𝐼

𝛼 = (𝐾 + 𝜎 𝐼 ) 𝑦 = 𝐶 𝑦
(32) 

After obtaining the optimal hyperparameter, the mean 
value 𝑢∗ and the covariance 𝜎∗  of 𝑓∗ corresponding to 𝑥∗ can 
be obtained by using (26) and (27). 

B. Sobol Method for Critical Factor Identification 

Sobol method is a global sensitivity analysis (GSA) method 
based on the analysis of variance (ANOVA) theory introduced in 
[25]. Sobol is used to evaluate how one input variable or the 
interaction of multiple variables affects the relevant outputs. 

Consider a feature owning several independent variables 
𝑋 = [𝑋 , 𝑋 , ⋯ 𝑋 ] in 𝛺 ： 

𝛺 = (𝑥|0 ≤ 𝑥 ≤ 1; 𝑖 = 1,2, ⋯ , 𝑘) (33) 

Based on the high-dimensional model representation of 
function, the quadratically integrable function 𝑓(𝑥)  can be 
decomposed into the sum of 2  subfunctions, refer to (34) 
[26]: 

𝑓(𝑥) = 𝑓 + 𝑓 + 𝑓 + ⋯ + 𝑓 ⋯ (34) 

where 

𝑓 = 𝑓 (𝑥 )
𝑓 = 𝑓 (𝑥 , 𝑥 )

𝑓 ⋯ = 𝑓 ⋯ (𝑥 , 𝑥 , ⋯ , 𝑥 )

(35) 

Under the condition that 

𝑓 ⋯ 𝑑𝑥 = 0      1 ≤ 𝑡 ≤ 𝑠 (36) 

For 1 ≤ 𝑖 < ⋯ < 𝑖 ≤ 𝑘, we have 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓 = 𝑓(𝑥)𝑑𝑥

𝑓 = −𝑓 + ⋯ 𝑓(𝑥)𝑑𝑥~

𝑓 = −𝑓 − 𝑓 − 𝑓 + ⋯ 𝑓(𝑥)𝑑𝑥~( )

(37) 

where 𝑥~  represents the set of input variables other than 𝑥 , 
𝑥~( ) represents the set of input variables other than 𝑥  and 𝑥 . 

By integrating the square of factorization equation refer to 
(34), we can get 
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𝑓 (𝑥)𝑑𝑥 − 𝑓 = 𝑓 ,⋯, 𝑑𝑥 ⋯𝑥

⋯

(38) 

Thus, we can get the total variance D and the partial 
variance 𝐷 ⋯  of 𝑓(𝑥): 

⎩
⎨

⎧𝐷 = 𝑓 (𝑥)𝑑𝑥 − 𝑓

𝐷 ⋯ = 𝑓 ⋯ 𝑑𝑥 ⋯ 𝑥

(39) 

Equation (38) becomes 

𝐷 = 𝐷 + 𝐷 + ⋯ + 𝐷 ⋯ (40) 

The sensitivity of the input variable is defined as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑆 =

𝐷

𝐷

𝑆 =
𝐷

𝐷

𝑆 = 𝑆 + 𝑆 + ⋯ + 𝑆 ⋯

(41) 

where 𝑆  is the first-order sensitivity coefficient, which 
represents the main effect of the  individual input variable 𝑥  
on the system output; 𝑆 is the second-order sensitivity 
coefficient, which represents the effect of interaction between 
input variable 𝑥  and 𝑥  on the system output; 𝑆  is the total 
sensitivity coefficient, which represents the joint effect of the 
input variable 𝑥  and its interaction with other input variables 
on the system output. 

V. EXPERIMENTAL VERIFICATION AND RESULTS 

We testified our method using the actual electrical grid in 
Southwest China. The heavy loading operating mode in 2020 
flood season is specified for the further experimental analysis. 
We prepare operational data before starting our numerical 
investigations, and the engineering software PSD-BPA is used to 
calculate the indices. EWF-AHP is then used to fuse these 
indices. Simulations in the time domain verifying the fusion-
index’s efficacy. Finally, we demonstrate the GPR-based GSA 
methodology to identifying key implications on the stability of 
the multi-outfeed  HVDC system. As a result, we offer significant 
variables that affect the stability of the testing power grid. 

A. Index Calculation 

To verify the effectiveness of the three applied indices and 
catch their relationship with stability, the corresponding data 
of angular trajectories are simulated and collected on five 
operating modes. The computation results of the applied 
indices based on simulated operation data are shown in Table 
II. 

From Table II, in operation mode A, the MOESCR, FDF, 
and DCPTIF are the largest, whereas the operation mode E is 
just the opposite. Fig. 2-4 depicts the system’s maximum node 

voltage, maximum frequency, and maximum power angle 
difference trajectories after bipolar blocking disturbance 
occurrence in this power grid. According to these figures, we 
find out that operation mode A is of the better voltage and 
frequency stability, but the worse transient stability, and on 
the contrary, operation mode E features the better transient 
stability but the worse voltage and frequency stability. 
Together with Table II, this case implies that MOESCR and 
FDF are positively related to voltage and frequency stability, 
respectively, and DCPTIF negatively correlates to transient 
stability. Therefore, when using the entropy weight method to 
calculate objective weights, MOESCR and FDF are 
normalized using (12), while DCPTIF is normalized using 
(13). 

TABLE II 
CALCULATION RESULTS OF STABILITY INDEX 

System operation mode MOESCR FDF DCPTIF 

A 2.4645 5901.7930 13.1489 

B 2.4635 5778.8318 13.0881 

C 2.4517 5397.6341 12.9675 

D 2.4503 5302.4911 12.9175 

E 2.4470 5187.3764 12.6594 

B. Index Fusion 

1) Subjective Weight: according to the dispatching experience, 
the indicators are evaluated, and based on four different key 
focuses, scores are assigned and a pairwise comparison is 
conducted to obtain the fuzzy judgment matrix A1-A4. 
Consistency is then examined for each matrix, and weights are 
calculated. The results are shown in Table III. 
 

 
Fig. 2.  The highest nodal voltage of the system. 
 

 
Fig. 3.  The highest nodal frequency of the system 
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Fig. 4.  The maximum power angle difference over synchronous generators. 

 
2) Objective Weight: according to the index data in Section 
V.A, the objective weights of MOESCR, FDF, and DCPTIF 
are calculated. The calculation results are 0.2563, 0.3889, and 
0.3548. 
3) Comprehensive Weight: coupling the subjective and 
objective weights according to (21). The comprehensive 
weights of MOESCR, FDF, and DCPTIF are 0.2816, 0.3832, 
and 0.3351 respectively. As shown in Table III, the subjective 
weight will be influenced by the preferences of some experts, 
resulting in a biased weight value. This deviation can be 
corrected by coupling objective weight and subjective weight. 
So that the comprehensive weight can fully reflect the 
concentrated opinions of experts. 
 

TABLE III 
CALCULATION RESULTS OF SUBJECTIVE WEIGHTS 

Key focus 
Weight of 
MOESCR 

Weight of 
FDF 

Weight of 
DCPTIF 

a 0.3069 0.3682 0.3249 
b 0.4275 0.3053 0.2672 
c 0.2859 0.2834 0.4307 
d 0.4307 0.3446 0.2247 

Average 
value 

0.3628 0.3254 0.3119 

 
We determine the integrated index values of five power grid 

operation modes based on the index values and their 
comprehensive weights. They are in the following numerical 
order: A, B, E, C, D, with values of 66.4863, 62.4438, 
33.5137, 31.2621, and 27.3287, respectively. Operation mode 
E features the better transient stability but the worse voltage 
and frequency stability, and the integrated index value under 
operation mode E is in a middle position. As a result, the value 
of the integrated index can to some extent reflect the stability 
of the power system. 

Through EWF-AHP, the three indices are fused to form a 
single integrated index. Using the integrated index, 
dispatchers can gauge the stability of the present system 
operation mode. This is helpful for dispatchers to better 
understand the planning or operating of multi-outfeed HVDC 
power grids. 

C. Global Sensitivity Analysis 

If the system's key factors that influence the integrated 
index's value can be identified, the stability of the system can 
be increased by adjusting the relevant key variables. We 
utilize the instance of uncertain generator output and load in 

various regions, to analyze their global sensitivity to the 
integrated index. As indicated in Table IV, the instance uses 
five regions' generator output and load as variables. Set their 
fluctuation range as per Table V. 

 
TABLE IV 

VARIABLES OF GLOBAL SENSITIVITY ANALYSIS 

Notation Connotation Notation Connotation 
cbG Generator output in region cb cbL Load in region cb 
dsG Generator output in region ds dsL Load in region ds 
lsG Generator output in region ls lsL Load in region ls 
qnG Generator output in region qn qnL Load in region qn 
xcG Generator output in region xc xcL Load in region xc 

 
Taking into account the balance between generator output 

and load, 100 samples are randomly generated. Each sample's 
MOESCR, FDF, and DCPTIF are calculated, and they are 
fused into integrated index. These 10 random variables in 
Table V make up the input of the GSA based on the GPR, in 
the form of  𝒙 = [𝑥 , … , 𝑥 ]. The integrated index value for 
each random operation mode is the corresponding model 
response, which has the form 𝒚 = [𝑦 , … , 𝑦 ]. 

  
TABLE V 

CALCULATION VALUE RANGE OF GENERATOR OUTPUT AND LOAD IN EACH 

REGION 

Variable Data range Variable Data range 

cbG [0, 4840] cbL [218.5, 5058.5] 

dsG [4765, 10010] dsL [0, 5245] 

lsG [0, 3023.8] lsL [569.8,3593.6] 

qnG [366.3, 3260] qnL [0, 2893.7] 

xcG [4290.1, 7270] xcL [0, 2979.9] 

 

 
Fig. 5.  Gaussian process emulator performance on testing dataset. 

 
The reliability of data-driven method is enhanced by GPR's 

ability to output the integrated index interval within a certain 
confidence range. If the integrated index interval of the GPR 
model is wide, it means that there is a considerable degree of 
uncertainty in the integrated index value. The integrated index 
interval inside the GPR's 95% confidence interval is depicted 
in Fig. 5. It shows that the integrated index interval is narrow. 
Moreover, the estimated results of the integrated indices 
obtained by GPR basically maintain a consistent trend with 
the true values. The performance of the GPR model is 
quantitatively measured using the mean absolute percentage 
error (MAPE). The MAPE value over 90 test cases is 4.19%. 
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This demonstrates that the correlation between these key 
variables and integrated indicators may be efficiently 
extracted using GPR. 

Next, use the Sobol method for global sensitivity analysis. 
The first order sensitivity data 𝑆  and global sensitivity data 
𝑆  of each variable to the integrated index are shown in Table 
VI. Fig. 6 is a sensitivity histogram, which depicts the 
sensitivity results of the integrated index versus 10 uncertainty 
variables. 𝑆  in the figure represents the local sensitivity of an 
uncertainty variable to the integrated index. According to 
Fig.6, the local sensitivity of each variable is small, and it can 
not evaluate the impact of the interaction between input 
variables on the output variables of the model. Therefore, the 
global sensitivity analysis is essential. The global sensitivity 
analysis results indicate that, within the range of variables in 
this paper, variables xcL and lsG have a considerable impact 
on the integrated indicators, whereas variables lsL, dsG, dsL, 
cbG, and cbL have a minimal impact and variables qnG, qnL, 
and xcG have a negligibly weak impact. As a result, the 
primary variable impacting the value of the integrated index 
is xcL. 

 

 

Fig. 6.  Sensitivity of the integrated index versus variables. 
 

In addition, Fig. 6 demonstrates that each variable's 𝑆  is 
greater than 𝑆 . As a result, the integrated index are also 
impacted by the interactions between variables. Fig. 7 depicts 
the second order interaction of the variables. There is a 
significant second order interaction between the load and 
generator output in the same region. However, all second 
order interactions are very tiny.  

 
Fig. 7.  Second order interaction of variables. 

TABLE VI 
VARIABLES CALCULATION RESULTS OF 𝑆  AND 𝑆   

Variable 𝑆  𝑆  Variable 𝑆  𝑆  
cbG 0.027536 0.042167 cbL 0.027390 0.042478 
dsG 0.068213 0.087722 dsL 0.074495 0.099351 
lsG 0.233810 0.268257 lsL 0.072424 0.102204 
qnG 0.010659 0.024947 qnL 0.013100 0.029247 
xcG -0.001744 0.018260 xcL 0.365337 0.389913 

 
 

TABLE VII 
THE INDEX INTEGRATED BY EWF-AHP 

Scheme 
Generator output 

adjustment 
Load 

adjustment 

The 
integrated 

index 
X0(Reference 

operation mode) 
- - 17.0533 

X1 ∆cbG=+1000 ∆cbL=+1000 23.7581 

X2 ∆cbG=+2000 ∆cbL=+2000 29.9886 

X3 ∆xcG=+1000 ∆xcL=+1000 31.8457 

X4 ∆xcG=+2000 ∆xcL=+2000 47.0956 

 
The next work is to verify the effectiveness of the 

sensitivity results. Taking one operation mode as a 
benchmark, we adjust the generator output and load of the 
regions xc and cb, while keeping the generator output and load 
of the other regions constant. As a result, four comparative 
operation modes were generated. The calculation results of the 
integrated index are shown in Table VII. According to Table 
VII, the integrated index after adjusting region xc is higher 
than that of adjusting region cb when the adjusted generator 
output and load are equal. Because the integrated index is 
more sensitive to the generator output and load in region xc 
than it is in region cb. Therefore, the sensitivity results 
obtained by the proposed method are effective. These results 
demonstrate that the key variables with the biggest effects on 
the integrated index can be identified utilizing GPR-based 
GSA. The stability of the system can be enhanced by altering 
the generator output and load of these regions.  

The sample preparation and GPR training took about 16 
minutes and 7.69s, respectively. Since these two stages are 
pre-executed offline (e.g., year ahead or day-ahead), their 
elapsed times are acceptable. Once the GPR is well settled, it 
only took 0.93s and 2.35s for evaluating a coming operating 
condition and early detection of critical conditions, 
respectively. Evidently, the proposed algorithm hits real time 
decision demands, and helps dispatchers improve efficiency 
of look-ahead operating mode analysis. 

VI. CONCLUSION 

To effectively assess structural strength, as well as help 
dispatchers with better understanding of planning or operating 
in multi-outfeed HVDC power grids, an index integration-
combined global sensitivity analysis (GSA) method is 
proposed. Concretely, several basic indices are firstly 
provided to cover concerned security incidents in multi-
outfeed HVDC systems. Then, based on entropy weight-fuzzy 
analytic hierarchy process (EWF-AHP), primordial multiple 
indices are reduced into an integrated index, such that 
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dispatchers can be more comprehensible in planning or 
operating multi-outfeed HVDC systems. At the end, to allow 
dispatchers to master planning or operating of sending-end 
power grids more deeply, a Gaussian process-based GSA is 
proposed. It specifically uses Gaussian process to 
parameterize the correlation of operational variables versus 
the integrated index. The Sobol method is used to figure out 
the contributions of each concerned component (e.g., 
operational variable or variable combination) towards the 
index, and identify the key operational variables. Finally, the 
stability of the system can be enhanced by adjusting the 
critical operational variables. The real-world experimental 
results in the Southwest China power grid justified the 
effectiveness of the proposed method.  

Yet, the proposed method is only testified under a heavy 
loading operating mode in flood season. The actual operation 
of the power grid is much more complex and is hard to be 
characterized through sole seasonal typical operation mode. 
Under multiple typical operating modes, the uncertainty of 
operational variables may conflict, potentially canceling each 
other out or averaging each other. In future works, we will try 
to precisely identify typical operating modes, then distribute 
the proposed method on these patterns. 
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