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Evolving Dynamic Bayesian Networks for CO2
Emissions Forecasting in Multi-Source Power

Generation Systems
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Abstract—Global warming is a significant challenge. Among
the contributors, CO2 emission is the foremost, and almost 40%
of global emissions come from electricity generation. In this sense,
an accurate prediction of CO2 emissions in a multi-source system
combining traditional and renewable sources can be used to
support the reduction of carbon emissions without affecting the
energy demand-supply. Despite the several relevant research in
this topic, because of higher uncertainty and variability caused
mainly by the intermittent nature of renewable energy, CO2 emis-
sions forecasting in multi-source power generation systems is a
current challenge. This paper presents CO2 emissions forecasting
for multi-source power generation systems using evolving discrete
Dynamic Bayesian Networks. Our proposal uses an analytical
threshold for selecting directed edges by the occurrence frequency
as data arrives, allowing a constant adaptation to smoothly
converges into a robust forecast model. It was tested using real
data from multi-source power generation systems of Belgium,
Germany, Portugal, and Spain. Its performance was compared
with other forecasting methods. Comparing the results against
a traditional DBN that not evolves the structure over time, our
proposal was superior highlighting a contribution of performance
improvement. The proposed method was better when compared
against ANN and XgBoost, with the difference in performance
statistically significant.

Index Terms—CO2 emissions forecasting, Energy Management
and Sustainability, Dynamic Bayesian Networks, Multi-Source
power generation system.

I. INTRODUCTION

G lobal warming and climate change are one of the main
discussions around the worldwide community to propose

alternatives that make sustainable development possible [1].
Regarding the consequences of global warming, the world
faces extreme climate events such as heating up of the atmo-
spheric temperature, glacier melting, tsunamis, and rising sea
levels, highlighting the necessity to make efforts to mitigate
environmental pollution [2]. Among the set of greenhouse
gases (GHG) that are contributors factors to global warming,
carbon dioxide (CO2) emission is the major contributor [3],
[4] and has increased by 47% over the past 170 years due to
human activities [1], [5].

Among human activities, economic development increases
industrialisation and urbanisation which causes excessive con-
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sumption of natural resources and also increases the energy
demand [6], [7]. Almost 40% of global CO2 emissions come
from using fossil fuels to generate electricity [1]. In Europe,
the energy sector is responsible for roughly 66.67% of all
GHG emissions [3], [8] and other economies like China,
the USA, and India also presented higher CO2 emissions
coming from the energy sector [9]. In Latin America, buildings
are responsible for 22% of the total energy demand, and
the forecasts indicate that energy demand will increase by
at least 80% by 2040 due to the expansion of the middle
class [10]. These facts highlight an enormous potential of
actuation in the energy sector to achieve the goal of reducing
GHG significantly.

During energy generation, the total of CO2 emitted varies as
a function of the sources used to generate it [3]. In other words,
each source has its CO2-equivalent intensity factor associated
with one kWh of energy produced. One possibility to reduce
the CO2 emissions without affecting the energy demand-
supply, is the use of alternative green energy sources such as
solar and wind combined with other traditional sources that do
not have the intermittent nature of renewable energy [11], [12].
In this context, efficient rescheduling of energy generation
integrating renewable energy sources can reduce up to 40%
emissions [13].

Recent efforts have been made to forecast the environmental
impact during energy generation to manage the production
coming from heterogeneous supplies in order to regulate and
reduce pollutant emissions [1]–[3], [11]. With an accurate
prediction of CO2 emissions in multi-source systems, it is
possible to act in architecture design, capacity planning, and
energy management strategies to achieve the goals regarding
the management and reduction of carbon emissions [11], [14].

For such a purpose, Qader et al. applied multiple methods
such as neural network time series nonlinear auto-regressive,
Gaussian Process Regression, and Holt’s methods for fore-
casting CO2 emission of Bahrain, concluding that the neural
network time series nonlinear auto-regressive model has per-
formed better [1]. Bokde et al. used decomposition approaches
to short-term CO2 emissions forecasting and its impact on
electricity market scheduling of five European countries [9].
In [15], the authors proposed a combination of artificial neural
networks (ANN) model with an agent-based architecture to
forecast the hourly gas consumption and electrical production
and then calculate the equivalent amount of emitted CO2 for
both energy sources. Xu et al. proposed the use of non-equigap
grey model with conformable fractional accumulation to inves-
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tigate the relationship between energy consumption and CO2
emissions. Using consumption as input and CO2 emissions
as output, CO2 emissions of 53 countries and regions in
North America, South America, Europe, the Commonwealth
of Independent States, the Middle East, Africa, and Asia
Pacific are predicted [16].

A comparative analysis to forecast CO2 emissions was
presented in Faruque et al. [17]. The paper examines the
relationships between CO2 emissions, electrical energy con-
sumption, and gross domestic product (GDP) in Bangladesh
from 1972 to 2019. Long short-term memory (LSTM) neural
networks, Convolution neural networks (CNN), CNN-Long
short-term memory networks (CNN-LSTM), and ANN with
more than one layer (Deep Neural Networks DNN) were used.
The authors highlighted that the number of neuron layers in all
deep learning models affects predicting accuracy and all hyper-
parameters are manually adjusted through trial and error. The
best performance comes from the use of the DNN technique.
Javanmard et al. applied machine learning algorithms and
optimisation models to forecast CO2 emissions with energy
market data from Iran. Among the nine machine learning
algorithms used, results indicate that auto-regressive-based
models algorithms are higher than other algorithms, followed
by ANN. The worst forecast accuracy is related to LSTM and
Support Vector Regression (SVR) [18].

Despite the relevant achievements presented in the studies
aforementioned, it is interesting to investigate new approaches
in search of performance improvements. Most methods pre-
sented are based on ANN or deep learning [2] that give a good
fit and forecasting performance for specific systems, but are
not generalist and is hard to interpret the results to track and
correct erroneous behaviour [3], [19]. An interesting option
that has been applied in the energy sector is probabilistic
models [20]–[24], especially Bayesian Networks (BNs), which
account for uncertainty in a rigorous and transparent manner
and allow an easy interpretation of the results [25]. For
properly handling time series, Dynamic Bayesian Networks
(DBN) are probabilistic graphical expressing qualitative and
quantitative relationships among variables over adjacent time
steps [26] and can be applied for stationary and non-stationary
time series [3]. In [3], the authors used DBN to CO2 emissions
forecasting on the multi-source power generation system of
Germany and found good results. Although the high prediction
accuracy, Santos et al., Wang et al., and Meng et al. pointed
out as crucial future research the development of a method
to evolve the entire structure model as data is arriving to be
a robust forecasting model and properly fit the data without
manual interventions [3], [27], [28].

In this sense, we propose a methodology to make CO2
emissions forecast in multi-source power generation systems
using Evolving discrete Dynamic Bayesian Networks (EDBN)
by an analytical threshold for selecting directed edges by the
occurrence frequency as data is arriving. Using the datasets
collected each day, the algorithm learns the partial structure
of the DBN using the Akaike Information Criteria (AIC)
score metric in combination with the hill-climbing method.
Then, using each partial structure obtained along the days, our
approach actualises the occurrence frequency of each edge and

uses the analytical threshold for selecting the directed edges
by the occurrence frequency. Our method constantly adapts
to the arrival of new datasets to properly fit the data and
smoothly converges to a robust forecast model. We choose
the discrete model with an uninformative prior to having a
non-parametric model that can be adjusted due to changes
in behaviour changes without manual modifications [3], [29],
[30], i.e., a data-driven proposal.

In summary, the main contributions of this article are as
follows:

• We propose the use of an Evolving discrete Dynamic
Bayesian Network by an analytical threshold for selecting
directed edges by the occurrence frequency as data is
arriving for handling CO2 emissions forecast in multi-
source power generation systems.

• Besides being data-driven, our approach smoothly con-
verges and adapts the structure as data arrives, forming a
robust method for dealing with forecasting of time series
data.

• We evaluate the capability of our method using real
datasets of multi-source power generation systems of
four countries: Belgium, Germany, Spain, and Portugal.
Moreover, it can be applied in Latin America’s energy
systems without manual modifications.

• We benchmark the performance against a set of widely
used forecasting methods.

The remainder of this paper is organised as follows. Sec-
tion II formally introduces the fundamental concepts, as CO2
emissions in generation systems, followed by the theory of
DBN, the analytical threshold for evolving DBN, and infor-
mation theory. Section III presents the materials and methods,
describing the multi-source power generation systems data, the
data pre-processing, the CO2 emissions forecasting through
EDBN, the performance evaluation approach, and the compu-
tational resources utilised. Section IV presents and discusses
the results comparing our method against other methods.
Section V concludes this manuscript.

II. THEORETICAL BACKGROUND

A. CO2 Emissions in Multi-Source Power Generation Systems

Due to the efforts to track and reduce GHGs emissions, the
emissions resulting from using a particular energy source need
to be quantified in the function of the total kWh produced.
This section explains the concept of dynamic CO2-equivalent
intensity factor and how it can be used to compute the
emissions in a multi-source power generation system.

Given the amount of energy generated per type of source, it
is possible to quantify the total emissions using the emission
factors of each source [13]. These factors express the dynamic
CO2-equivalent intensity factor associated with one kWh of
energy produced. In [13], [31], several emission factors for
different sources are given. Table I shows the emissions factors
used in this study.

Using the factors expressed in Table I, the joint dynamic
CO2 emissions intensity of a multi-source power generation
system can be calculated as Eq. 1

EFj,t =
∑
s

Et,s.EFs, (1)
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TABLE I
EMISSION FACTORS FOR DIFFERENT SOURCES EXPRESSED IN

GCO2 EQ/KWH. EMISSION FACTORS OF SOURCES WITH "*" ARE
CALCULATED AS THE MEAN OF ALL OTHER FACTORS (OF THE SAME

CLASS - RENEWABLE OR NOT) EXPRESSED IN THIS TABLE.

Biomass Solar PV Wind onshore Wind offshore

71 43 8 9

Geothermal Pumped-Storage Run-of-the-river Reservoir
45 34 4 9

Nuclear Lignite Coal Coal-derived gas
11 820 800 800

Gas Oil Waste Other renewable* 33
400 520 690 Other* 376

where Et,s is the energy produced by source s in time step t,
and EFs is the emission factor of source s.

B. Dynamic Bayesian Network

A directed graph G is a pair (V , E), where V is a set of
vertices or nodes. E is the set of edges that form pairs of
distinct elements of V . If (vi, vj) ∈ E, vi is a parent of vj
and there is a directed edge from vi to vj . A directed acyclic
graph (DAG) is a directed graph G without cycles [32].

A Bayesian Network (BN) is a probabilistic graphical
model [29] composed of a qualitative (structure) and a quanti-
tative part (parameters) [33]. Given a set of n random variables
V = {v1, v2, . . . , vn} under analysis, the structure is a DAG
G and represents the conditional dependencies among the
variables of V . Considering the edges of G, the quantita-
tive part is the set of conditional probability distributions
Θ = {θ1, θ2, . . . , θn} [32]. The pair B = (G,Θ) is a BN
and according to the Markov condition, each vertex vi ∈ V is
conditionally independent of all its non-descendants given all
its parents in G. As a consequence, the state of a variable vi
can be computed by a conditional probability θi = P (vi|pavi),
where pavi are the parents of vi in the structure G. Using this,
the joint probability distribution (JPD) encoded by B can be
computed directly from the chain rule as [32]

P (v1, v2, . . . , vn) =

n∏
i=1

P (vi|pavi). (2)

DBN is a BN with an additional ability to relate variables
to each other over adjacent time steps [3]. Given a set of n
random variables, a DBN of kth-order estimates the probability
distribution using the information of the k previous time
window (τ − k + 1 : τ ) to forecasting the variables in
the next time slice (τ + 1) [3]. This ability to find and
represent temporal connections improves the performance in
applications of multivariate time series in stationary and non-
stationary cases [28].

A DBN model is formed by the pair (G,Θ) and both
can be learned completely data-driven [3]. To simplify model
learning and reduce computational complexity [27], it is
common assumpts that there is only a limited time slice that
influences the future state of the process. This assumption

results in a DBN of order 1, which is a 2-slice temporal
Bayesian network (2-DBN). The future states are conditionally
dependent just on the observations of the actual time slice, i.e,
P (V τ+1|V τ ) ≡ P (V t:t+∆p |V 1:t) where ∆p > 0 is how far
into the future we want to predict.

Structural learning usually can be score-based, constraint-
based, and hybrid [34]. Score-based uses heuristics to search
in the space of DAGs for structures and then use some score
metrics to evaluate the structure [35]. Constraint-based uses
independence tests to evaluate and select edges to form G
and hybrid methods combine the other two approaches [29].
Using a score-based approach, structural learning can be posed
as an optimisation problem: given a dataset D with n random
variables, the scoring metric can be maximised by finding a
pair B = (G,Θ) [33].

Among the possibilities of score metrics to evaluate the
structure during structural learning, AIC tends to result in
models with a good predictive performance [29].

After obtain the DAG G, it is necessary to learn the
parameters of the DBN, i.e., learn the quantitative part (Θ).
The quantitative part depends on the edges in G and also on
the dataset D being modelled [26]. For the discrete model, the
quantitative part is formed by conditional probability tables
(CPTs), where each one describes the probabilities of each
state of a variable given the relations of the structure G [32].
This learning stage can be performed by maximum likelihood
or also a Bayesian estimation [29], [36].

As the discrete model require CPTs for each variable, learn-
ing the quantitative part including all variables and edges of
a complete DAG can demand a high computational cost [26].
When the goal is to forecast future observations of a random
variable, usually a subset is enough. This subset that contains
all the useful information is called a Markov blanket [37] and
includes all parents of the variable to be predicted, children
and children’s parents.

With a complete DBN, it is possible realise Bayesian
inference using maximum a posteriori estimation (MAP) [32].

C. An Analythical Threshold for Evolving Dynamic Bayesian
Networks

As illustrated in the previous section, using the score func-
tion option, structural learning can be posed as an optimisation
problem. Incomplete or noisy data can provide a partially
spurious structure [33], [38]. Moreover, a method to evolve the
entire model as new data is coming in can smoothly converge
into a robust forecast model, properly fit the new coming data
to improve the forecast performance [3], [28]. In this sense,
we used an approach based on the averaging strategy with
an analytical threshold to select the edges by the occurrence
frequency as new datasets arrive.

In the context of bootstrap resampling instead of new
datasets arriving, this type of model learning technique select-
ing the edges by the occurrence frequency was investigated
in [33], [38], [39]. To select a coherent threshold value, [33]
made a deduction using an analogy with an adapted one-
dimensional random-walk and evaluated this threshold via
data perturbation by dataset bootstrap replicas using Matthews
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Correlation Coefficient (MCC) as the performance metric. The
authors presented the following closed-form expression:

fth =
1

3
+

√
2

R
, (3)

where R is the number of bootstrap resamplings.
Considering scenarios of evolving the model as new data is

arriving, [26] proposed an adaptation regarding the threshold
proposed by [33]. The authors pointed out that without mod-
ifications, fth is close to one at the beginning of the process
and then can reject all edges principally in the presence of
data problems as missing values. The closed-form expression
used was:

fth =

{
0.6, if W < 28

1
3 +

√
2
W , otherwise

, (4)

where W is the total of datasets collected along each day w
= 1, . . . , W.

Using real and simulated datasets, [26] showed that using
the adapted threshold the model converges to a robust data
imputation model in the presence of missing completely at
random and not at random. Using the adapted threshold
proposed and evaluated in [26], our proposal applies the
following steps to select the edges as new data arrives:
For w = 1, . . . , W days:

1) get the dataset collected on day w;
2) organise the dataset Dw formed by the collected data;
3) learn the structure Gw = (V,Ew) from Dw using an

algorithm that search in the DAG space with local-search
combined with score metric;

4) get the Makov Blanket of the target variable, i.e., Gw in
this step reduces to a subset that contains just the useful
information.

5) Estimate the probability that each connection vi - vj is
present in true network G∗ = (V,E∗) as

ēij = ēji =
1

W

W∑
w=1

(ewij + ewji), (5)

where i, j ∈ {1, . . . , n}, ewij and ekji ∈ Ew and the
superscript w is just an index and does not mean a
potentiation.

6) Update the threshold fth.
7) The link vi - vj exists (is true) if ēji overcomes the

threshold fth.
8) For every link judged as significant (ēji > fth), choose

as the edge orientation the direction with higher fre-
quency observed along the W learned structures:

e∗ij =

{
0 and e∗ji = 1, if (feij < feji)

1 and e∗ji = 0, otherwise
, (6)

where i, j ∈ {1, ..., n}, feij = 1
W

∑W
w=1 e

w
ij and feji =

1
W

∑W
w=1 e

w
ji.

D. Optimal Bin Size Selection
The approach used in this investigation is based on the

discrete DBN model. When the dataset under analysis is
formed by time series variables, the data must be quantised in
order to limit the number of states and make the application
computationally feasible [3]. In this sense, an important task is
to determine the optimal quantisation level taking care of this
process can result in the mischaracterization of the data [3],
[40].

For an optimal quantisation of each variable, a good option
is the method for selecting the bin size of a time histogram
proposed by [41]. This method selects the bin size from the
spike counts statistics alone, so that the resulting bar or line
graph time histogram best represents the signal. The following
steps describe the process for data quantisation:

1) define the min number of bins (Nmin) and the max
number of bins (Nmax) to be tested;

2) for N ranging from Nmin to Nmax:
a) divide the observations of period T of a variable

into N bins of width ∆;
b) count the number of spikes hi from all n sequences

that enter the ith bin;
c) calculate the mean (h) and variance (var) of the

number of events hi;
d) compute the cost function: Cn(∆) = 2h−var

(n∆)2 ;
3) Noptimum and ∆optimum is when N minimises Cn(∆);
4) divide the observations of the period T into Noptimum

bins of width ∆optimum. At this point, all observations
were compressed in Noptimum bins.

E. Information Theory Concepts: Mutual Information

Based on the information theory, the concept of Mutual
Information (MI) arises as an indication of mutual depen-
dency between variables [42] and can be used for non-linear
relationships [43]. MI provides a measure of the amount
of information discovered about a random variable through
knowledge of other variables [43]. Given two variables v1 and
v2, the MI measures the reduction of uncertainty about v1 by
knowing v2, and vice versa.

During applications to forecasting, the future states are pre-
dicted based on information from the past. Due to this, MI has
been applied in different situations [3], [29], [44] to evaluate
the shared information between the original time series and its
lagged version. With the use of MI, it is possible to perform
feature selection, select how many lagged variables should be
selected as a new feature [29], and select a reasonable forecast
horizon (∆p) given the available information [3].

The MI between two random variables v1 and v2 is defined
in [43] as

MI (v1; v2) =
∑
x∈ℜ

∑
y∈ℜ

p (x, y) log
p (x, y)

p (x) p (y)
(7)

where p(x, y) is the joint probability mass function of v1
and v2, p(x) is the marginal probability mass function of
v1 and p(y) is the marginal probability mass function of v2.
The higher the MI value, more information can be obtained
about v1 from v2, i.e, the uncertainty of v1 reduces [43].
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To scale the measure between 0 (no mutual information)
and 1 (perfect correlation), the MI can be normalised by
minimal entropy min [H(xi,t),H(xi,t−k)] [3], resulting in the
Normalised Mutual Information (NMI).

Entropy is a concept used in various fields, including
physics, information theory, thermodynamics, and mathemat-
ics. In [45], the authors presented a historical background on
the evolution of the term “entropy”, and provides mathematical
evidence and logical arguments regarding its interconnection
in various scientific areas.

In [46], the concept of information theory with the concept
of entropy was presented. Entropy is a measure of the average
amount of information required to represent or transmit a
message from a given set of possible messages. It quantifies
the uncertainty associated with a random variable or a proba-
bility distribution. The higher the entropy, the more uncertain
or unpredictable the information is. Considering a discrete
random variable v with probability distribution p(x) and n
states, the average information content about v is given by the
Shannon entropy:

H(v) = −
n∑

i=1

pi(x) log pi(x). (8)

III. MATERIALS AND METHODS

A. Multi-Source Power Generation Systems Data

In this investigation, it was used the electricity grid data
of Belgium, Germany, Spain, and Portugal. All data is pub-
licly available by the European Network of Transmission
System Operators for Electricity (ENTSO-E) transparency
platform [47]. ENTSO-E is a central collection and publication
of electricity generation, transportation, consumption data,
and information about energy prices for different European
countries.

The requested data for each country comprises records
from January 1, 2019 to December 31, 2021 with a one-
hour sampling rate. The dataset contains temporal data from
different energy sources, consumption, hour and date. Using
the collected data and the concepts presented in Section II-A,
the variable Emissions (Et,s) was added to the dataset.

B. CO2 Emissions Forecasting trough Evolving Dynamic
Bayesian Networks

This section describes the steps of the proposed method
to perform CO2 emissions forecast. As previously mentioned,
the model utilised in this investigation is a discrete approach.
Due to this, in the first step, each variable of all datasets
was quantised using the optimal bin size selection approach
described in Section II-D. The min and the max number of
bins tested were 4 and 40 respectively. After data quantisation,
NMI was used to select the forecast horizon (∆p). Using ∆p,
the stage of data pre-processing organize the dataset for the
2-DBN model. The variables at this point are doubled: the
variables of τ are the original time series delayed by ∆p

and the original information is stored as τ + 1. As structural
learning of BN is an NP-hard problem [33], to reduce the
complexity the step of data pre-processing is finalised by

performing NMI among the target variable (emissions) and
the other variables of the dataset to eliminate variables that
are not relevant. All variables that the NMI with the target
variable is less than the median are considered irrelevant and
discarded.

In the second stage (structural learning), a new sub-dataset
Dw collected on the day w already pre-processed is used to
perform structural learning. For this purpose, the DBN struc-
ture Gw is learned using the Hill Climbing (HC) algorithm
combined with the AIC score to traverse the search space
visiting neighbour DAGs by deleting, adding, or reversing
an arc, and the algorithm advances to the one that provides
the highest improvement to the AIC score. The algorithm
stops the search when no operation yields improvement to
the score function, i.e. when finding a local maximum. The
structure learned is reduced to the Markov Blanket of the
target variable (emissions), the edges frequencies are updated
and G∗ is obtained by selecting the edges using the threshold
fth. If the threshold rejects all edges, is adopted that G∗ is
formed by a single directed edge from the target variable to the
target variable in the next time slice (emissions (τ ), emissions
(τ + 1)). It is important to highlight that the study in [29]
empirically verified the convergence of the combination of a
local search algorithm and AIC metric, resulting in satisfactory
networks.

Stage 3 refers to parameter learning. Despite the possibility
of cycles in G∗ reducing due to the cutoff frequency, it
theoretically does not ensure the absolute absence of one or
more cycles. To deal with cycles, our proposal checks the
presence of cycles in G∗ and tries to eliminate them by
reversing a single edge. If reversing a single edge does not
eliminate the cycles, our approach reverses two edges and in
the last case reverses one edge and eliminates one edge. After
ensuring that there are no cycles in G∗, using G∗ and the
last seven days of pre-processed and prepared data, the CPT
(Θ) is obtained. Θ describes the probabilities for each state
conditioned to its parents’ states.

The last step is responsible for the CO2 emissions fore-
casting. For this purpose, our approach uses (G∗, Θ) and
the last information as evidence to forecast the observation
∆p hours ahead using MAP estimation [3], [48]. Then, the
values predicted are transformed to continuous, go through a
smoothing filter to mitigate noisy values, and are stored. After
obtaining knowledge about the real data of τ + 1, they are
used to update the CPDs.

Fig. 1 shows a summary of the steps described above
represented as a flowchart.

C. Performance Evaluation

The proposed method was evaluated by comparing the
performance against widely used time-series forecasting meth-
ods. The competitor methods are: feedforwarding Multilayer
Perceptron (MLP), a fully connected class of feedforward
ANN [49], [50]; XGBoost, a decision tree-based machine
learning algorithm that uses a Gradient boosting structure [50],
[51]; traditional DBN with structure learned in one step. The
traditional DBN was used in [3] to perform CO2 in multi-
source power generation systems. The authors pointed out in
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Fig. 1. Flowchart for forecasting CO2 emissions using the EDBN proposed in
this paper. The process is organised into 4 parts: data pre-processing, structural
learning, parameter learning, and Bayesian inference.

future work the importance of approaches that allow evolving
the entire structure over time. The comparison is interesting
because it is a measurement against previous work and also
a measure of performance improvement regarding the use of
DBNs. All these models used the same interval of data used by
the proposed EDBN model for training and fitting the model.

For performance evaluation, were used Normalised Root
Mean Squared Error (NRMSE), Mean Absolute Error (MAE),
and Median Absolute Error (MedAE). These are computed as
follows [3], [26], [29].:

NRMSE =

√
1
N

∑n
i=1 (yi − ŷi)

2

ymax − ymin
, (9)

MAE =
1

N

N∑
i=1

| yi − ŷi |, (10)

MedAE = median (| y1 − ŷ1 |, . . . , | yn − ŷn |) , (11)

where ŷi is the forecasting value, yi is the real value, N
is the number of forecasts performed, ymin and ymax are the
minimum and maximum values observed in the test set.

After calculating the performance metrics for all methods
in all scenarios, the one-way ANOVA test is used to verify
the null hypothesis that the methods have the same population
mean (same performance) [52]. If the methods presented a
statistically significant difference between the means, Tukey’s
post hoc test can be used to make pairwise comparisons
between the means of each group to find out exactly which
groups are different from each other [53].

D. Computational Resources
For all implementations, we used a laptop computer with

an Intel(R) core i5 8th Gen processor, 16 GB of RAM, and
Linux Mint 20.1 Ulyssa operating system. The algorithms
were implemented in Python 3 language.

The datasets used in this manuscript, all dependencies
of scientific packages used during the implementation and
evaluation of this investigation and the scripts developed are
publicly available on GitHub to ensure full reproducibility of
this paper.

IV. RESULTS AND DISCUSSION

Following the steps of the flowchart in Fig. 1, first, our
approach realises data quantisation of all variables using
optimal bin size selection. With a small number of bins, the
data conversion results in the mischaracterization of the signal.
Using a large number of bins, the high number of states
increases the computational demand of the DBN method. On
the other hand, using the optimal number of bins the number
of states is reduced without inserting major errors.

After data quantisation, Fig. 2 illustrated the NMI among all
variables for different lag values to select the forecast horizon.
The first heatmap is using a delay of three hours and the second
frame for twelve hours. Note that for three hours the NMI is
higher than for twelve hours. For twelve hours of delay, even
between variables and their lagged versions (main diagonal
on the heat map), the NMI is close to 0, i.e., the variables no
longer share information. The third frame shows the average
NMI of the variables with their delayed versions for different
delays. For three hours the average NMI is 0.34 and decreases
rapidly as the lag increase, highlighting the difficulty of
making long-term forecasts with the available information in
the dataset. Important to mention that the NMI increases in
a periodic way for cycles of 24 lags and this pattern was
observed in other contexts of electric systems. [29], [54]–[56].

Fig. 2. NMI for the discrete dataset of Germany’s power generation system
at different lag values. First heatmap with a lag of three hours and the second
used a delay of twelve hours. At the bottom of the figure is the average NMI
of the variables with the lagged versions for different delays. In the heatmaps,
darker colours represent more considerable NMI.

From the results of Fig. 2, we choose the forecast horizon
and time window period of three hours (∆p = 3). Using
∆p = 3, the datasets were prepared according to the dynamic
model. The variables of τ + 1 are the original ones and the
variables of τ are the variables of τ+1 delayed by three hours.
With the dataset prepared for the dynamic model, we perform
NMI analysis in relation to emissions variable to eliminate
irrelevant variables to the forecast. All features with NMI less
than the median were eliminated. Fig. 3 shows the results for
each country. Important to mention that the set of relevant
features varies greatly from country to country, reflecting the
diversity of power generation profiles and the capability of our

https://github.com/TalyssonS/Evolving-DBN-/tree/dev
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selection proposal fully data-driven with no need for manual
adjustments.

Fig. 3. Features selection using NMI in relation to emissions variable. For
each country, all variables with NMI bigger than the median were selected.
The horizontal dashed line represents the threshold of selection.

With the datasets already pre-processed, our method con-
stantly adapts to the arrival of new datasets learning the partial
structure of the DBN combining the AIC score metric with
the hill-climbing search method and, then selecting the di-
rected edges by the occurrence frequency using the analytical
threshold. With G∗ fitted ever using the past week of data to
parameter learning and using the last observation available,
the emissions forecast with a horizon of three hours ahead
was carried out. The competitor methods used the same data
interval and conditions as the proposed EDBN. Fig. 4 presents
an illustration of one day of forecast performed by them using
the dataset of Germany.

As the plots highlight, all methods were able to predict the
behaviour without errors of great magnitude, evidencing that
the forecast horizon selected is adequate for the dataset used.
The proposed EDBN presented the best performance followed
by the traditional DBN, XgBoost, and ANN. Our proposal
showed better accuracy and forecast capability where forecast
values accompanied the real values from the beginning to the
end with smaller error values.

The example illustrated in Fig. 4 represents one day of
the process. The dataset of each country comprises records
from January 1, 2019 to December 31, 2021 with a one-hour
sampling rate. The forecast was carryout from January 8, 2019
to the end. In Table II, a summary of the values observed
for the forecasting performance metrics NRMSE, MAE and
MedAE are presented for the EDBN and the other three
methods used for comparison. The bold values indicate which
method resulted in the lowest average value. The proposed
EDBN presented the smallest NRMSE, MAE and MedAE
for Germany and Spain. ANN was the best for Belgium and
Portugal. The forecasting using conventional DBN results in
all of the highest values for all metrics. In general, EDBN and
ANN have better performance, followed by XgBoost which
presented a similar performance.

Fig. 4. Emissions forecasting for the proposed EDBN method and DBN,
ANN, and XgBoost for one day. The solid line represents real values and the
dashed line with markers illustrates the forecasting.

TABLE II
PERFORMANCE METRICS CALCULATED USING THE CO2 EMISSIONS

FORECASTING FOR THE INTERVAL FROM 8TH JANUARY 2019 TO 31ST
DECEMBER 2021 IN BELGIUM, GERMANY, PORTUGAL AND SPAIN. THE

VALUES PRESENTED ARE THE AVERAGE ± STANDARD DEVIATION.

Methods NRMSE
Belgium Germany Portugal Spain

EDBN 2.54 ± 0.72 3.92 ± 1.12 3.83 ± 1.40 2.41 ± 0.74
DBN 4.26 ± 2.64 4.94 ± 1.90 5.71 ± 3.65 3.26 ± 1.93
ANN 2.50 ± 0.63 4.21 ± 1.03 3.76 ± 1.15 2.80 ± 0.78

XgBoost 2.60 ± 0.65 4.43 ± 1.44 4.08 ± 1.44 2.77 ± 0.86

Methods MAE
Belgium Germany Portugal Spain

EDBN 14.28 ± 5.55 34.82 ± 12.95 30.90 ± 15.86 13.03 ± 5.48
DBN 25.92 ± 18.02 43.33 ± 19.30 46.92 ± 29.36 16.93 ± 10.24
ANN 13.81 ± 4.98 37.10 ± 13.40 30.12 ± 14.02 14.86 ± 5.46

XgBoost 14.28 ± 4.97 37.93 ± 14.03 31.83 ± 15.20 14.41 ± 5.45

Methods MedAE
Belgium Germany Portugal Spain

EDBN 12.44 ± 5.53 30.20 ± 13.34 26.82 ± 15.74 11.42 ± 5.45
DBN 25.10 ± 19.66 36.89 ± 18.93 43.82 ± 31.38 14.05 ± 9.10
ANN 11.62± 4.96 31.36 ± 13.55 25.83 ± 13.95 12.94 ± 5.62

XgBoost 12.01 ± 4.97 31.75 ± 14.60 26.53 ± 14.91 12.06 ± 5.21

Analysing Table II, our proposal was superior to the DBN
for handling CO2 emissions forecasting in multi-source power
generation systems of Belgium, Germany, Portugal and Spain,
i.e., a contribution of performance improvement in relation
to DBN approach. For the Belgium generation system, in
relation to ANN, the EDBN increases the average NRMSE,
MAE, and MedAE at 1.60%, 3.40%, and 7.06% respectively.
Regarding Germany, EDBN reduces in relation to the second
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better (ANN) the average NRMSE, MAE and MedAE at
6.89%, 6.55%, and 3.84% respectively. ANN was the best for
Portugal, where EDBN increases average NRMSE, MAE, and
MedAE at 1.86%, 2.59%, and 3.83%. For the Spanish system,
it was the scenario with the greatest difference. EDBN was the
best and XgBoost the second better, with a reduction of the
average NRMSE, MAE, and MedAE at 13.00%, 9.58%, and
5.31%.

Using all NRMSE calculated in each day of CO2 emissions
forecasting on Belgium, Germany, Portugal, and Spain, the
one-way ANOVA test was carried out to verify the null
hypothesis that the methods have the same performance and
Tukey’s post hoc test was used to make pairwise comparisons
between which method. Table III presents the results of the
comparison. The performance difference between the methods
is statistically significant and the EDBN was the best method
for the set of data used in this investigation. ANN presented
the second-best performance followed by XgBoost and DBN.

TABLE III
MULTIPLE COMPARISONS OF MEANS USING TUKEY HSD WITH ALPHA
0.05. THE TEST INVESTIGATES IF EXISTS A DIFFERENCE BETWEEN THE

NRMSE PRESENTED FOR THE METHODS DURING CO2 EMISSIONS
FORECASTING.

Method 1 Method 2 Mean Diff p-value adj Lower Diff Upper Diff
EDBN DBN 1.3657 0.0 1.2674 1.4640
EDBN ANN 0.1442 0.001 0.0458 0.2425
EDBN XgBoost 0.2949 0.0 0.1965 0.3932
DBN ANN -1.2215 0.0 -1.3199 -1.1235
DBN XgBoost -1.0708 0.0 -1.1692 -0.9725
ANN XgBoost 0.1507 0.0005 0.0524 0.2491

In addition to the performance analysis, the time that the
methods take during emissions forecasting was investigated.
The proposed EDBN and the other methods are computation-
ally efficient and could be used in online applications. All
methods spend an average time in a matter of seconds, while
data is sampled only every hour. It is important to highlight
that the time spent by the EDBN to learn the parameters and
make the prediction is smaller than by the DBN due to the
fact that the selection of edges by frequency results in smaller
structures.

V. CONCLUSION

This study investigated the performance and viability of
performing CO2 emissions forecasting in multi-source power
generation systems using evolving discrete Dynamic Bayesian
Networks. The use of an analytical threshold for selecting
directed edges by the occurrence frequency as data is arriving
allows the method constantly adapts and converge to a robust
forecast model. The performance was evaluated against a set
of widely used forecasting methods. For this purpose, we
used real datasets of multi-source power generation systems
of Belgium, Germany, Spain, and Portugal with records from
January 1, 2019, to December 31, 2021.

The proposed approach showed to be capable of dealing
with CO2 emissions forecasting in the systems evaluated in
this study. Comparing the results against a traditional DBN that
not evolves the structure over time, our proposal was superior
highlighting a contribution of performance improvement. It
is important to highlight that the traditional DBN used for

comparison was used in previous work to perform CO2
emissions forecast in multi-source power generation systems.
The proposed method was better when compared against ANN
and XgBoost, with the difference in performance statistically
significant. Moreover, the model also is computationally effi-
cient with forecasting run-time in order of seconds. All these
findings made our proposal a good option for embedding such
an approach in CO2 emissions forecasting fully data-drive and
with real-time forecasting.

Future research includes the investigation of the proposed
EDBN in other time horizons and energy aggregation levels
and also in other power systems forecasting problems.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001 and Fundação de Amparo à
Pesquisa de Minas Gerais (FAPEMIG).

REFERENCES

[1] M. R. Qader, S. Khan, M. Kamal, M. Usman, and M. Haseeb, “Fore-
casting carbon emissions due to electricity power generation in bahrain,”
Environmental Science and Pollution Research, vol. 29, no. 12, pp.
17 346–17 357, 2022.

[2] P. R. Jena, S. Managi, and B. Majhi, “Forecasting the co2 emissions
at the global level: A multilayer artificial neural network modelling,”
Energies, vol. 14, no. 19, 2021.

[3] T. M. O. Santos, J. N. O. Júnior, M. Bessani, and C. D. Maciel,
“Co2 emissions forecasting in multi-source power generation systems
using dynamic bayesian network,” in 2021 IEEE International Systems
Conference (SysCon), 2021, pp. 1–8.

[4] H. HUANG and F. LI, “Bidding strategy for wind generation consid-
ering conventional generation and transmission constraints,” Journal of
Modern Power Systems and Clean Energy, vol. 3, pp. 51–62, 2015.

[5] NASA. (2020) Vital signs - carbon dioxide. [Online]. Available:
https://climate.nasa.gov/vital-signs/carbon-dioxide/

[6] A. Jahanger, M. Usman, and P. Ahmad, “A step towards sustainable path:
The effect of globalization on china’s carbon productivity from panel
threshold approach,” Environmental Science and Pollution Research,
vol. 29, pp. 8353–8368, 2021.

[7] R. Amna Intisar, M. R. Yaseen, R. Kousar, M. Usman, and M. S. A.
Makhdum, “Impact of trade openness and human capital on economic
growth: A comparative investigation of asian countries,” Sustainability,
vol. 12, no. 7, 2020.

[8] L. Fiorini and M. Aiello, “Energy management for user’s thermal and
power needs: A survey,” Energy Reports, vol. 5, pp. 1048 – 1076, 2019.

[9] N. D. Bokde, B. Tranberg, and G. B. Andresen, “Short-term co2
emissions forecasting based on decomposition approaches and its impact
on electricity market scheduling,” Applied Energy, vol. 281, p. 116061,
2021.

[10] M. Panait, L. R. Janjua, S. A. Apostu, and C. Mihăescu, “Impact factors
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