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A Graph-based Superpixel Segmentation Method
for Measuring Pressure Ulcers

Felipe Moreira de Assunção , Rodolfo Herman Lara e Silva , Alexei Manso Correa Machado ,
Paulo Sérgio Silva Rodrigues , Zenilton K. G. Patrocínio Jr. , Silvio Jamil Ferzoli Guimarães

Abstract—Monitoring wound healing is a necessary procedure
to help health services control pressure ulcers. The correct
diagnosis depends on clinical observations by doctors and nurses
during patient visits. The evaluation of the wound area represents
one of the most important data. Usually, health professionals
assess ulcers through visual inspection, using rulers and decals.
These ones, in direct contact with these lesions, may cause dis-
comfort and inducing other infections, and consequently, worsen
the patient’s clinical condition. Understanding and knowing these
injuries allows for better preventive and therapeutic actions.
In this paper, we aim to present an automatic and effective
method for ulcer delineation according to the following pipeline:
(i) graph-based superpixel segmentation; (ii) superpixel feature
extraction; (iii) superpixel classification; (iv) ulcer segmentation;
and (v) feature description. The main idea is to automatically
compute pressure ulcer measurements for identifying the lesion
area, allowing the follow-up of the scar evolution. Our graph-
based superpixel segmentation method outperformed five other
state-of-the-art approaches, as well as deep learning models,
reaching 92.6% sensitivity, 98.6% specificity, 97.6% precision,
96.6% accuracy, and 90.4% intersection over the union.

Index Terms—Superpixel, graphs, pressure ulcers, health.

I. INTRODUCTION

One of the complications that arise from prolonged hos-
pitalization is skin lesions that can progress to pressure

ulcers [1]–[3]. Pressure ulcers are chronic injuries resulting
from excessive compression of soft tissue against bony promi-
nences and intricate surfaces or medical devices. Patients
with ulcers have extended lengths of stay, favoring new
illnesses that generate physical, emotional, and financial wear
for the public/private health systems [4]. Moreover, chronic
injuries are among the leading causes of increased morbidity
and mortality in patients with chronic-degenerative diseases
and the elderly [5]. The skin, when injured, soon starts the
healing process through a dynamic, continuous, complex, and
interdependent process, composed of a series of overlapping
phases [6]. The use of rulers and decals in direct contact with
ulcer lesions during a visual inspection by health professionals
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can cause discomfort to the patient, as well as increase the
risk of infection and worsen the patient’s clinical condition.
This strategy is often imprecise, subjective, and without a
well-defined standard among health professionals [7], [8]. It
also lacks a standardized method of assessment, leading to
inconsistencies in diagnosis and treatment. Furthermore, the
reliance on visual inspection alone may not provide a compre-
hensive understanding of the ulcer, such as its depth and size,
which can impede accurate diagnosis and treatment planning.
Lesion healing can be better observed using monitoring scales
through the development of computational methods that make
the clinical assessment through digital images, as they provide
more accurate and reliable information [8].

This paper presents an effective method for ulcer delin-
eation that uses the Dynamic and Iterative Spanning Forest
(DISF) method as its central core. We hypothesize that more
effective superpixel delineation method may highlight the area
of the lesion making it possible the better understanding
the behavior of the lesion. For computing the pressure ulcer
measurements, we have used a pipeline composed of: (i) image
acquisition; (ii) pre-processing and superpixel segmentation;
(iii) feature extraction; (iv) data preparation; (v) classification;
and (vi) post-processing, as shown in Fig. 1. An additional
contribution of this work is a comparison of the effectiveness
of five other superpixel methods in the pre-processing step of
the pipeline.

Fig. 1. The proposed methodology for measuring pressure ulcers is
based on superpixel computation. (Similar to Silva and Machado [8]).

This work is organized as follows. Section II briefly de-
scribes some related works. Section III describes materials
and methods for automatic pressure ulcer segmentation. Sec-
tion IV presents and discusses the experimental results, while
Section V draws conclusions and future works.
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II. RELATED WORKS

Veredas et al. [9] proposed a method based on k-means clus-
tering for image segmentation with a comparison of three dif-
ferent machine learning approaches to classify each segmented
region as the appropriate tissue type. The results reached a
reliability index of around 95%. Deng et al. [10] presented a
new pipeline for the automatic extraction of flaky corneal ulcer
areas. First, a semi-automatic method identifies the cornea for
each image. Then, a four-step approach segments the ulcer
region within the cornea as follows: (i) identify/adjust the
color information of reflective areas; (ii) use Simple Linear
Iterative Clustering (SLIC) to segment each image into 1000
superpixels; (iii) employ Support Vector Machine (SVM) to
classify superpixels into two classes; and (iv) smooth the ulcer
segmentation results through erosion and dilation. They used
150 clinical images. Results demonstrated that the method
significantly surpassed two classic segmentation algorithms:
active contour and Otsu threshold.

More recently, deep learning models such as Convolutional
Neural Networks (CNN) and Fully Connected Deep Networks
(FCDN) have been applied to the problem of ulcer assessment.
Lu et al. [11] proposed a CNN model and a color correction
method to segment non-homogeneous medical images. When
applied to 300 lesion images, their approach reached an aver-
age accuracy of 83%. Liu et al. [12] introduced a lightweight
neural network to perform wound segmentation. Training and
test procedures used a more extensive set of 950 images. After
a post-processing step, the best model achieved 98% accuracy,
91% sensitivity, and 93% precision. A minimal dataset of
22 high-resolution images of pressure ulcers was used by
Zahia et al. [13] with a CNN model to classify tissue types,
reaching a global average of 92% accuracy. The efficiency
of DNNs in the segmentation task was improved by Li et
al. [14] through background removal techniques, reaching 95%
precision and an intersection over union (IoU) of 86%. Blanco
et al. [15] proposed a new method for wound segmentation
that uses an annotated set of dermatological ulcers to train
deep learning models for identifying superpixels that represent
ulcerated skin. Goyal et al. [16] presented a set of techniques
to recognize the presence of infection and ischemia in diabetic
foot ulcers using computerized methods. Their method uses a
new feature descriptor with an ensemble of CNNs to recognize
and identify the region of interest in foot images and focus on
finding the salient features in this area. Silva and Machado [8]
used an SVM classifier combined with a modified version
of the GrabCut segmentation method for measuring the area
affected by pressure ulcers. The primary motivation for their
work was related to the difficulty of manually monitoring cases
of pressure ulcers. Generally, lesions are evaluated by mea-
suring the affected area with materials that include adhesive
labels and rulers in direct contact with the lesion, leading
to high inaccuracy due to the degree of subjectivity of the
process. Three region segmentation methods were evaluated
using a superpixel strategy, and the results were used to extract
color and texture descriptors. After, the GrabCut method was
applied to delineate the ulcer-affected region from the rest of
the image. The experimental evaluation using the MEDETEC

dataset (with 105 images of pressure ulcers) showed that the
association of SVMs with superpixel segmentation surpassed
current methods based on deep learning.

Reis et al. [17] proposed a deep CNN named InSiNet to de-
tect benign and malignant lesions. Scebba et al. [18] presented
the Detect-and-Segment (DS), a deep-learning approach to
producing wound segmentation maps with high generalization
capabilities. For this approach, dedicated deep neural networks
detected the wound position, isolated the wound from the
perturbing background, and computed a wound segmentation
map. Eldem et al. [19] discussed and analyzed pressure wound
segmentation using different encoder-decoder-based segmen-
tation models.

Most new superpixel segmentation methods adopt a three-
step pipeline: (i) initial seed sampling; (ii) superpixel delin-
eation; and (iii) seed recomputation. But an inconvenience of
that approach is the need to limit the size of the initial seed set
to the desired number of superpixels that could hinder finding
relevant seeds that are able to generate an accurate object edge
delineation. Dynamic Iterative Spanning Forest (DISF) [20] is
a method for computing superpixel with a dynamic arc-weight
estimation. DISF method demonstrates to better preserve rele-
vant object edges, especially for lower numbers of superpixels,
compared to the state-of-the-art approaches.

III. MATERIALS AND METHODS

A. Image Acquisition

We have used images from MEDETEC dataset [21], a public
repository of open wounds such as venous leg ulcers, arterial
leg ulcers, and pressure ulcers, among others. The ulcer dataset
is composed of 105 images of pressure ulcers with a resolution
of 410× 560 pixels.

B. Pre-Processing and Superpixel Segmentation

For the pre-processing step, specular light reflections [22]
were removed from the original image. These are bright white-
colored regions characterized by high intensity, saturation, and
contrast. The resulting images were resized to 240×300 pixels.
Finally, the removal and reconstruction of the light reflection
regions were performed using an inpainting method [23]. The
method takes the binary image as parameters, which informs
the regions to be reconstructed, and the size of the radius of
neighbors to be considered for the reconstruction, a radius of
size r = 3 was used. The algorithm fills the light reflection
regions with neighboring pixels, recovering the colors hidden
by the reflection. An expert manually annotated the pressure
ulcers into ulcer and non-ulcer regions. In the following, a
superpixel segmentation is done.

Superpixels are groups of connected pixels that share similar
characteristics according to a predicate [20]. The superpixel
methods used in this work are described as follows:

1) Entropy Rate Superpixels (ERS) method [24] is a graph-
based algorithm formulated as a graph maximization
problem. ERS uses the entropy rate of a random walk on
a graph as a criterion to generate high-quality superpixels.
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2) Simple Linear Iterative Clustering (SLIC) method [25]
generates superpixels by clustering pixels based on their
color similarity and proximity in the image plane;

3) Superpixels Extracted via Energy-Driven Sampling
(SEEDS) method [26] is based on a hill-climbing op-
timization with efficient exchanges of pixels between
superpixels. The energy function that is maximized is
based on enforcing homogeneity of the color distribution
within superpixels;

4) Linear Spectral Clustering (LSC) method [27] produces
compact and uniform superpixels with high memory
efficiency, and it is able to preserve the global properties
of images with low computational costs;

5) Simple Non-Iterative Clustering (SNIC) method [28] is an
improved version of the SLIC algorithm. SNIC is non-
iterative, enforces connectivity from the start, requires
less memory since the distance map is not considered,
and is faster;

6) Dynamic and Iterative Spanning Forest (DISF)
method [20] finds more relevant seeds, reconstructs
relevant edges along with iterations, and guarantees the
desired number of superpixels. DISF assures optimal
spanning forests for path costs based on dynamic
arc-weight estimation, being faster as the desired number
of superpixels grows.

Figure 2 presents superpixel segmentation examples for
DISF, ERS, SNIC, LSC, SLIC, and SEEDS.

C. Feature Extraction
After segmentation into superpixels, color and texture fea-

tures were extracted for the RGB, L*a*b*, Luv, and nor-
malized RGB color spaces. For color descriptors, the values
of mean, variance, asymmetry, frequency and intensity of
the two highest peaks in the histograms were extracted for
each component of the color space after the application of a
moving average filter. The centroids of each superpixel in each
color space were used, totaling 96 color features. Regarding
the texture ones, the features were extracted based on co-
occurrence matrices [29], Local Binary Pattern Histograms
(LBPH) [30], and Haar Wavelet Transform [31]. We used the
Haralick descriptors of contrast, correlation, energy, entropy,
and homogeneity, determined at the angles of 0◦, 45◦, 90◦

and 135◦ at a distance of one pixel. We extract the features
for each of the components R, G, B, a∗, b∗, u and v. Five more
descriptors were extracted and computed from the combination
of RG, RB, GB, a∗, b∗, and uv. A total of 60 texture features
were extracted, considering Haralick and its variations. For
the LBPH, the mean, variance, entropy, and energy were
computed for the histogram location of each superpixel in each
of the color space components, totaling 12 features. Finally,
the Discrete Wavelet Transform (DWT) was used to extract
the energy and entropy descriptors. For this method, three sub-
images contain the details in horizontal, vertical, and diagonal
orientation in the third wavelet decomposition level for each
RGB component, totaling nine sub-images. Each sub-image
calculated energy and entropy descriptors for each superpixel,
resulting in 18 features. In the end, a total of 186 descriptors
were extracted from each superpixel.

Fig. 2. Superpixels segmentation examples for DISF, ERS, SNIC,
LSC, SLIC and SEEDS

D. Data Preparation

The Wrapper algorithm [32], in conjunction with a decision
tree [33], was used to classify the features for selecting
a subset of relevant features. However, the Hill-Climbing
searching algorithm [34], optimized by cross-validation [35],
could select the most relevant attributes for the classification
task. The feature was normalized in the range from 0 to 1.

E. Classification

For classification purposes, the 105 images were randomly
separated into training and test sets. The training and validation
sets were composed of 84 images, equivalent to 80% of the
dataset, while the test set consisted of 21 images. An SVM
with an RBF kernel was used since it has shown to be effective
in medical image classification tasks [5], [9]. Parameters C and
γ were defined using the grid search and the cross-validation
technique to find the best parameters. The parameter C is the
regularization parameter that controls the trade-off between the
margin and the misclassification of training examples. A small
value of C creates a wider margin with more misclassified
training examples, while a large value of C creates a narrow
margin with fewer misclassified examples. The parameter γ
is specific to the RBF kernel and controls the shape of the
decision boundary. A small value of γ creates a smoother
decision boundary, while a large value creates a more complex
decision boundary. For the grid search, we adjust the space of
search in 2−10 → 210 with the steps of 0.1. During the search,
we adopted a 10-fold cross-validation.

F. Post-Processing

The output classification was transformed into a mask to
be used in the interactive segmentation made by the GrabCut
method. Instead of scribbles drawn by users, an automatic
mask was computed according to the following steps: (i) ap-
plying the morphological dilation filter with a 3 × 3 cross-
type structuring element to the SVM classification result to
fill small discontinuities found between any two misclassified
superpixels; (ii) using the Canny algorithm [36] to detect
contours, where the region of the image that is covered by the
most prominent closed contour receives the label of probable
ulcer while the label of non-ulcer is assigned to the region
around it; (iii) applying a skeletonization process to the closed
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contour [37], until 65% of its area is eroded (the branches of
the images are removed by erosion); and (iv) the remaining
region is labeled as an ulcer. Thus, the main idea is to
determine the region inside the ulcer to be used as a mask.
This mask is used for the GrabCut method to perform the
segmentation, pointing out the regions of ulcers.

G. Evaluation Measures

For measuring the quality of the ulcer identification,
we have used the following measures: (i) Sensibility (S);
(ii) Specificity (E); (iii) Precision (P); (iv) Accuracy (A); and
(v) Intersection over Union (I). The running time (TE) was
also computed.

IV. EXPERIMENTAL RESULTS

A. Configuration Settings

The main application was developed in Java 11, the clas-
sification in Weka 3.8 [38], data analysis in Python, while
the segmentation methods varied between Java using OpenCV
library [39] (SLIC, LSC, SEEDS, GrabCut), C (DISF), and
Matlab (SNIC and ERS). The experiments were performed on
a desktop with the following settings: Intel Core i7-8700 CPU
at 3.20 GHz with 16 GB and Nvidia GeForce RTX 2060 GPU
running Windows 10 (64 bits).

In the pre-processing step, we removed and reconstructed
specular light reflections as shown in Figure 3 according to
the following steps. First, the original image is converted into
a grayscale image, which is binarized for showing the light
reflection in white color. An inpainting is applied to the binary
image for reconstructing the original image without the light
reflections. For smoothing the image, an average filter is then
applied. As previously related, the set of 105 images was
randomly divided into training and test sets. The set used for
training (and cross-validation) was composed of 84 images.

The number of iterations was set to 400 for LSC, SLIC, and
SEEDS since no further changes were observed in the forma-
tion of superpixels. The parameter related to the compactness
factor is associated with the different superpixel shapes that
affect the smoothness of the edges between tissue types in the
ulcer bed and between the skin and ulcer regions. Considering
the edges between different tissue regions, for each superpixel
segmentation method, the compactness factor was set between
0.05 and 0.065 for the LSC, with the best value being 0.06.
For SLIC, the parameter varied from 10 to 25; the best value
was 20. For SEEDS, we varied the parameter from 1 to 4; the
best value was 3. For SNIC, the parameter was in the range of

Fig. 3. Process of removal and reconstruction of light reflection
regions. (a) Original image; (b) Grayscale image; (c) Binary image
with regions of light reflection in white color; (d) Result of the image
after applying the inpainting method and the average filter.

[18, 21], and the best value was 20. The compactness values
were based on previously published suggestions, as described
in the original articles of the respective methods.

DISF has the parameter α that controls the trade-off between
the importance of individual pixels and the spatial coherence
of the superpixels. By adjusting the value of α, DISF can
balance the trade-off between these two objectives and gener-
ate superpixels that are both visually meaningful and spatially
coherent. The parameter related to the number of superpixels
controls the size of the superpixels generation and is related
to the image resolution. Thus, appropriately adjusting this
parameter made a significant impact on the SVM classifier
performance. Moreover, seeds are designed to compete with
each other and conquer the most closely connected nodes,
mathematically defining each superpixel as an optimal path
tree. For the DISF method, we set the number of seeds to be
proportional to the size of 5% of the total image size. So, for
an image of 240×300, the number of seeds is set up to 3,600.
For the ERS method, we set the balancing term λ′ to 0.5, the
kernel bandwidth σ to 5.0, and we adopted an 8-connectivity
graph, as suggested by the authors. The parameters setup for
the superpixel segmentation step are synthesized in Table I.
The number of generated superpixels is also presented.

TABLE I
PARAMETERS SETUP FOR THE SUPERPIXEL SEGMENTATION

FOR DISF, ERS, SNIC, LSC, SLIC, AND SEEDS. THE
NUMBER OF GENERATED SUPERPIXELS IS ALSO SHOWN.

DISF ERS SNIC LSC SLIC SEEDS
Iterations – – – 400 400 400
Superpixels Size 200 200 200 18 19 300
# Seeds 3600 – – – – –
Compactness – – 20 0.06 20 3
λ′ – 0.5 – – – –
σ – 5 – – – –
Connectiveness – 1 – – – –
# Generated Superpixels 200 200 208 208 ≈ 208∼237 225

After the superpixel generation, each one is described by
color and texture features. For the classification, the SVM
classifies the region as ulcer or non-ulcer. A trained nurse
determined the ground truth from manual segmentation. For
the superpixel labeling, only the superpixels containing pixels
with a single tissue type were incorporated into the training set.
Figure 4 illustrates the superpixel labeling process using DISF,
in which the ulcer underwent manual segmentation in (b) and
superpixel segmentation in (c). In the end, the superpixels were
then mapped to the manual labels to create a superpixel grid
in (d), with superpixels in white representing the ulcer, the
ones in light gray corresponding to healthy skin, and the ones
in dark gray containing labeled pixels from both classes and
were therefore not included in the SVM training.

In data preparation, the number of training instances and
selected attributes for DISF, ERS, SNIC, LSC, SLIC, and
SEEDS are summarized in Table II, while Table III shows
the parameters for the training using SVM for each method.

B. Quantitative Analysis

An SVM classifier was designed for each of the described
superpixel methods. Table IV presents the results during the
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TABLE II
NUMBER OF TRAINING INSTANCES AND SELECTED

ATTRIBUTES FOR DISF, ERS, SNIC, LSC, SLIC, AND
SEEDS.

DISF ERS SNIC LSC SLIC SEEDS
# Training Instances 7964 7540 7960 7508 7726 8336
# Selected Attributes 10 11 18 14 10 10

TABLE III
PARAMETERS FOR TRAINING STEP WITH SVM FOR DISF,

ERS, SNIC, LSC, SLIC, AND SEEDS.

DISF ERS SNIC LSC SLIC SEEDS
% of Folds 10 10 10 10 10 10
C 7943.28 39.81 1.59 7.94 15848.93 1.58
γ 0.50 1.26 10.00 2.51 0.25 12.58

training step for SVM classifier using DISF, ERS, SNIC, LSC,
SLIC, and SEEDS. The performance achieved for each method
during the test step, with and without post-processing by the
GrabCut, is shown at Table V.

We compare results in pairs of superpixels to assess possible
discrepancies between the metrics results. A two-tailed paired
t-test (Student’s t-test) was used in this comparative approach,
considering the values obtained from the SVM + Grabcut
technique. The DISF confidence intervals for a level of 95%
are S = [88.7, 96.5], E = [97.6, 99.6], P = [96.3, 98.8], A =
[95.5, 97.7], I = [86.8, 94.0]. Among the results, a significant
difference was found between the results of Sensitivity (S),
Accuracy (A), and Intersection over Union (I) of some pairs
of superpixels. In the other metrics, no significant differences
were observed considering the value of α = 0.05. When
evaluating all possible combinations and statistical tests, the

Fig. 4. Superpixel labeling. (a) original image; (b) manual seg-
mentation; (c) superpixels; (d) superpixel labeling: light gray color
represents regions of healthy skin, white the regions of ulcer, and
dark gray the excluded superpixels composed of both tissues.

TABLE IV
RESULTS OF ACCURACY DURING THE TRAINING AND

VALIDATION FOR EACH SVM CLASSIFIER USING DISF,
ERS, SNIC, LSC, SLIC, AND SEEDS. THE TIME (IN

SECONDS) TO BUILD EACH MODEL IS PRESENTED.

DISF ERS SNIC LSC SLIC SEEDS
Training Acc. 85.71% 85.85% 88.17% 88.64% 86.67% 88.09%
Validation Acc. 85.86% 86.25% 88.37% 86.85% 86.80% 88.36%
Time (s) 13425.3 3288.11 4197.16 787.02 15744.03 3696.8

TABLE V
AVERAGE ± STANDARD DEVIATION OF SENSITIVITY (S),

SPECIFICITY (E), PRECISION (P), ACCURACY (A),
INTERSECTION OVER UNION (I), AND EXECUTION TIME
(TE ) IN SECONDS FOR DISF, ERS, SNIC, LSC, SLIC,

AND SEEDS.

SVM TE (s) SVM+Grab TE (s)

DISF

S 91.8±8.7

10.6±1.9

92.6±8.6

11.0±2.1
E 85.8±7.9 98.6±2.2
P 79.4±9.4 97.6±2.7
A 88.3±4.2 96.6±2.4
I 73.8±9.4 90.4±8.0

ERS

S 79.6±14.4

10.1±1.9

82.3±16.2

10.5±1.9
E 88.1±7.7 98.5±1.9
P 80.3±1.0 97.3±3.4
A 85.6±6.3 92.9±5.4
I 66.6±14.0 80.2±15.7

SNIC

S 55.9±14.1

10.3±1.6

48.5±25.8

10.7±1.7
E 88.8±7.4 98.6±2.2
P 75.2±14.5 96.4±7.7
A 77.1±7.2 80.9±10.3
I 47.2±13.3 47.6±24.9

LSC

S 89.8±8.5

15.21±1.8

90.5±10.1

15.56±1.8
E 81.7±10.0 97.6±3.8
P 75.5±8.7 95.7±6.1
A 85.3±5.4 95.3±3.4
I 69.2±8.6 86.9±10.7

SLIC

S 88.3±10.1

9.3±4.6

92.2±10.1

9.6±0.5
E 82.8±9.9 98.3±2.0
P 76.5±11.2 96.6±2.9
A 86.1±6.4 95.9±1.8
I 69.3±11.3 89.8±10.4

SEEDS

S 86.5±9.4

13.5±2.2

86.6±10.8

13.5±2.2
E 81.1±10.4 95.2±3.3
P 73.7±11.2 97.1±3.7
A 83.6±4.0 96.4±2.1
I 66.0±11.5 89.1±11.1

classifier trained with the superpixels formed by DISF showed
better performance in all metrics used, except processing time
(11.0s), slightly above SLIC (9.6s), ERS (10.5s) and SNIC
(10.7s), but with a small difference. It is important to note
that the execution time of a method in a given programming
language can vary depending on several factors, including the
nature of the method, the efficiency of the implementation,
and the processing power of the machine on which the code
is executed. In general, the C language tends to perform faster
than most other languages, but other languages may have
advantages in specific situations.

C. Qualitative Analysis

Figures 5 and 6 show segmentation results with their respec-
tive masks and the overlap between the manual segmentation
and those generated by GrabCut, for DISF, ERS, SNIC, LSC,
SLIC, and SEED methods.

Figure 5 shows some examples of segmentation with the
worst results for each method. One can observe a poor creation
of the masks generated from the classification results with
the SVM. Among the methods, the SNIC presented the worst
segmentation among the examples presented. In Fig. 5(q),
a large region with non-ulcer labels can be seen inside
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the wound’s lesion. Furthermore, it was observed that the
sensitivity, specificity, and precision values were much lower
when compared to the other methods. This demonstrates the
incredible difficulty of detecting ulcer and non-ulcer regions
in these examples. In general, more significant variations in
sensitivity were observed, whose values varied from 12%
to 66%. This may be related to the selection of color and
texture attributes. Perhaps the selected superpixels had a low
number of attributes of color and texture characteristics thus
hindering the training of the classifier and, therefore, leading
to misclassification.

The skeletonization step of the method contributes to gen-
erating a mask that inaccurately maps the region that does not
present an ulcer, causing this region to be inside the perimeter
of the wound. Likewise, we observed the prevalence of the
mask that indicates non-ulcer regions within the ulcer area in
Figures 5(b), 5(e), 5(h), 5(k), 5(n), and 5(q). This occurrence
erroneously indicates that GrabCut should delete these regions.
Despite that, some regions labeled as non-ulcer and probably
ulcer within the ulcer area were correctly segmented with an
ulcer in the GrabCut results in Figure 5(c), 5(f), 5(i), 5(l), 5(o),
and 5(r), with emphasis on the last one, in which part of the
region previously considered as an ulcer outside the perimeter
of the ulcer in Figure 5(q), is correctly detected as non-ulcer.

In contrast, Figure 6 illustrates the most effective segmen-
tation for each method. Considering the excellent result of
the classification generated by the SVM, one can observed
that the regions of probable ulcer in the masks of Figs. 6(f),
6(i), 6(l), 6(o), and 6(r) follow the shape of the ulcer and,
therefore, present a segmentation closer to manual segmenta-
tion performed by the nurse. Figure 7 shows the segmentation
results with the trained SVM and the post-processing results
using the GrabCut along with the use of DISF method. In
the first row, we have the original image. In the second
row, one can observe segmentation results with the SVM.
It can be noticed that the method had more difficulties in
classifying the non-ulcer regions (lower specificity) than the
ulcer regions (higher specificity). Segmentation results from
post-processing with GrabCut are shown in the third row.
From the quantitative point-of-view, it is possible to observe a
substantial improvement, showing that the post-processing step
could practically altogether remove the false-positive regions
and include a large number of false-negative regions, which
impact on the effectiveness of the segmentation.

D. Discussion

1) Performance evaluation: Evaluating the performance
of an automatic ulcer delineation method against a manual
segmentation is a challenging task. To address this, a multi-
faceted approach is suggested. Firstly, quantitative metrics
such as sensibility (S), specificity (E), precision (P), accuracy
(A), and intersection over union (I) can be used to compare
the overlap between two segmentations. Secondly, a qualitative
visual inspection can be conducted to identify any errors or
inconsistencies in the segmentations. Thirdly, consulting a
medical expert may provide valuable insights into the accuracy
of the algorithm’s output. Lastly, statistical tests, such as

t-tests may be performed to determine the significance of
any differences between the segmentations. A comprehensive
evaluation methodology, as presented in this paper, combining
these different approaches, can provide a robust assessment of
the performance of the automatic ulcer delineation technique.

2) Limitations: For segmentation and delineation of pres-
sure ulcers, major limitations are their variation in appearance
and shape, as well as the presence of noise and artifacts in
the images. In addition, the presence of other types of skin
lesions can make specific detection of pressure ulcers more
difficult. Another limitation is the need to segment the wound
area into different layers, such as necrotic tissue, granulation,
and epithelialization, which can be an additional challenge.

3) Benchmark: In order to provide a comparative approach,
we highlight the related works and the results found, as shown
in Table VI.

Fig. 5. Examples of ineffective segmentation for DISF, ERS, SNIC,
LSC, SLIC, and SEEDS methods. Original images (row 1), masks
(row 2) and overlay (row 3) between manual segmentation and
DISF methods (column 1), ERS (column 2), SNIC (column 3), LSC
(column 4), SLIC (column 5), and SEEDS (column 6). Masks indicate
dark gray non-ulcer regions, probably light gray and black ulcers. It
also shows the shape of the wound traced in white. Overlapping
images indicate regions of false negatives in black, false positives in
dark gray, and true positives in light gray. Sensitivity (S), specificity
(E), and precision (P) are provided.

Fig. 6. Examples of effective segmentation. Original images (row 1),
masks (row 2), and overlay (row 3) between manual segmentation and
DISF (column 1), ERS (column 2), SNIC (column 3), LSC (column
4), SLIC (column 5), and SEEDS (column 6). Masks indicate dark
gray non-ulcer regions, probably light gray and black ulcers. It also
shows the shape of the wound traced in white. Overlapping images
indicate regions of false negatives in black, false positives in dark
gray, and true positives in light gray. Sensitivity (S), specificity (E),
and precision (P) are provided.

Regarding the state-of-the-art, including methods based on
deep learning, no method outperformed the proposed method
in more than one metric. A lot of papers use a restricted
number of metrics to evaluate the proposed method. Regarding
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TABLE VI
PERFORMANCE METRICS REPORTED BY METHODS IN THE LITERATURE FOR DIGITAL IMAGE SEGMENTATION OF CHRONIC

LESIONS. ‡ NUMBER OF TRAINING + VALIDATION (TEST) IMAGES. STUDIES THAT USED ONLY PUBLIC DATASETS ARE
MARKED WITH P. *TEST BASED ON 10-FOLD CROSS-VALIDATION. **TEST BASED ON 5-FOLD CROSS-VALIDATION. † THE

NUMBER OF TEST IMAGES WAS NOT INFORMED. METHODS: J-VALUE SEGMENTATION (J-SEG); SUPPORT VECTOR
MACHINES (SVM); NEURAL NETWORKS (NN); CONVOLUTIONAL NEURAL NETWORKS (CNN OR CONVNET); FULLY

CONVOLUTIONAL NETWORK (FCN); CONDITIONAL RANDOM FIELD (CRF); DEEP NEURAL NETWORKS (DNN);
CONVOLUTIONAL NETWORKS COMBINED (MOBILENET-UNET); SIMPLE LINEAR ITERATIVE CLUSTERING (SLIC).

METRICS: SENSITIVITY (S); SPECIFICITY (E); PRECISION (P); PRECISION (A), INTERSECTION OVER UNION (I).

Reference Approach Dataset‡ S E P A I
Veredas et al. 2009 Mean shift, growing region, NN and Bayesian Classifiers 113* 78.7 94.7 91.5 – –
Wannous et. al. 2010 J-SEG and SVM 25† 77.0 92.0 – – –
Veredas et. al. 2015 K-means and SVM 90(23) – – 88.1 – –
Wang et al. 2015 CNN 500(150) – – – – 47.3
Wang et al. 2017 SLIC, SVM and CRF 100* 73.3 94.6 – – –
Liu et al. 2017 CNN and CRF 760(190) 90.6 – 93.3 98.2 84.6
Lu et al. 2017 CNN 300†P – – – 83.0 –
Dhane et. al. 2017 Clustering Spectral Fuzzy 70(70) 87.3 95.7 – 91.5 79.0
Silva et. al. 2018 Filtering and Morphologic operations 110(110)P 81.6 – 90.8 81.3 –
Zahia et. al. 2018 CNN 18(4) – – – 92.0 –
Li et al. 2018 DNN and Filtering 760(190) – – 94.7 – 86.3
Li et al. 2019 DNN and Filtering 760(190) – – 95.3 – 86.5
Blanco et al. 2019 QTDU, CNN 217†P* 97.0 97.4 – – –
Goyal et al. 2020 CNN and henceforth TML 7136 (2038)** 88.6 92.1 91.8 90.3 –
Silva et al. 2021 SEEDS, SVM and GrabCut 84(21)P 93.7 96.9 94.4 96.0 89.0
Niri et al. 2021 FCN 164(55) – – – 92.9 –
Reis et al. 2022 CNN 9514(501)P 97.5 91.2 – 94.6 –
Scebba et al. 2022 UNet 84(21)P** – – – – 83.0
Eldem et al. 2022 MobileNet-UNet 90(15)P** – – – 99.7 –
Proposed DISF, SVM and GrabCut 84(21)P* 92.6 98.6 97.6 96.6 90.4

Fig. 7. Example of the effectiveness of GrabCut segmentation using
DISF. The original images are shown on the first row, the SVM results
on the second row and the GrabCut results on the last row. Images
indicate regions of false negatives in black, false positives in dark
gray, and true positives in light gray. Sensitivity (S), Specificity (E)
and Precision (P) are also provided.

sensitivity, the work by Reis et al. [17] presents better results,
followed by the work of Blanco et al. [15] and Silva and
Machado [8]. In Reis et al. [17], sensitivity is 4.9% higher,
however, the proposed method exceeds specificity by 7.4% and
accuracy by 2%. In Silva and Machado [8], sensitivity is 1.1%
higher, however, the proposed method exceeds specificity by
1.7%, precision by 3.2%, accuracy by 0.6% and intersection
over union by 1.4%. Regarding accuracy, Eldem et al [19]
presents better results, being 3.1% better than the proposed
method, followed by Liu et al. [12], being 1.6% higher than the
proposed method. However, the proposed method outperforms
by 2%, 4.3% and 5.8% the results presented in [12], in terms of
sensitivity, precision, and intersection over union, respectively.
In the context of medical image analysis, it is considered
important that the results can be explained, that may not

always occurs for deep learning methods, made clearer, and
that the behavior of the methods can be predicted in terms of
performance.

It is worth mentioning previous works that use the same
methodology and database, the ones developed by Silva and
Machado [7], [8]. DISF showed better results for the automatic
measurement of pressure ulcers with regard to specificity,
precision, and intersection over union when associated with
the post-processing technique with GrabCut, according to
Table VII.

TABLE VII
COMPARISON OF PERFORMANCE AMONG WORKS ON

MEDTEC DATASET. METRICS: SENSITIVITY (S);
SPECIFICITY (E); ACCURACY (P); ACCURACY (A);

INTERSECTION OVER UNION (I).

Method S E P A I
Filtering [7] 81.6 − 90.8 81.3 −
SEEDS [8] 93.7 96.9 94.4 96.0 89.0

DISF 92.6 98.6 97.6 96.6 90.4

V. CONCLUSION
This work presented a graph-based superpixel segmentation

method for segmenting and identifying pressure ulcer. Based
on graph and superpixel representation, it improved the results
of pressure ulcer assessment when compared to the state-
of-the-art. The proposed method combines classical, unsu-
pervised filters, clustering, feature extraction, dimensionality
reduction, and supervised machine learning algorithms. In
particular, the superpixel method was compared to state-of-
the-art superpixel methods, such as the ERS, SNIC, LSC,
SLIC, and SEEDS methods. The results obtained by DISF
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were better for the automatic measurement of pressure ulcers
concerning specificity, precision, and intersection over union.

Further work may consider new interactive segmentation
methods. Also, the possibility of applying the methodology
in other more extensive databases and for different types of
chronic lesions must be examined. For this purpose, ensembles
that combine shallow and deep learning techniques are promis-
ing as they may take advantage of different perspectives.
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