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Abstract—Networking direct current microgrids (DCMGs)
have gained interest in the pursuit of achieving higher integration
of renewable energy sources (RESs) and improving system
resilience and reliability. The highly cooperative nature of these
MGs is an advantage in order to maximize the RESs utilization
and minimize grid power demand. However, ensuring stable and
robust operation in the presence of significant load fluctuations
constitutes a major challenge. Overvoltages and overcurrents,
among other phenomena related to system stability, deteriorate
the power quality and can be prevented with proper analysis. In
this regard, numerous research studies have presented proposals
related to the achievment of an optimal power distribution
among the individual MGs of a networking DCMG. However,
the stable operation of these MGs still requires further analysis
to reach the same level of understanding accomplished in other
topologies. Therefore, in this paper, a stability analysis for
a networking DCMG is presented. This analysis includes the
modeling of the system considering a distributed control strategy
and the presence of uncertain active loads, and the subsequent
formulation of sufficient conditions of load and generation power
for robust stability of the DCMG. Finally, the concordance
between the results of the circuital simulations and those related
to the stability analysis is assessed. Moreover, conclusions about
the representation of the microgrid and the optimal tuning of
the controller´s gains and parameters are drawn.

Index Terms—DC microgrid, Networking microgrid, Constant
power load, Adaptive droop control, Robust Stability, Power
electronics

I. INTRODUCTION

Interest in DCMGs has expanded rapidly in the last few
years in search of an integrative, efficient, sustainable,

and reliable solution for distributed generation systems.
DCMGs are direct current networks with locally-controlled
DC generation nodes (GNs), such as storage systems with
its associated power converters, and passive and active
loads. As many distributed generators, storage systems and
appliances are inherently DC, their interconnection through
a DCMG enhances the system efficiency [1]–[3]. DCMGs
are implemented considering different topologies [4], some
of which are shown in Fig. 1. In a single-bus topology,
the GNs and loads are connected to a single bus through
power converters. This structure is commonly employed in
low voltage applications such as residential complexes and
telecom systems [1], [5]–[7]. The ring bus structure is more
robust against faults in the power converters, and it has been
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Fig. 1. DCMG topologies: Single Bus DCMG, Ring Bus DCMG and
Networking DCMG.

used in distributed renewable and storage plants [8], [9].
The networking DCMG topology is characterized by being
organized into groups, which are constituted by spatially close
connected GNs and loads, which are then interconnected by
the main DC bus [4]. This topology is commonly found
in data centers, universities, and technology institutions [4],
[10]–[13]. Networking DCMGs represent a novel trend in
smart distribution grids, aiming to maximize renewable energy
sources utilization, reduce the power demand from the utility
grid, and enhance overall reliability [11], [14]–[16]. Due
to their resource-sharing-based approach, which improves
adaptability and resilience, networking DCMG is chosen as
the topology of interest for the analysis presented in this paper.

The nature of this type of DCMG is strongly cooperative,
therefore, distributed control systems are commonly
considered as a better approach than centralized strategies.
These systems rely on coordination and consensus to
achieve two main objectives: DC bus voltage regulation and
proportional load sharing among the GNs, with the goal of
avoiding overloading any of the GNs under nominal demand
[1], [5], [11]. However, the dynamics of the controllers
interact with each other and with loads that vary substantially
over time, which, in turn, may compromise the stability of
the DCMG [1], [17]. Furthermore, the stability issue has been
identified in the literature as a problem of great relevance
[18], [19]. Stable and robust operation is crucial to prevent
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overvoltages, overcurrents, and other bus voltage fluctuations
that deteriorate the power quality and can potentially damage
users equipment [16].

Different stability analyses of DCMGs have been proposed
in the literature, but most of them are limited in
their applicability to networking DCMGs given that the
considerations made in them are oriented to DCMGs with
different topologies and, therefore, different characteristics [5],
[20]–[23]. While many publications on networking DCMGs
focus on consensus strategies for global power distribution,
stable and robust operation of these systems has not been
widely addressed [11], [24], [25]. In a previous study [26],
a scenario considering multiple GNs and multiple CPLs is
presented, and the stability of the system is evaluated using
a LMI formulation and a polytopic space, which can handle
microgrids with multiple PCCs. While the topology studied
in [26] is compatible with a networking DCMG, the control
strategy associated with the GNs is based on a static droop
control, which is not suitable for a networking DCMG. As
networking DCMGs are strongly cooperative in nature, not
considering any distributed control strategy in the analysis
results in the loss of this key feature. Moreover, the impact of
the controller’s interactions on the system stability is neglected
as GNs with a static droop control act as autonomous entities.
Therefore, further study is needed to evaluate the impact
of distributed control strategies on the stable operation of
networking DCMGs.

In this paper, a stability analysis focusing on networking
DCMGs is presented. In order to carry out the mentioned
analysis a model based on well known space state modeling
techniques is introduced, where spatially-closed GNs and
loads connected to the same local DC bus are grouped into
units. The model also considers a distributed control strategy
where each GNs has an adaptive droop controller whose set
points are defined from the consensual control layer. Then, by
using the presented model, sufficient conditions of load power
consumption and local DC bus voltages for robust stability
of networking DCMGs are obtained by means of convex
polytopic modeling theory and Hurwitz stability. Furthermore,
the presented formulation is employed to gain insights into
the impact of controller gains and parameters on stability. The
latter allows to identify how to modify the parameters in order
to improve stability.

The rest of the paper is organized as follows: in Section
2, the model of the networking DCMG is developed.
Sufficient conditions for robust stability are obtained in Section
3. Simulation results are presented in Section 4. Finally,
conclusions are summarized in Section 5.

II. NETWORKING DC MICROGRID MODEL

The networking DCMG model involves: presenting the
microgrid bus representation, finding the expressions that
describe the circuit and control dynamics of local models, and
building the overall model by applying graph theory to model
the topology of the microgrid [24], [27].

Fig. 2. Proposed DCMG model based on multi-unit scheme.

A. Networking microgrid bus representation

As shown in Fig. 2, the microgrid is considered to be
constituted by the interconnection of different units. Each unit
covers GNs and loads that are spatially-closed connected. In
particular, these units include:

• DC power converter in voltage mode represented by a
controllable voltage source (vk), which operates as the
interface between the DC bus and a dispatchable source
(Gk) such as a battery or the DC bus in a two stages
scheme.

• The connection impedance between the converter outputs
and the kth local DC bus, which is constituted by an
inductance (Lsk) and a resistance (rsk).

• DC-link capacitance of the kth unit (Cbk).
• Resistive interconnection impedance (rjk) between jth

and kth bus.
• A CPL represented by a current source pk/vbk, i.e, the

control is assumed to be working on the constant power
region, thus, avoiding saturation of the duty-cycle [17].

Then, the interconnections among the units is defined
according to the topology of the DCMG.

B. Dynamic Model of the k-unit

The dynamic model of each individual unit is determined
by combining the model of the control loop of the DC power
converter and its output circuit, which includes Lsk, rsk, Cbk

and the load.
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Fig. 3. kth-unit model.

1) Control loop model: Fig. 3 shows the voltage controller
of the DC power converter, which consists of two layers:
a primary layer control composed of an inner current and
outer voltage control loop, and an external secondary layer
control corresponding to an adaptive droop control scheme that
defines the voltage reference v∗k for the primary layer control.
The primary layer control is supposed to have much higher
dynamics than the secondary layer control, so it is possible
to assume that vk ≈ v∗k. For the secondary layer control,
different adaptive droop control schemes have been proposed
in the literature, where the main difference is whether the
control adapts the voltage reference [6], the droop resistance
[28] or both [29]. In this paper, the scheme proposed in [29]
is considered because it includes not only adaptive droop
resistance but also consensus operation. Then, the following
expressions can be deduced for the control variables:

vk = v∗k (1)
v∗k = Vref + δvk − rdk

∗ ik (2)
rdk

= rd0k +∆rk (3)

δ̇vk = ėvk ∗Kpv k + evk ∗Kiv k (4)
(∆ṙk) = ėik ∗Kpi k + eik ∗Kii k (5)

evk = VMG ref − vMG, eik = ik − αk ∗ iMG (6)

where vk and ik are output voltage and current of the source
side converter. While, rdk

, rd0k and ∆rk are the total, constant
and varying terms of the droop resistance, which is modulated
to achieve current sharing among the GNs. In this sense, a
fraction (αk = Irated k/

∑n
j=1 Irated j) of the total current

load (iMG =
∑n

j=1
pj

vbj
, where n is the number of units

considered in the DCMG) is assigned to each GN [29]. For
its part, δvk refers to the voltage reference adjustment defined
to ensure convergence of the average bus voltage of the DC
microgrid (vMG = 1

n

∑n
j=1 vbj , with vbk the voltage across

the DC-link capacitor of the k − th bus Cbk) to the setpoint
defined by Vref and VMGref . The variable Vref represents
the nominal setpoint value for the output voltage of each DC
converter, while VMG;ref represents the setpoint value for the

average DC bus voltage. In more complex control systems
with multiple layers, these reference variables may be defined
by higher control hierarchies. However, for the purposes of
the present analysis, it is assumed that these reference values
are constant because their variations are expected to be slower
than the dynamics of the adaptive droop controllers. Lastly, evk
and eik are the voltage and current errors, respectively; and
Kpv k, Kiv k, Kpi k and Kii k are the PIs controllers gains.

2) Output circuit model: To describe the interconnections
among the units, an undirected graph is defined by ⅁ = (ϑ, ξ)
where each element in the vertex set ϑ represents one DC
microgrid unit, and each element of the edge set ξ represents
one transmission line between two different units. In other
words, if (k, j) ∈ ξ, jth unit and kth unit are neighbors. Thus,
in the following expressions, ℵk has the indices of neighboring
units to the kth unit [27]. Then, the following expressions for
the output circuit are deduced according to Fig. 3:

Lsk i̇k = vk − vbk − ik ∗ rsk (7)

Cbkv̇bk = ik − pk
vbk

−
n∑

j=1,j ̸=k,j∈ℵk

ijk (8)

ijk =
vbk − vbj

rjk
(9)

where ijk is the current in the transmission line between kth

and jth units. The current injection into the CPL is pk

vbk
.

Note that, as the set ℵ represents the interconnections among
the units, the single-bus and ring-bus topologies turn to be
particular cases where each unit is simply connected to its
single or two adjacent units.

3) k-unit dynamic model: From previous expressions, the
following state equations are deduced,

Lsk i̇k = Vref + δvk − vbk − ik ∗ (rsk + rd0 k) + (−∆rk ∗ ik)
(10)

Cbkv̇bk = ik − pk
vbk

−
n∑

j=1,j∈ℵk

vbk − vbj
rjk

(11)

(∆ṙk) =
Kpik

Lsk
∗ Vref + [Kiik − Kpik

Lsk
∗ (rd0 k + rsk)] ∗ ik

− Kpik

Lsk
∗ vbk +

Kpik

Lsk
∗ δvk +

Kpik

Lsk
∗ ( −∆rk ∗ ik)

+Kpik ∗ αk ∗
n∑

j=1

(− d

dt
(
pj
vbj

))

+ αk ∗Kiik ∗
n∑

j=1

− pj
vbj

(12)

δ̇vk = Kivk
∗ VMG ref − Kivk

n
[

n∑
j=1

vbj ]−
Kpvk

n
[

n∑
j=1

ij
Cbj

]

−Kpvk

n
[

n∑
j=1

− pj
vbj ∗ Cbj

] (13)
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where the three nonlinear terms present in the model refer
to:− pj

vbj
, d

dt (
pj

vbj
) and (−∆rk ∗ ik). The equations presented

show how the microgrid variables vbk and ik are affected by
control variables ∆rk and δvk .

C. Overall model

The overall model is obtained by combining the individual
models of the microgrid units, with the goal of accurately
representing the dynamics of the microgrid.

Let I ∈ ℜn, Vb ∈ ℜn, ∆v ∈ ℜn, ∆r ∈ ℜn, P ∈ ℜn,
VREF ∈ ℜ2, X ∈ ℜ4n and nonlinear functions h(., .) :
ℜnxℜn → ℜn and g(., .) : ℜnxℜn → ℜn be:

I = [i1, ..., in]
T , Vb = [vb1, ..., vbn]

T

∆v = [δv1 , ..., δvn ]
T , ∆r = [∆r1, ...,∆rn]

T

VREF = [Vref , VMG ref ]
T

X = [IT , V T
b ,∆T

v ,∆rT ]T , P = [p1, ..., pn]
T

H = h(p, vb) = [− p1
vb1

,− p2
vb2

, ...,− pn
vbn

]T

G = g(∆r, i) = [−∆r1 ∗ i1,−∆r2 ∗ i2, ...,−∆rn ∗ in]T

Then, with the above definitions, the overall microgrid
model can be written as:

ẋ = Ax+BVREF +MG+ CH + EḢ (14)

where the matrices A ∈ ℜ4nxℜ4n, B ∈ ℜ4nxℜ2n and M ∈
ℜ4nxℜn, C ∈ ℜ4nxℜn, and E ∈ ℜ4nxℜn. In order to build
these matrices, previous expressions and the definition of the
state variables vector X as xk = ik, xn+k = vbk, x2n+k =
δvk y x3n+k = ∆rk, are considered. Note that (14) is also
applicable for DC microgrids with multiple GNs or without
them and with or without loads. For example, in presence
of RESs operating in MPPT mode, i.e., working as constant
power sources (CPS), they can be modeled as presented for
CPLs, but with inverted power flow [17].

III. ROBUST STABILITY ANALYSIS

In this section, a robust stability framework for the system
presented in (14) is developed. This formulation allows a
straightforward evaluation of the system stability over a given
range of operation from a set of finite, reduced and clearly
defined conditions. In the present article, the considered
range of operation for the system is defined on the basis of
the value range contemplated for the bus voltages and the
power demanded by the CPLs in each unit. This analysis
has been carried out combining concepts from uncertainties
characterization theory [30], [31] and robust stability [32],
[33]. In particular, in this paper, uncertainties are characterized
through the theory of polytopic sets [30], and subsequently
those concepts are applied to robust stability conditions.

In the first place, the uncertain power demanded by the
CPLs is expressed as a bounded polytopic set P̌ given by,

P̌ = {p : pk ∈ [pk, pk], k = 1, ..., n} (15)

where pk and pk represent the minimum and maximum values
of the power demanded by the kth CPL, respectively.

Similarly, the set of DC bus voltage setpoints for
steady-state operation of the DCMG is defined as,

νeqb = {V eq
b ∈ Rn : veqbk ∈ [vbk, vbk], k = 1, ..., n} (16)

where vbk > vbk > 0 represent the maximum and minimum
bounds of the DC bus voltage setpoints during steady state
operation.

Once P̌ and νeqb are defined, it is possible to express the
set of feasible equilibria of the system as:

χeq = χeq(P̌ , νeqb ) (17)

χeq ={xeq ∈ R4n :

A.x + B.VREF +M.G+ C.H + E.Ḣ = 0,

p ∈ P̌ , V eq
b ∈ νeqb }

(18)

In second place, the following definition of robust stability
is considered:

a) Definition: System (14) is locally robustly stable if
any equilibrium of the set χeq(P, νeqb ) is locally exponentially
stable [32], [33].

Then, from the above, to evaluate Definition a) from
a reduced number of conditions, the following process is
proposed. Firstly, the linearized system around a given xeq

is obtained by linearizing the nonlinear terms in system (14),

hk = − pk
vbk

−→ pk
v2bk

∣∣∣∣
eq

vbk −→ ΘX (19)

ḣk =
d

dt
(− pk

vbk
) −→ 0 in equilibrium (20)

−∆rkik −→ −Ik|eq ∆rk −∆rk|eq ik −→ −[Υ + Γ]X (21)

where Θ = Θ(xeq), Υ = Υ (xeq) and Γ = Γ(xeq).
Then, the following system results:

ż = Az −M [Υ + Γ]z + CΘz = Azz (22)

where z(t) ∈ ℜ4n is the linearized state vector and Az =
A−M.[Υ + Γ] + CΘ ∈ ℜ4nx4n is the system matrix.

Secondly, the set of system matrix Az = Az(x
eq) for a

given set χeq is expressed in the form of a compact convex
polytopic model. In order to do that and obtain a closed
expression, the vertex representation given by the set of the
vertices of the polytope is employed as:

Az ∈ Ω , Ω := {Az =

p∑
j=1

ξjÂzj ,

p∑
j=1

ξj = 1, ξj ≥ 0} (23)

where the matrix Âzj is the jth vertex of the set Ω and it can
be determined by setting the uncertain terms in (22) in their
extreme values:

Âzj = A−M [Υ + Γ] + CΘ with

θk = θk =
pk

veqbk
2

or θk = θk =
pk
veqbk

2
, k = 1, ..., n

(24)

where θk captures the overall uncertainty of pk and veqbk .
In addition, Ieqk and ∆reqk are determined by previously set
variables values and equilibrium conditions xeq .

Finally, to evaluate Definition a) over χeq is equivalent to
analyze the stability of all the matrices in Ω. Furthermore,
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since Ω is a polytopic set, any matrix Az ∈ Ω can be
expressed as convex combinations of the vertex matrices from
Âzj according to the convex set theory. Then, it is a sufficient
condition to only analyze the Hurwitz stability of all the vertex
matrices Âzj to test the stability of all the matrices in Ω [32],
[33].

IV. RESULTS

A. Impact of load and power generation distribution

In the following, the presented model is applied to different
scenarios of the same DCMG in order to evaluate the impact
of variations in microgrid connections and the sensitivity
to changes in the distribution of GNs and power loads.
The 3-zones DCMG illustrated in Fig. 4 is considered with
the parameters shown in Table I. The gains and parameters
associated with the control were tuned by analyzing the
small-signal block diagram corresponding to the local model
of the individual units. Then, the transfer functions were
calculated for a worst-case load and appropriate values of kpv ,
kpi, kiv , kii, and rd0 were determined. To simplify the analysis
without losing generality, these values were defined to be the
same for all units.

Two cases are considered in this scenario: an unbalanced
case, where the largest load is connected to the same unit as the
smallest generation node, and a balanced case. These two cases
are contrasted with a third scenario where the interconnection
impedances are ignored. Then, this third scenario is equivalent
to a single-PCC model where the equivalent load and all the
GNs are connected to the same PCC, as shown in Fig. 5.

Fig. 6 shows the transient response of the bus voltages
and output currents of the GNs obtained from circuital
simulation using a Simulink (MatLab) environment. The
circuital simulation involves two step variations in the power
demanded by the CPL of each unit. At t = 1 s, a change from
zero load to a minimum load occurs, while at t = 2 s, a second
change takes place, bringing the loads to their maximum value.

On the one hand, in the first two scenarios, it can be
observed that the voltage of the local DC buses converge

Fig. 4. Multi-unit representation of a 3-unit DCMG.

Fig. 5. Single-PCC representation of a 3-zone DCMG.

TABLE I
3-ZONE NETWORKING MG PARAMETERS

rs1 0.45Ω rs2 0.525Ω rs3 0.5Ω
Ls1 1mH Ls2 0.85mH Ls3 1.15mH
Cb1 0.33mF Cb2 0.5mF Cb3 1mF
r12 2Ω r23 2Ω

Irate 1 10A Irate 2 20A Irate 3 30A
rd01 0.3 rd02 0.15 rd03 0.1
α1 0.16 α2 0.33 α3 0.5
Vref 800V Vref 700V

VMGref 800V VMGref 700V

kivk = kiik 10 kpvk = kpik 0.01

Unbalanced Case

p1 70 kW p2 0.25p1 p3 0.1 p1
p1 1 kW p2 1 kW p3 1 kW
vbk 700V vbk 800V

Balanced Case

p1 0.1 p3 p2 0.25 p3 p3 70 kW
p1 1 kW p2 1 kW p3 1 kW
vbk 700V vbk 800V

Single-PCC Case

p 3 kW p 94.5 kW
vbk 700V vbk 800V

to different values, which is directly related to the current
circulation among the different units and it is a needed
situation to allow proportional load sharing among the GNs.
In this regard, an unbalance distribution between the power
generation and the demand lead to a greater current circulation
through the interconnections, increasing the interaction among
the GNs controllers and more abrupt voltage transients during
the load steps. Moreover, it can be observed that the larger
voltage drops are associated to the units with lower Cbk values
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TABLE II
3-UNIT NETWORKING MG OPERATION LIMITS

Method Unbalanced
Case

Balanced Case Single-PCC
Case

Simulation p = 124 kW p = 176.1 kW p = 205 kW

Stability
Analysis

p = 96.1 kW p = 137 kW p = 159.6 kW

and higher pk values. Then, a more balanced distribution
reduces the current circulation and coupling among the units
allowing to switch larger loads. On the other hand, the third
scenario shows a more relaxed situation, indicating that the
conclusions drawn from this model are less conservative.
Additionally, in all scenarios, it is noted that even though
the instantaneous values of the DC bus voltages can exceed
the steady-state minimum and maximum bounds, the voltage
controllers successfully bring the global average voltage to the
given setpoint.

These observations are confirmed with the obtained
operation limits of the system, which are shown in Table II
considering the proportions among p1, p2 and p3 listed in I The
process of determining the operation limit varies between the
circuital simulation and the stability analysis. In the circuital
simulation, the maximum power load is incrementally raised
while maintaining all other parameters of the DCMG constant
until the system reaches its limit, unable to handle a load step
change from the minimum to the maximum load condition.
On the other hand, in the stability analysis, the maximum
power load is progressively increased while keeping all other
DCMG parameters constant until the Hurwitz stability of any
of the vertex system matrices Âzj is no longer maintained.
Regarding the latter, Fig. 7 shows the eigenvalue locus for
the three scenarios considered, i.e., the balanced, unbalanced,
and single-PCC cases. Additionally, the graph is split into
three frequency ranges to allow for clearer observation of the
eigenvalues, and a zoomed section shows the detail of the
eigenvalues close to the origin.

Regarding the results shown in Table II, it can be
appreciated that the boundary operation condition are
considerably different between the three scenarios, both as
a result of the circuit simulation and the stability analysis
presented. As a consequence, it can be stated that they
do not correspond to equivalent situations. Secondly, and
more importantly, it can be observed that the single-PCC
representation turns unstable for larger loads and may lead
the stability analysis to find an operating limit outside what
the system can actually handle. In this case, the boundary
operation condition obtained from the analysis applied to the
single-PCC representation cannot be handle by the DCMG
in an unbalanced scenario, meaning that the stability analysis
is not conservative enough to completely disregard the
information regarding power distribution in the microgrid.
Otherwise, the conclusions reached by this representation
require the definition of a security range. In this regard,
comparing the curves shown in Fig. 6 and the eigenvalues
shown in Fig. 7 it can be stated that the behaviour of the

Fig. 6. Voltages and Currents transient response: (a) unbalanced case,
(b) balanced case, (c) single-PCC model.

DCMG tends to the single-PCC scenario as the distribution
balance is improved.

B. Stability analysis simulations

In this section, the presented analysis is employed to identify
both, stable and unstable operation conditions, in the microgrid
shown in Fig. 9, which is a more complex scenario and whose
parameters are shown in Table III.

In Fig. 10, the eigenvalues of each unit (a total of 18) are
presented for a stable operation condition. As in the previous
section, the graph is split into three frequency ranges to
allow a more clear observation of the eigenvalues. The main
objective is to plot the variation of these eigenvalues between
the extreme cases of operation, i.e, from the condition of
minimum load and maximum voltage bus (represented by the
∗ symbols) to the maximum load and minimum voltage bus
condition (represented by the o symbols). As can be seen in
Fig. 10, the stability is ensured as all the eigenvalues of all
vertex system matrix Âzj are Hurwitz stable. This result can
be contrasted with a circuit simulation. In this sense, Fig. 8
shows the system response to the maximum load step given
in Table III. As it can be observed, the DCMG remains stable
after the load steps at t = 0.5 s (minimum to maximum load)
and at t = 1.5 s (maximum to minimum load).

The presented analysis can be also applied to determine
unstable load conditions. The procedure followed respects
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Fig. 7. Eigenvalues locus for the vertex matrices of balanced case,
unbalanced case, and single PCC scenarios in the operation condition
of Table II. Note that unstable eigenvalues have been highlighted by
circling them in red.

Fig. 8. Voltage and current transient response to maximum load steps.

what was indicated for the 3-unit DCMG scenario. In other
words, the proportion between the six pi of the microgrid is
preserved as considered in Table III, while the total power load
is increased until the system turns unstable. According to the
presented analysis, stability is no longer ensured when some of
the eigenvalues associated to Âzj shift to the right-half-plane.
Fig. 11 shows the eigenvalues locus for this scenario. The
limit value of total power resulting from the analysis is p =
200.2 kW, while the value obtained from circuit simulations
turns to be p = 231 kW. In relation to the latter, as large signal
stability is of interest, the system is considered to be unstable
when it cannot handle a step change from the minimum load
condition to the maximum load condition. Which is also the
procedure followed for the 3-unit DCMG scenario. As it can
be noted, the proposed model gives a conservative result due
to the robust analysis inherent to the polytopic representation.

Finally, the presented formulation bases the condition of
Hurwitz stability on the eigenvalues of the vertex matrices,
allowing the analysis of the more suitable parameters to
modify in order to improve the stability of the DCMG.

Fig. 9. DCMG case of study taken from [10].

TABLE III
6-ZONE NETWORKING MG PARAMETERS

rs1 0.45Ω rs2 0.525Ω rs3 0.5Ω
rs4 0.35Ω rs5 0.25Ω rs6 0.65Ω
Ls1 1mH Ls2 0.85mH Ls3 1.15mH
Ls4 1mH Ls5 0.85mH Ls5 1.2mH
Cb1 0.33mF Cb2 0.5mF Cb3 1mF
Cb4 0.26mF Cb5 0.47mF Cb6 1mF

Irate 1 10A Irate 2 20A Irate 3 30A
Irate 4 10A Irate 5 20A Irate 6 30A
rd01 0.3 rd02 0.15 rd03 0.1
rd04 0.3 rd05 0.15 rd06 0.1
α1 0.083 α2 0.167 α3 0.246
α4 0.083 α5 0.167 α6 0.246
Vref 800V Vref 700V

VMGref 800V VMGref 700V

kivk = kiik 10 kpvk = kpik 0.01 rjk 2Ω

p1 0.1p3 p2 0.25 p3 p3 60 kW
p4 0.26 p3 p5 0.47 p3 p6 1.0 p3
p1 1 kW p2 1 kW p3 1 kW
p4 1 kW p5 1 kW p6 1 kW

vbk 700V vbk 800V

To conduct this analysis, the DCMG shown in Fig. 9 is
taken to the critical load condition found in the previous
paragraph. Then, a small perturbation is made over different
parameters of the DCMG, and the variation in the value of the
critical eigenvalue (i.e., the one that turns unstable sooner) is
calculated. Fig. 12 presents a summary of the results obtained
for the percentage variation of the critical eigenvalue. The
calculation was performed using the following expression:

V ariation[%] =

efinal−einitial

einitial

Parameterfinal−Parameterinitial

Parameterinitial

100%

(25)
where the numerator is the relative eigenvalue variation and
the denominator is the relative parameter variation. From
the given expression, it is evident that a negative percentage
variation indicates that the eigenvalue moves towards the
left-half-plane, i.e., towards a stable condition. Conversely, a
positive percentage variation indicates the opposite, suggesting
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Fig. 10. Eigenvalues locus for the vertex matrices in a stable scenario.

a movement away from the stable condition.
The analysis was conducted both individually for each unit

parameter, as shown in the first n bars of each subplot in the
figure, and by simultaneously modifying the value for all units,
represented by the last bar of each subplot. In the last subplot,
the last bar specifically demonstrates the impact of modifying
the base droop resistance value (rd0). Based on the obtained
results, several observations can be made:

• Increasing the gains associated with the voltage controller
(kivk

, kpvk
) leads to a beneficial variation.

• Increasing the gains associated with the current controller
(kiik , kpik )leads to a detrimental variation.

• Changing the current distributions, which are determined
by the ratios of the Iratek , leads to a more beneficial
variation when they generate a more equitable distribution
among the GNs or they force the GNs associated with the
more demanding loads to contribute with most part of the
total load.

• Changing the base value of the droop resistance rd0 has
almost no impact.

Therefore, some insights can be made. The convergence of
the DC bus voltage to its reference value is a priority over
the convergence of the output currents if stability needs to be
improved. The adaptive term ∆rk dominates the term rd0 in
determing the system stability, turning the tuning of the static
value less important. It is important to note that the analysis
is based on a small variation of the studied parameters, and

Fig. 11. Eigenvalues locus for the vertex matrices in a unstable
scenario.

these observations may not be valid for larger variations. For
instance, larger increases in the values of the kivk

can turn a
secondary eigenvalue unstable. Therefore, when making larger
variations, the tuning process must consider the impact on the
rest of the eigenvalues.

V. CONCLUSIONS

In this paper, a stability analysis for networking DCMGs
with distributed control and uncertain CPLs was presented.
In this sense, the concept of convex polytopic sets allowed
to represent the uncertain time-varying nature of the loads
and obtain a set of sufficient conditions to evaluate the
stability of the system under a robust approach. According
to the correlation between the load power limits obtained
from circuit simulation and the presented analysis, it can be
stated that the analysis correctly determines stable operation
and returns conservative results regarding the limit operation
conditions that keep the system stable, which is a typical
feature of robust analysis approaches. Additionally, the results
highlighted different representations of a same DCMG can
lead to different conclusions, and, consequently, information
regarding units interconnection and distributions of GNs and
loads cannot be completely disregarded. Lastly, the Hurwitz
stability criteria, based on the eigenvalues locus, provided
valuable insight for a more comprehensive interpretation of
the impact of the DCMG parameters on the system stability.
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Fig. 12. Bar graph showing the impact of different parameters of
the DCMG on the critical eigenvalue, with each bar representing the
variation produced by a specific parameter. The results indicate the
relative importance of each parameter in improving the stability of
the DCMG.

This advantage was employed to evaluate which modifications
of the controller’s gains and parameters are more beneficial
in improving the stability of the system under a critical load
condition.
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