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Learning Decision Variables in Many-Objective
Optimization Problems

Artur Leandro da Costa Oliveira

Abstract—Traditional Multi-Objective Evolutionary Algo-
rithms (MOEAs) have shown poor scalability in solving Many-
Objective Optimization Problems (MaOPs). The use of machine
learning techniques to enhance optimization algorithms applied
to MaOPs has been drawing attention due to their ability to add
domain knowledge during the search process. One method of this
kind is inverse modeling, which uses machine learning models
to enhance MOEAs differently, mapping the objective function
values to the decision variables. The Decision Variable Learning
(DVL) algorithm uses the inverse model in its concept and has
shown good performance due to the ability to directly predict
solutions closed to the Pareto-optimal front. The main goal of
this work is to experimentally show the DVL as an optimization
algorithm for MaOPs. Our results demonstrate that the DVL
algorithm outperformed the NSGA-III, a well-known MOEA
from the literature, in almost all scenarios with restriction on the
number of objective functions with a high number of objectives.

Index Terms—Many-Objective Optimization, Machine Learn-
ing, Inverse Surrogate Models, Decision Variable Learning.

I. INTRODUCTION

Multi-Objective Problem (MOP) is an optimization prob-

lem having two or more objective functions to be
optimized. MOPs that have more than three objectives are
called Many-objective Optimization problems (MaOPs), and
the field that studies new solutions for these problems is called
Many-Objective Optimization. It is known that MOEAs scale
poorly in many-objective optimization problems [1]. To solve
these complex problems, the combination of Optimization
algorithms with machine learning techniques has been the
subject of research in the last few years [2]. Machine learning
methods can be used to extract knowledge and integrate into
the optimization process. This knowledge can take different
forms and result in different ways of integrating the knowledge
into the metaheuristic.

There has been an effort in the area to develop techniques
that provide approximate models to represent the original
problem in a way that facilitates solving it, called meta-
models. There are several meta-modeling methods, but they
can be divided into two main categories: classic function
transformation methods and surrogate modeling methods. The
first category corresponds to the techniques that seek to
represent the set of functions of the problem in only one, and
the second seeks a new expression for each objective function
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that is constructed based on the data obtained previously from
the real objective function, called surrogates.

Despite the existence of related work on surrogates applied
to multi- and many-objective optimization, they only explore
learning from decision variables to estimate the objective
functions. However, since in MaOPs we have objective vectors
with higher dimensions, could it be possible to learn the
behavior from objective functions to estimate the decision
variables?; since it is possible to learn the behavior from
decision variables using surrogates, is it possible to learn
inverse functions and from that functions, to predict sub-
optimal solutions to the problem?

The work done in [3] answers part of this question by using
inverse surrogate models to generate more non-dominated
solutions for the decision-maker (DM), based on the approxi-
mated Pareto set obtained by MOEAs at the end of evolution-
ary optimization, increasing the density of the Pareto set found.
Some related work has been exploring the use of surrogates in
recent years. In [4] a many-objective hybrid optimizer, called
MOHO, that uses five constitutive algorithms and actively
switches among them throughout the optimization process.
Also, SAMaOEA [5], a reference vector guided evolutionary
algorithm assisted by radial basis function (RBF) models.
Furthermore, a surrogate-based evolutionary algorithm was
proposed in [6] for expensive multi-objective optimization
problems.

In [7] is proposed the Decision Variable Learning (DVL)
algorithm that explores an inverse model approach in many-
objective optimization. The DVL algorithm aims to design a
model, using machine learning, to represent the relationship
between objective functions and variables, using the objective
vectors as input to estimate a set of solutions in decision space.
In this process, reference points - which are ideal points, not
guaranteed if they are possible - will be passed as input to
the model. Thus, the model will return a set of solutions, with
objective vectors as close as possible to those reference points.

These initial DVL results help us to answer part of our
research question, however, there are still open topics that
should be further explored to understand if it is possible to
estimate the decision variables. The first topic is if a machine
learning model can be trained to understand the relationship
between objectives and decision variables of an optimization
problem, and what is the error rate of this learning. The second
topic is related to the understanding of the impact of training
a model in different scenarios during an optimization process
in comparison to the NSGA-III.

In this paper, we present an analysis through empirical
experiments to validate the use of inverse surrogate models
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in Many-Objective Optimization. Here, DVL algorithm is the
inverse model used. The experiments are intended to demon-
strate if it is possible to learn decision variables from objective
functions, and validate the DVL as an algorithm for MaOPs,
analyzing the impact of different machine learning models
have on the algorithm. The experiments will be performed
using MaOPs benchmark problems, and the results obtained
will be compared with the results of the NSGA-III algorithm.

The main contributions of our work are: (i) validation of
machine learning algorithms to be used for estimating the
Pareto optimal set of optimization problems; (i) comparison
of different classical machine learning algorithms as inverse
models; and, (iii) analysis of the performance of the DVL algo-
rithm in solving different scenarios of optimization problems.

The remaining sections of this paper are organized as
follows: Section II describes the related works, Section III
presents the algorithm studied in this work, Section IV de-
scribes how the experiments were executed with the results
found, and finally, Section V concludes the paper.

II. RELATED WORK

According to our research, the first attempt of constructing
an inverse modeling method is made in [3], called Pareto
Estimation (PE). Where an inverse functional mapping from
the Pareto Front (PF) to the Pareto Set (PS) was built based on
the non-dominated solutions set obtained by the execution of
an MOEA at the end of evolutionary optimization. This model
is used to generate additional non-dominated solutions, thereby
enhancing the density of the solutions set. The motivation
is that in many MOPs, principally in MaOPs, the decision-
maker is not satisfied with the PS obtained by the MOEA.
In this work, it should be noted that the inverse model is not
used during the optimization process differently from the DVL
algorithm.

In [8] the PE method is extended to improve the density
of available non-dominated solutions in multi-objective multi-
modal problems. This kind of problem has multiples decision
vectors that map to identical objective vectors on the Pareto
front. In this case, the authors propose to subdivide the objec-
tive space, by using a clustering algorithm, into different C,
clusterings. So an ANN is trained for each cluster of solutions
to identify the map F Po, P — C,,. In this work, it is noted
that the quality of the resulting inverse model depends heavily
on the training samples used. In [9], it is proposed the MAEA-
GD/RD, an optimization algorithm based on the MAEA-gD
with sample redistribution, which reallocates the samples in
the current population in objective space for training the
inverse model. Doing this, more samples are present in regions
where higher quality topological information is more likely to
be obtained and used to improve the identification of Fp.

In [10] is proposed the IM-MOEA algorithm, motivated by
the PE method and the EDAs, provides a different way of
using inverse models. In the IM-MOEA, the inverse models
are inserted internally in the optimization algorithm and then
used to create offspring solutions by sampling the objective
space. They propose a decomposition of the inverse function,
also reducing the number of inverse models, and a particular
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reproduction operator who benefits from the inverse model.
The purpose of their method is to use the inverse models to
increase the density of solutions in the preferred regions at a
low computational cost.

The main contributions of the literature on inverse models
are based on using the knowledge extracted from the inverse
model at the end of the optimization process, or internally
creating offspring solutions. These strategies limit the use of
inverse models in generating good solutions at the beginning of
the optimization process, decreasing the evolutionary time to
reach an optimal set. In a different manner, the DVL algorithm
uses the inverse model to generate, at each iteration, an entirely
new solution set. Using the knowledge from the previous
iteration, the DVL algorithm produces solutions as close as
possible to the Pareto optimal set.

III. DECISION VARIABLE LEARNING (DVL)

The Decision Variable Learning algorithm [7] aims to use
machine learning models to generate an approximated Pareto
optimal set using information from samples of the objective
space and a set of reference points. Differently from the Pareto
Estimation (PE), the DVL is not a method used after the
MOEA, instead, it is an algorithm that uses the inverse model
approach into the algorithm to solve multi-objective problems.
Although in the elaboration of the DVL the authors were not
aware of the studies relative to the inverse model, the DVL has
the theoretical basis of the PE method. But, instead of using
the inverse model to increase the number of non-dominated
solutions, the DVL directly infers an approximation of the
Pareto optimal set.

DVL is based on three main steps, the first one is the
creation of an initial sample dataset, that contains solutions
with their respective objective functions. This initial sample
generation is provided by the LHS method, which generates
well-distributed samples over the search space. The second
step is the training of the inverse method, a machine learn-
ing model is used for this purpose, which is trained with
the dataset previously generated. The idea that supports this
modeling is that, for continuous MOPs, it can be deduced
from the Karush-Kuhn-Tucker optimality conditions that the
Pareto optimal set is a piecewise continuous in the decision
variables [3]. Depending on the machine learning model, M,
models are created, and each one estimates only one variable,
so each solution generated in this process will be composed
of variables estimated by different models. Another strategy
is to use only one model M that can be used to estimate the
entire decision variable set. The last step is the prediction of
new solutions next to the Pareto optimal set. The objectives
set used as input for this step is the same as the PE method,
which is based on the method in [11], that places points on a
normalized hyper-plane equally inclined to all objective axes
and has an intercept of one on each axis. The algorithm was
projected to work iteratively, where, at each iteration, the
training of the machine learning model and prediction of a
new population is executed. These steps are performed using
a set of solutions that is incremented at each iteration. The
purpose of this iterative approach is to improve the quality of
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the dataset and thereby improve future estimations since the
dataset will have solutions closer to the reference points.

One real-world application for DVL is the Traffic Lights
Signaling [12]. Traffic light signaling optimization is one way
of improving traffic efficiency. It relies on optimizing the
traffic-light cycle, which is the sequence of states of a traffic
light. A traffic simulator can be used to obtain data on traffic
flow through traffic lights synchronization, which provides all
the data necessary to simulate a traffic flow. The problem can
be modeled as a MaOPs, since the decision variable time of
each traffic-light cycle, and the objective functions are metrics
obtained through the simulation such as quality measures
such as travel and stopped time, the number of vehicles that
arrive at their destination, the overall average speed, among
others. In this problem even for a single intersection there can
be no obvious optimal solution. Furthermore, the simulation
is costly. This real optimization problem has an expensive
objective function and constraints, providing a new scenario
for studying the DVL inverse modeling.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the DVL algorithm through
empirical experiments that have two main motivations: first,
it is necessary to validate the possibility to learn decision
variables from objective functions, for this, we propose the Re-
gression experiment. Secondly, in the optimization experiment,
we validate the impact that different learning models have on
the algorithm. Also, we validate the DVL as an algorithm for
Many-objective Optimization in comparison with a state-of-
the-art MOEA, the NSGA-III.

In our experiments, we used the first seven test problems
from the DTLZ benchmark test suite [13]: DTLZ1 to DTLZ7,
which are multiobjective problems for optimization that have
different configurations and shapes of the Pareto-optimal front.
The problems are parameterized from a variable %k, where
k =n —m+ 1, being n the number of variables and m the
number of objectives of the problem. Two different instances
were defined for each problem, one with 3 objectives and 12
variables and the other with 10 objectives and 12 variables.
Although a problem with 3 objective is not considered a
MaOPS, we adopted this scenario to analyze the scalabil-
ity performance of the compared algorithms. By the DTLZ
definition, the complexity of 10 objectives is lower than the
complexity of 3 objectives. However, the variation of the
objective number allows the identification of the influence of
the objectives in the learning model. In a previous work [7], the
variation in decision variables showed no impact on algorithm
performance, so the number of variables is set to 12 in both
cases. All the algorithms in the experiments were subjected
to the same conditions, and our experiments aim to make a
comparative analysis between them.

Two different test configurations are described and analyzed.
The first one is called the regression experiment, and the
second is the optimization experiment. The parameter settings
and the performance indicators used in each test are described
at the beginning of each test subsection. In all experiments,
the algorithms are executed independently 20 times for each
configuration.
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In both experiments, Friedman’s test was used to check
whether there are statistically significant differences consid-
ering all algorithms. Then, the Wilcoxon rank-sum test is
adopted to compare the differences between pairs of configura-
tions. It was adopted 0.05 of the significance level. As pointed
out in [14] assumptions such as independence, normality, and
homoscedasticity are most probably violated when analyzing
the performance of stochastic algorithms based on compu-
tational intelligence. Thus, normally non-parametric tests are
used. The results of the statistical test were used to compute
the number of wins, ties and losses of an algorithm. An
algorithm wins when it obtains the higher mean values of
the metric and its results are statistically different to any
other algorithms’ result. In these cases, a loss is computed
for the other algorithms. It is a tie when there is no statistical
difference between the algorithm with the higher mean and
some other algorithm.

In the default implementation of the DVL algorithm, n
models are created to estimate each decision variable. Different
from the strategy used in [3] where a single model is used
to estimate the entire decision variable set. Because of the
dependence between the input and the outputs that can occur
in optimization problems, the two strategies are applied in our
experiments.

A. Learning Models

A set of different regression machine learning models, well
known in the literature, are used in our experiments to evaluate
the impacts of these models in learning the decision variables.
The Linear model, an artificial neural network, more precisely
a Multilayer Perceptron (MLP), a Random Forest regression
(RFR), and a Support Vector Regression (SVR). Each one has
unique characteristics that make them perform well in certain
types of problems. The implementation and the parameters of
each model were defined by Scikit-learn, a python module that
integrates a wide range of state-of-the-art machine learning
algorithms. Different from the default implementation of each
model in the Scikit-learn, were used as parameters: (11, 11,
11) for the number of neurons in the ith hidden layer, not
counting the input and output layers of the MLP. 100 for
the number of trees in the forest of the RFR, and 0.1 for
the regularization parameter of the SVR. These values of the
parameters described were the best found by empirical analysis
of running an experiment with the chosen models in a smaller
test case with different parameters empirically and randomly
chosen. In this smaller test case, it was adopted the same
methodology described in this section.

With few exceptions, Machine Learning algorithms do not
perform well when the input contains numerical attributes with
significantly different scales. It is the case of the objective
values of the DTLZ benchmark test suit. Therefore, for each
model was used the standardization transformation which is
an algorithm of feature scaling. The standardization subtracts
the mean value (so standardized values always have a zero
mean), and then it divides by the variance so that the resulting
distribution has unit variance. This transformation causes a
better performance in our experiments.
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To validate and analyze the strategy of using one model
to predict the entire decision variable set or using one model
to each decision variable, in our experiments, we applied the
multioutput regression in the models to obtain knowledge from
the dependence between inputs and outputs. The exception is
the SVR model, which implementation in Scikit-learn does not
have support to multioutput regression. The models with this
strategy are denoted with an "MO" before the model name in
our results.

B. Regression Experiment

The first experiment is motivated to answer if it is possible
to learn decision variables from objective functions. The task
of understanding and predicting the variables of the DTLZ
benchmark test problems can be classified as supervised
learning since we have the input and output for the learning
algorithm and can be classified as a regression task since
we want to predict a numerical value. This experiment is
based on two phases: training and testing. First, the model is
trained by the execution of the DVL algorithm. The generated
samples and modeling strategy follow the default flow of the
algorithm. Secondly, in the testing step, a subset of the Pareto-
optimal front of each DTLZ problem serves as input to the
model for prediction. The DTLZ benchmark test suit allows
the generation of the Pareto-optimal front of each problem
analytically. The key idea of this experiment is to analyze
if the inverse modeling of the DVL algorithm can correctly
predict the optimal set of a problem. In a real optimization
problem, the optimal front is unknown, but the purpose of
this experiment is to validate the inverse modeling strategy
trained with solutions far from the optimal front.

Each model in this experiment is trained with an initial
number of solutions generated through the LHS algorithm.
The size of the initial sample solutions is defined as 10000.
For each DTLZ problem, approximately 5000 solutions of the
Pareto-optimal front were generated for the experiment. The
values of these Pareto-optimal front were obtained through the
execution of diverse MOEAs without restriction and a post-
processing routine to diversify these solutions. The objective
function values of these generated solutions are computed
and passed as input for each model to predict the decision
variables. The predicted values of each model are evaluated
to the objective space. The mean-squared error (MSE) metric
is used to make empirical comparisons between the results
of each model. The MSE is the average squared difference
between the predicted optimal front and the Pareto-optimal
front values.

The results of the regression experiment for 3 and 10
objectives are shown in Table I. The wins or ties are high-
lighted in bold. The model with the lower MSE value was
more successful in predicting decision variables. The results
obtained in this experiment show that different models have
better performance on different types of problems. Also,
the number of objectives has interference in the results of
MSE on each model for each problem. Although the MSE
obtained has relatively low values, it is necessary to evaluate
the predicted decision variables and the objectives produced
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by these variables in terms of divergence and convergence
produced. For that, we made a visual comparison with the
results obtained in the experiment and the Pareto-optimal front
values of each problem.

Fig. 1 shows the visual comparison of the regression experi-
ment. For each problem, the model that achieves the best value
of MSE is used in comparison with the Pareto-optimal front.
Different models were used for comparison which indicates
that the use of a specific model is linked to the problem that
will be solved. Each pair of charts represent the comparison
for 3 and 10 objectives respectively. In each chart, the green
color lines represent the Pareto-optimal front, the blue lines the
objectives from the predicted decision variables. Every line in
the chart details an objective function vector, the x-axis is the
position in the vector, and the y-axis is the objective function
value contained in the vector position.

In all charts, the models used achieved a high convergence,
i.e. the values found are very close to the ideal. Only in
the DTLZ6 problem, Fig. 1k and Fig. 11, that the predicted
objectives are a little far away from the ideal. DTLZ6 has a
degenerate Pareto-optimal front as like DTLZS, besides that,
the DTLZ6 has many locals Pareto fronts which makes it diffi-
cult to converge to the Pareto-optimal front. In Figs. 1a, and le,
respectively, DTLZ1, and DTLZ3 problems, the models could
not find all parts of the Pareto-optimal for 3 objectives. It
occurred mainly due to the fact of the high search space
presented in these problems. Also, they have many local
Pareto-optimal fronts, which makes it difficult to obtain a
good divergence on the predicted values. In the rest of the
problems the predicted values obtained have performed well
in divergence and convergence of values. In these problems,
the shape of the region formed by the predicted values is
quite similar to the shape of the Pareto-optimal front. It is
important to note that the models had a greater divergence of
values in the problems with 10 objectives, demonstrating a
shape closer to the ideal. This is mainly due to the increased
number of features used for training which makes the models
perform better than with 3 objectives. Concerning the strategy
of using 1 or n models to estimate each decision variable,
the results show that both strategies can be used. In different
optimizations problems, each one gets the best results.

The results found by the regression experiment are quite
promising. We show that different models could learn the
decision variables by a set of objective function values. Even
in more restricted scenarios, the models achieved good results.
For the scope of this work, the models and techniques used
were enough to validate the learning of decision variables.

C. Optimization Experiment

In this experiment, each algorithm runs until it reaches
a stop condition, in the experiments we use the number of
evaluations of the objective function as a stop condition. A
set of a maximum number of evaluations to our experiment is
defined as (250, 500, 1000, 1500, and 10000), all algorithms
run with the same number of calls to the objective function.
This validation set is used to simulate different scenarios of
restrictions in the use of the objective function. In this set, we
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TABLE I
STATISTICAL RESULTS (MEAN AND STANDARD DEVIATION) OF THE MSE VALUES FOR 3 AND 10 OBJECTIVES.

Obj.  Prob. MO-Linear SVR MO-MLP MO-RFR Linear MLP RFR

3 DTLZ1 (1.4240.01)e-2  (1.41£0.00)e-2  (1.84+0.26)e-2  (3.60£0.87)e-2  (1.42+0.01)e-2  (2.4440.63)e-2  (3.62£0.21)e-2
3 DTLZ2 (4.4940.02)e-3  (2.20+0.14)e-3  (3.974+0.99)e-3  (7.91£1.96)e-3  (4.5040.02)e-3  (4.37£1.35)e-3  (3.6940.37)e-3
3 DTLZ3 (1.434+0.00)e-2  (1.41+£0.00)e-2  (1.984+0.39)e-2  (4.59£0.95)e-2  (1.43+0.01)e-2  (2.75£0.66)e-2  (3.80+0.30)e-2
3 DTLZ4 (1.204£0.04)e-2  (1.31£0.16)e-2  (3.67+1.27)e-2  (9.17£1.01)e-3  (1.19£0.05)e-2  (5.89+2.32)e-2  (9.39£1.26)e-3
3 DTLZ5 (8.5840.02)e-3  (8.21+0.11)e-3  (9.98%1.67)e-3  (1.42+£0.14)e-2  (8.5940.02)e-3  (1.14£0.11)e-2  (1.0340.03)e-2
3 DTLZ6 (1.114£0.03)e-1  (2.68+0.03)e-1  (9.41+3.83)e-2  (1.10£0.07)e-1  (1.1140.04)e-1  (1.17£0.67)e-1  (1.2040.08)e-1
3 DTLZ7 (2.914+0.75)e-4  (2.83+£0.08)e-1  (5.084+1.97)e-2  (7.65£0.26)e-2  (3.00+0.75)e-4  (6.17£1.89)e-2  (6.7740.72)e-2
10 DTLZ1  (6.3940.00)e-2  (6.54£0.13)e-2  (6.454+0.07)e-2  (5.95£0.10)e-2  (6.3940.00)e-2  (5.80£0.14)e-2  (1.7610.33)e-2
10 DTLZ2 (3.534+0.01)e-2  (3.47£0.01)e-2  (3.07+0.21)e-2  (1.80£0.03)e-2  (3.524+0.01)e-2  (7.07£0.39)e-3  (1.321+0.04)e-3
10 DTLZ3 (6.3940.00)e-2  (6.41£0.04)e-2  (6.4440.04)e-2  (6.47£0.15)e-2  (6.3940.00)e-2  (5.87£0.13)e-2  (1.901-0.19)e-2
10 DTLZ4 (5.414+0.01)e-2  (5.37£0.03)e-2  (6.8740.16)e-2  (4.33£0.06)e-2  (5.414+0.02)e-2  (5.93£0.12)e-2  (3.914-0.04)e-2
10 DTLZ5 (5.6910.00)e-2  (5.69+0.00)e-2  (5.754+0.03)e-2  (6.14£0.05)e-2  (5.691+0.00)e-2  (5.82£0.05)e-2  (6.171+0.04)e-2
10 DTLZ6 (6.814+0.07)e-2  (3.01£0.08)e-1  (1.454+0.29)e-1  (9.41£0.48)e-2  (6.831+0.08)e-2  (1.01£0.22)e-1  (8.2540.18)e-2
10 DTLZ7 (4.9940.59)e-5 (9.73+£0.80)e-2  (3.10+1.35)e-2  (4.30£0.05)e-2  (4.741+0.64)e-5 (4.97£1.54)e-3  (1.9840.30)e-3

classify as a higher restriction level a number of validations
lower or equal to 1000. The empirical comparisons between
the results are made by the use of Hypervolume (HV), a perfor-
mance indicator that assesses both convergence and divergence
of the solutions. Let y* be a reference point dominated by
all the Pareto front solutions, and P the population resulting
of a MOEA. The HV of P is the calculus of the volume
of the region that dominates y* and is dominated by P.
The HV values presented in this work are all normalized
to [0, 1] by dividing []!", y;. In this work, the following
reference points y* are used for each problem: for DTLZI,
y* = (300.0,300.0,...,300.0); DTLZ2 and DTLZ4, y* =
(2.0,2.0,...,2.0); DTLZ3, y* = (700.0,700.0,...,700.0);
DTLZS5, y* = (4.0,6.0,...,2(m + 1)); DTLZ6 and DTLZ7,
y* = (10.0,18.0, ...,2(4m + 1)) for m number of objectives.

The DVL algorithm needs four parameters to be predefined
for execution. The value c of the number of closest solutions
of the reference points used for training. A k value for the
initial number of population used by the LHS. A value @
of the maximum number of iterations and a value e of the
difference between the HV of the population generated. In this
experiment the c value is fixed in 200 and the € is set to 0.001,
the ¢ and the k have different values for each configuration of
number objectives vs. number of evaluations. For 3 objectives:
i =1 and k = 159 for 250 number of evaluations; ¢ = 3 and
k = 227 for 500; ¢ = 7 and k£ = 363 for 1000; i = 9 and
k = 681 for 1500 and ¢ = 14 and k = 8726 for 10000. For 10
objectives: ¢+ = 1 and k& = 50 for 250 number of evaluations;
i =2 and kK = 112 for 500; ¢ = 4 and k£ = 132 for 1000;
i =05 and k = 464 for 1500 and 7 = 12 and k = 7388 for
10000.

The parameters used in NSGA-III were defined by Pymoo, a
Python framework for optimization. For the simulated binary
crossover, the distribution index is set to nc = 30, and the
crossover probability pc = 1.0. For the polynomial mutation,
the distribution index and the mutation probability are set to
nm = 20 and pm = 1/n, respectively, as recommended
in [15]. The population size used was 91 and 220 for the prob-
lem with 3 and 10 objectives, respectively, and the individual
has a length of 12 for both objective sizes.

Table II summarizes the results of the statistical comparison
in terms of wins, draws, and losses. It is possible to note the
DVL superiority in problems with 10 objectives by winning

34 of 35 scenarios. With the MLP model having 24 wins
in comparison to the others. In the experimentation with 3
objectives, the NSGA-III wins a total of 14 in 35, and the
combination of all DVL different models wins 15.

For 3 objectives, only the SVR and the MO-Linear models
achieved good results of hypervolume in DTLZ1, DTLZ3, and
DTLZ7, just as they obtained in the regression experiment.
For 10 objectives, no model that got the best result in the
regression experiment achieved the best HV mean. What
draws the most attention is the performance of the SVR in
3 objectives, and the two MLP versions, MLP and MO-MLP,
which achieved good results in 3 and 10 objectives. Mainly
because although the MLP does not obtain the lowest MSE
value, the generated solutions have a good diversity which
implies a better HV. Besides that, the architecture of the DVL
algorithm allows new training at each iteration with objectives
closer to the ideal. As the model is reused during iterations,
this task can be seen as transfer learning and many studies have
demonstrated the superior performance of neural networks
compared to statistical methods in transfer learning.

In comparison with the NSGA-III algorithm, for 3 objec-
tives, in the problems DTLZI1-4 that have simpler Pareto-
optimal fronts, all of them triangular with DTLZ1 being plan
and DTLZ2, DTLZ3 and DTLZ4 a quarter of a sphere, the
DVL algorithm was superior only when there is a higher
restriction in the number of evaluations. In a less restrictive
scenario, where the number of evaluations is 1500 and 10000,
the NGSA-III got better results in these problems. For the
problems DTLZS5-7 the scenario is quite different, with the
DVL being superior in most cases. These problems are char-
acterized by having Pareto-optimal fronts with different shapes
from the previous ones. The case of DTLZ5 and DTLZ6 both
have degenerated Pareto-optimal fronts, and DTLZ7 has a
disconnected front. These kinds of problems make it difficult
for MOEAs to find the ideal frontier.

The results of the experiment with 10 objectives show
that the DVL algorithm was superior in the vast majority
of cases, except for the case of the DTLZ4 problem with
10000 evaluations, in which the NSGA-III is superior to
the DVL with any model. This shows that the DVL can
also be used for optimization in problems with a higher
number of objectives. We can deduce from the experiments
that the DVL has a good performance in different kinds of
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problems with different Pareto-optimal shapes, search space
sizes, with different local and global optimal, and a different
number of objectives. According to the experiments, this last
characteristic, the number of objectives, is a key factor for the
greater performance of the DVL in comparison to the NSGA-
III. The results also show that the strategy used for learning as
well as the model is problem-dependent. In different scenarios,
different strategies got better results, with the MO-MLP and
MLP having the best overall among these strategies.

TABLE 11
WINS/TIES/LOSSES OF THE STATISTICAL COMPARISON.

3 objectives 10 objectives

MO-Linear 0/4/31 1/0/34
SVR 470731 0/07/35
MO-MLP 1/2/32 8/0/27
MO-RFR 0/07/35 0/07/35
NSGA-III 1472719 1/1/33
Linear 173731 0/17/34
MLP 5/1/729 2470711
RFR 470731 0/07/35

V. CONCLUSION

In this paper, we showed experimentally that the DVL algo-
rithm and its strategy of inverse modeling can compete with
well-known MOEASs of the literature, such as the NSGA-III in
the optimization of benchmark problems. Experimental results
demonstrate that the inverse model can estimate the Pareto-
optimal front of the DTLZ benchmark test suit problems,
and also, the DVL algorithm can outperform the NSGA-III
algorithm in restrictive scenarios, i.e. with restrictions of the
number of evaluations, and in problems with a higher number
of objectives. The overall result found is quite promising, the
DVL produced a valuable performance against the NSGA-III
in many scenarios, even though the DVL algorithm is recent
and also it needs greater maturity for optimization tasks.

For future works, we suggest the improvement of the weak
points of the DVL algorithm, such as the deterioration of
the search performance due to local optima and the shape
of the reference points and to test DVL algorithm needs to
be experimentally tested in real-world optimization expensive
problems.
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