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Abstract—The amount of images that can be extracted from
crops such as soybean, corn, sorghum, etc., has increased
exponentially due to the proliferation of remote sensing
technologies such as Unmanned Aerial Vehicles (UAV). When
processed and analyzed, images can provide valuable information
and knowledge about High Throughput Phenotyping (HTP).
Advances in HTP technology are essential to ensure that crop
genetic improvement meets future global demands for food and
fuel. In addition to UAVs, Digital Image Processing (DIP) and
Machine Learning (ML) methods have shown to be promising
tools in HTP to minimize the time and cost of analyzing entire
crops. However, the performance and quality of the results
obtained in HTP depend on the techniques used throughout the
process. With this limitation in mind, the objective of this article
is to present a Systematic Literature Review (SLR) on image
capture techniques, DIP and ML applied to HTP. This review
focuses on four sources of scientific searches, which initially
returned 161 articles to be analyzed, of which 46 were excluded
due to the Exclusion Criteria (EC), and 43 were duplicates,
leaving only 72 for full reading. Of the 72 articles read, 27
were excluded due to the Exclusion and Quality Criteria (QC).
Finally, 45 studies remained, resulting in a useful base on the
cameras/sensors used in capturing the images, the most analyzed
agronomic traits in the crops, in addition to a survey on the
main DIP, ML techniques used in HTP.

Index Terms—High Throughput Phenotyping, Agricultural
Production, Digital Image Processing, Machine Learning, Sys-
tematic Literature Review and Unmanned Aerial Vehicles

I. INTRODUCTION

A ccording to data from the United Nations, the world
population is expected to reach nine billion people by

2050 [1]. Because of this, the demand for food production
grows to match the projected population growth. In order
to prevent food insecurity, plant phenotyping is now at the
forefront of plant breeding when compared to [2] genotyping.
Plant phenotyping is defined as the assessment of complex
agronomic traits, such as water stress [3, 4], growth habit [5],
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disease resistance [6, 7], yield [8, 9] and [10], in addition to
the basic measurement of individual quantitative parameters
[2].

Traditional phenotyping techniques required destructive
measurements, whereby crops were harvested at specific
growth stages in order for genetic testing and mapping of agro-
nomic traits to be performed [11]. Since breeding programs
require repeated experimental trials to determine which traits
are of interest, the process becomes expensive and significantly
time-consuming [12]. Or, computational tools were used to
speed up the phenotyping process, but the number of analyzed
plants was relatively small [13, 14, 15, 16].

However, due to the high number of data to be analyzed for
effective phenotyping, it was necessary to expand the research
area for High-Throughput Phenotyping (HTP) [17]. HTP sets
to reduce the time, cost and labor of the analysis of these
traits. HTP uses non-invasive image capturing and processing
techniques, as it allows the visualization of plant structures on
a broader scale [18].

For these reasons, HTP has been widely adopted for several
crops, including: Lettuce [19]; Arabidopsis thaliana [20]; Rice
[21]; Grass [22, 23]; Conifers [24]; Bean [25] and [26], Corn
[27, 28, 29, 30], Okra [31], Soy [32, 33], Sorghum [34, 35],
[36, 37] Wheat [38] and Grape [39].

Another key point for HTP is the recent advances in sensor
technology, which offer great opportunities for the use of
Unmanned Aerial Vehicles (UAV) as a low-cost alternative
to collect a large set of HTP data [40]. As these imaging
technologies develop, it becomes possible to analyze more
and more useful information, even investigating the biological
growth of plants [41, 42].

These capture techniques include thermal imaging [43],
fluorescence imaging [44, 45], digital imaging [5, 46, 47],
infrared imaging [48, 49], and imaging spectroscopy [50].
These techniques make it possible to acquire data in laboratory
and/or field environments. It is also possible to perform the
3D reconstruction of plants [51, 52].

Considering the important impact of Machine Learning
(ML) algorithms on Digital Image Processing (DIP) and Com-
puter Vision (CV) [53], several studies have emerged, such
as [54], [55] and [56], which used DIP techniques combined
with ML methods to aid in the assessment of agronomic traits.
With this in mind, Nabwire et al. (2021)[57] analyzed articles
published between 2010 and 2020 on artificial intelligence
applied to HTP. This study provided an overview of current
phenotyping technologies and the ongoing integration of arti-
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ficial intelligence into plant phenotyping. On the other hand,
Zheng et al. (2021)[58] carried out a literature review on HTP
techniques applied to strawberry crops.

The studies by Fernandes et al. (2020)[59] and Bresolin
and Dórea (2020)[60] focused on the various computational
acquisition and DIP techniques for HTP applied to livestock.
In Furbank et al. (2019)[61], the authors carried out a liter-
ature review of HTP techniques supported DIP and imaging
techniques used on wheat and sorghum. However, the work
proposed in the present article is the first known to follow a
systematic and reproducible approach of searching, analyzing
and synthesizing studies on HTP supported by ML techniques.
For the Systematic Literature Review (SLR) method used
in this work, it is extremely important to have well-written,
systematic and auditable documentation. For this reason, the
objective of this work is to carry out an SLR aimed at iden-
tifying and analyzing the existing DIP and ML methods and
techniques currently applied to HTP. This review demonstrates
how these computational techniques tend to minimize the time
and cost spent during the analysis of essential agronomic traits
for the HTP. As well as the main technologies used for data
acquisition and processing. Finally, a crossing of the obtained
data was carried out, with this it was possible to see a pattern
of behavior. An example of this was image segmentation,
the most used DIP, when authors intended to estimate crop
production.

The present article is organized as follows: Section II
presents a comparative analysis of related works; Section III
details the methods adopted in planning and carrying out the
SLR protocol; Section IV reports results obtained from the
SLR and their analysis; Section V summarizes the results of
the SLR, and Section VI describes threats to the validity of
the SLR; finally, Section VII presents the final considerations
and future works.

II. RELATED WORKS

This section presents a number of literature reviews that
address similar topics as proposed in the present work. Fur-
bank et al. (2019)[61] presents a review of how genomics
and HTP can provide for crop improvements in the next
generations. For this, the study discusses DIP and ML applied
to Wheat and Sorghum HTP as case studies. With these
studies, these authors reached the conclusion that, by exploring
allelic diversity, with the genome sequencing and HTP, it is
possible to predict the commercial value of agronomic traits,
as in the case of corn, for example.

Taberkit et al. (2021) [62] carried out a secondary study
comparing several techniques that use UAV in Algeria. Nab-
wire et al. (2021) [57] analyzed over one hundred articles on
artificial intelligence applied to HTP. It provides an overview
of current phenotyping technologies and the ongoing inte-
gration of artificial intelligence into plant phenotyping. As a
result of the analysis, these authors highlighted some studies
based on ML applied to phenotyping tasks. It is the case
of Scale-Invariant Feature Transform (SIFT), Support Vector
Machine (SVM) together with K-nearest neighbors (kNN),
decision tree and Multilayer Perceptron applied to wheat, rice,

corn and wheat, respectively. Another interesting approach
was deep learning architecture applied to plant phenotyping
using transfer learning. From the analysis carried out by the
authors, it was possible to observe that each architecture in
the literature was used for a specific objective, for example:
GoogLeNet was used to classify plant diseases, VGG-16 to list
the most frequent Image Processing Techniques. The authors
concluded that recent advances in HTP technologies have led
to significant advances in plant phenomics.

In review [58], the authors focused on recent approaches
to phenomics in strawberry farming, particularly ones that
employed remote sensing and ML. The study was categorized
according to each strawberry trait analyzed. As a result of this
review, the authors listed the articles according to some infor-
mation extracted from strawberry crops, such as: fruit/flower
detection, maturity, yield forecast and pest detection. For
fruit/flower detection, automated fruit and flower counting
from images is a critical step in automatic harvesting and yield
forecasting. Initially, studies tried to perform this detection
using morphological operations, but in recent articles (from
2016 onwards) some deep-learning artificial neural networks
were used, such as VGGNet, YoloFaster, RCNN and Mask
R-CNN, reaching accuracy of 95.78%.

Many contributions were identified from the articles dis-
cussed in this section. However, the studies by Nabwire et al.
(2021)[57] and Zheng et al. (2021)[58] analyze specific crops,
and not all crops using computational techniques applied to
HTP. Another point is that Nabwire et al. (2021)[57] and
Zheng et al. (2021)[58] are not a SLR1, for this reason,
they do not allow auditing or simply redoing searches with
new information. The proposed work, as far as we know, is
the first SLR focused on HTP that uses computational ML
methods. For this reason, the steps taken in the proposed
work can be reproduced at any time. In addition to the fact
that much of the information was correlated, for example, all
available crops, along with DIP and ML techniques, along
with cameras/sensors and ways of capturing images.

III. METHODS

The Systematic Literature Review (SLR) is a well-known
method that is widely used to identify, assess, and interpret
studies that are relevant to a specific topic, area, or phenomena
of interest [63]. A SLT is a secondary study, which aims to
carry out a survey of studies within the same scope, critically
assessing them regarding their methodologies and bringing
them together in a statistical analysis or meta-analysis, when
possible. For the implementation of a SLR, the methodology
proposed in the work by Kitchenham (2004)[63] was used.

A. Literature Review Planning Protocol

This study was carried out in four well-known literature
search databases with a scientific scope: Scopus [64], IEEE
Xplore [65], ACM Library [66] and Engineering Village[67].

1A SLR uses explicit and systematic methods selected to minimize dis-
crimination, providing reliable results from which conclusions and decisions
can be reached [63].
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Kitchenham (2004)[63] considers the following planning
protocol for literature reviews:
• Research Question (RQ)
RQ: How are machine learning methods used in high-
throughput phenotyping?

• Exclusion criteria (EC)
EC0: Studies on high-throughput phenotyping, but not aimed
at agricultural production.
EC1: Phenotyping methods or techniques that do not use
imaging or other spectra.
EC2: Papers other than primary studies or conference papers
or articles.
EC3: Studies that do not focus on HTP.
EC4: Studies that do not employ machine learning.
EC5: Articles that are not available for free.
EC6: Articles not written in English.

• Inclusion Criteria (IC)
IC0: Existing HTP methods and techniques, employing
imaging techniques or other spectra.

• Quality Criteria (QC)
QC0: Definition of the research problem.
QC1: Environment of the study.
QC2: Limitations of the study.
QC3: Database composition.
QC4: Integrated use of DIP techniques with the agronomic
traits.
QC5: Empirical investigation of the use of machine learning
on HTP.

Each grade for the QC ranged from 0 to 2, where: (0)
There is no description; (1): There is a brief description;
(2): There is explicit information. QC3, QC4 and QC5
had a weight of 2, as they are key points for quality
analysis. With this, the Weighted Average QC (WAQC)
was calculated for each article read as follows WAQC
= (QC0 + QC1 + QC2 + QC3 ∗ 2 + QC4 ∗ 2 + QC5 ∗ 2).
Then a rule of three was calculated, for the values are in the
range of 0 to 10.

• Fields in the Data Extraction Form (DEF)
DE0: Year.
DE1: Analyzed crop.
DE2: Agronomic traits.
DE3: Tools used to capture images and other spectra.
DE4: Image processing techniques.
DE5: Machine learning techniques.
DE6: Database composition.

B. Execution

The choice of keywords to build the search strings was
based on terms commonly found in the literature and terms
related to this review (i.e., DIP techniques and ML methods
applied to HTP employing images and other spectra). To
carry out the SLR, specific search strings were formulated

for each search source (Scopus, IEEE Digital Library, ACM
Digital Library and Engineering Village), as described below:

• Scopus: TITLE-ABS-KEY (("high throughput phenotype"
OR "high throughput plant phenotyping" OR "high throughput
phenotyping") AND ("deep learning" OR "machine learning"
OR "computer vision") AND ("image-based phenotyping"
OR "RGB" OR "infra-red" OR "Fluorescence" OR
"Thermography" OR "Tomography" OR "Spectroscopy"
OR "hyperspectral" OR "multispectral")).

• IEEE Digital Library: (("high throughput phenotype" OR
"high throughput phenotyping" OR "high throughput
phenotyping") AND ("deep learning" OR "machine
learning" OR "computer vision") AND ("image-based
phenotyping" OR "RGB" OR "infra-red" OR "Fluorescence"
OR "Thermography" OR "Tomography" OR "Spectroscopy"
OR "hyperspectral" OR "multispectral")).

• ACM Digital Library: [[All: "high throughput phenotype"]
OR [All: "high throughput phenotyping"] OR [All: "high
throughput phenotyping"]] AND [[All: "deep learning"]
OR [All: "machine learning"] OR [All: "computer
vision"]] AND [[All: "image-based phenotyping"] OR
[All: "rgb"] OR [All: "infra-red"] OR [All: "fluorescence"]
OR [All: "thermography"] OR [All: "tomography"] OR
[All: "spectroscopy"] OR [All: "hyperspectral"] OR [All:
"multispectral"]].

• Engineering Village: (((("high throughput phenotype" OR
"high throughput phenotyping" OR "high throughput
phenotyping") AND ("deep learning" OR "machine
learning" OR "computer vision") AND ("image-based
phenotyping" OR "RGB" OR "infra-red" OR "Fluorescence"
OR "Thermography" OR "Tomography" OR "Spectroscopy"
OR "hyperspectral" OR "multispectral"))) WN ALL).

These strings were searched on September 30, 2022, in the
respective databases, automatically. In the Scopus database,
112 studies were identified; 5 studies were found in the IEEE
Digital Library; in the ACM Digital Library, 6 articles were
returned; and in Engineering Village, 38 studies were found.
The next section will present the results gathered from these
searches and how they can contribute to the research area
under analysis.

IV. RESULTS

This section was divided into two parts. The first is the
Article Analysis, in which each article found in the searches
was analyzed. The second step is the Synthesis of the Data
obtained in the analysis phase.

A. Article Analysis

In total, 161 articles were found in the four data sources.
Figure 1 presents the results in numbers for the articles
obtained after the initial selection and those selected for full
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Fig. 1. A detailed look at the Article Analysis stage: automatic search,
exclusion of duplicate articles, selected studies, data extraction and
data synthesis.

reading. Both will be detailed below.

• Initial selection: The Parsif [68] tool was used to organize
the articles to be red in full. This made it possible to quickly
detect works that appeared in more than one database. In
addition, the tool assisted in the initial selection and data
extraction. Of the 161 articles found with the automatic
search, 43 were removed for being duplicated, 46 were
rejected due to EC0, EC1, EC2, EC3, EC4 and EC6. At the
end of the initial selection, 72 articles remained.

• In-full reading: Each of the 72 articles was read in full,
however, not all of them could move forward to the data
extraction stage. Although they were accepted in the initial
selection based on their keywords, 8 of them were rejected
due to EC1, EC2, EC4 and EC5. In addition, another 19
articles were rejected due to WAQC < 5.0. These 19 studies
lacked details on how the techniques were employed or how
the database was built. At the end, 45 articles were selected
for data extraction in this review.

• Data extraction: Figure 2 summarizes the number of articles
identified in each database using search strings, as well as
the number of articles from each source that underwent data
extraction. For each of the 45 articles, DE0 to DE6 were
extracted, and these data are discussed in subsection IV-B.
These 45 articles are listed in Table I.

Fig. 2. Number of articles found and used in the data extraction stage.

TABLE I
SELECTED PRIMARY STUDIES

ID TITLE REF.
S1 A fully automated and fast approach for canopy cover estimation using super high-resolution

remote sensing imagery
[69]

S2 A new image-based tool for the high throughput phenotyping of pollen viability: Evaluation of
inter- and intra-cultivar diversity in grapevine

[70]

S3 A novel NIR-image segmentation method for the precise estimation of above-ground biomass in
rice crops

[71]

S4 A two-step registration-classification approach to automated segmentation of multimodal images
for high-throughput greenhouse plant phenotyping

[72]

S5 Assessment of mixed sward using context sensitive convolutional neural networks [73]
S6 Assessment of plant density for barley and wheat using UAV multispectral imagery for high-

throughput field phenotyping
[46]

S7 Combining UAV-RGB high-throughput field phenotyping and genome-wide association study to
reveal genetic variation of rice germplasms in dynamic response to drought stress

[74]

S8 Comparing machine learning methods for classifying plant drought stress from leaf reflectance
spectra in arabidopsis thaliana

[50]

S9 Computer vision and machine learning enabled soybean root phenotyping pipeline [75]
S10 Convolutional neural networks to estimate dry matter yield in a guineagrass breeding program

using uav remote sensing
[76]

S11 Development of methods to improve soybean yield estimation and predict plant maturity with an
unmanned aerial vehicle based platform

[9]

S12 Ear density estimation from high resolution RGB imagery using deep learning technique [77]
S13 Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery [78]
S14 Evaluation of the performance of machine learning methods in soybean segmentation for image-

based high-throughput phenotyping in greenhouse
[10]

S15 LSTM-based cotton yield prediction system using UAV imagery [79]
S16 Maize-IAS: a maize image analysis software using deep learning for high-throughput plant

phenotyping
[47]

S17 Multi-resolution outlier pooling for sorghum classification [80]
S18 Qualification of soybean responses to flooding stress using UAV-based imagery and deep learning [43]
S19 Sorghum panicle detection and counting using unmanned aerial system images and deep learning [81]
S20 Soybean yield prediction from UAV using multimodal data fusion and deep learning [8]
S21 SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike

segmentation and counting in wheat plant from visual imaging
[82]

S22 UAV based remote sensing for tassel detection and growth stage estimation of maize crop using
multispectral images

[5]

S23 UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial
intelligence

[83]

S24 UAV-based high throughput phenotyping in specialty crops utilizing artificial intelligence [84]
S25 Understanding growth dynamics and yield prediction of sorghum using high temporal resolution

UAV imagery time series and machine learning
[85]

S26 Yield prediction by machine learning from UAS-based mulit-sensor data fusion in soybean [86]
S27 A Comparison of UAV RGB and Multispectral Imaging in Phenotyping for Stay Green of Wheat

Population
[87]

S28 Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning [88]
S29 ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal

parameters of plant root system architecture
[49]

S30 Classification of rice yield using UAV-based hyperspectral imagery and lodging feature [89]
S31 Estimating leaf area index using unmanned aerial vehicle data: Shallow vs. Deep machine learning

algorithms
[90]

S32 Exploiting High-Throughput Indoor Phenotyping to Characterize the Founders of a Structured B.
napus Breeding Population

[44]

S33 Estimation of Maize Yield and Flowering Time Using Multi-Temporal UAV-Based Hyperspectral
Data

[91]

S34 High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control
of Soybean Biomass Production

[92]

S35 Hyperspectral imaging combined with machine learning for the detection of fusiform rust disease
incidence in loblolly pine seedlings

[6]

S36 Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based
on multiple machine learning algorithms

[93]

S37 Maize yield prediction at an early developmental stage using multispectral images and genotype
data for preliminary hybrid selection

[94]

S38 Multi-feature data repository development and analytics for image cosegmentation in high-
throughput plant phenotyping

[45]

S39 Multi-temporal predictive modelling of sorghum biomass using uav-based hyperspectral and lidar
data

[95]

S40 Estimation of soybean grain yield from multispectral high-resolution UAV data with machine
learning models in West Africa

[96]

S41 Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping
Traits in Lettuce

[97]

S42 Identification and Comprehensive Evaluation of Resistant Weeds Using Unmanned Aerial Vehicle-
Based Multispectral Imagery

[98]

S43 Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep
learning

[7]

S44 UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat [99]
S45 Sugarcane yield prediction and genotype selection using unmanned aerial vehicle-based hyper-

spectral imaging and machine learning
[100]
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B. Data Synthesis

This section and section V present several analyses of the
data obtained from the previous data extraction. However, the
databases differ for each of the 45 studies, in addition to crops,
capture tools and computational algorithms. For this reason, it
was not possible to compare the articles on all HTP processes
and the results from each study. Comparisons were limited
to the information contained in the DEF, as well as cross-
referencing some information from the Data Extraction Form
(DEF).

1) Distribution of publications over the years: Figure 3
shows the number of articles published between 2016 and
2022. Considering that the analysis includes 2022 articles
published until the month of September, because that was
when the searches were carried out in the databases, it is
possible to notice that there is a growing curve of articles
being published in the last 2 years, demonstrating scientific
community is showing interest in the subject.

Fig. 3. Number of articles per year, showing an exponential growth
of studies using computational techniques applied to HTP.

2) Analyzed crop: During the data analysis, it was possible
to observe that wheat, soybean, sorghum and corn were the
most often analyzed crops, present in 28 of the 45 articles, as
observed in Figure 4. This is due to the fact that these crops
are easier to access for trials, as they are used in the food
industry. Another consideration is that the studies that have
the highest WAQC = 10 (S26) and WAQC = 9.4 (S1, S13,
S19 and S21) are precisely soybean, wheat and sorghum. This
shows that these crops are already widespread in the literature,
with very detailed studies on them.

3) Agronomic traits: Regarding agronomic traits, that is,
what is most often analyzed/observed in each crop, yield
is by far the most studied and tested agronomic trait. This
information can be seen in Figure 5. Regarding the WAQC of
the 18 articles that analyzed yield (S3, S4, S5, S11, S14, S15,
S20, S24, S25, S26, S30, S33, S37, S38, S39, S40, S44 and
S45), only S26, S14 and S5 reached WAQC > 8.0. That is,
despite being present in a large portion of the studies, research

Fig. 4. Crops per articles.

is still not at an ideal maturity. This shows that the analysis
of this trait is a recent trend and that there is still room for
improvement.

Fig. 5. Agronomic traits per article.

4) Tools used to capture images and/or other spectra:
Digital images are obtained by means of RGB cameras/sensors
and provide information about the size and color of the plants,
which allows the assessment of the deterioration of the plant
due to nutrient deficiencies or infections by pathogens, being
used in several articles (S2, S5, S6,S7, S9, S10, S12, S13, S14,
S15, S16, S17, S19, S20, S21, S22, S24, S26, S27, S31, S32,
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S34, S39, S42, and S44). Multispectral images were captured
to monitor plant photosynthetic pigment composition, assess
water status, and detect abiotic or biotic plant stresses (S1, S6,
S11, S18, S20, S22, S23, S25, S26, S27, S28, S31, S34, S37,
S40, S42, and S44).

In addition, other image capturing tools were used, such as
fluorescence and tomography. The sensor/camera model most
often used among the works under analysis was a multispectral
RedEdge-M camera, which collects five different bands (Red,
Green, Blue, NIR and Red Edge) and a side GPS 2. As for
the WAQC calculated for these articles (S6, S18, S22, S23,
S24, S25, S28, S31, S35 and S37), it was observed that of
the 10 articles, 7 of them reached WAQC <= 7.0 and are
relatively new publications, mainly from 2021. That is, there
are still many tests and studies to be done to reach a greater
understanding of which cameras/sensors are ideal for each
scenario.

These cameras/sensors are coupled to some form of capture
tool, such as UAVs (as seen in articles: S1, S3, S6, S7, S10,
S11, S13, S15, S18, S19, S20, S22, S23, S24, S25, S26, S27,
S28, S30, S31, S33, S34, S36, S37, S39, S40, S42, S43 and
S45). Proper flight planning is necessary to ensure that the tool
produces high quality images, optimizing existing resources
and minimizing capture time. Or, the cameras can be attached
to other devices, as in the case of the sliding rail (S14 and
S43); cameras fixed on rods (S12, S17); tripods (S9, S31 and
S35); and rotation models (S4). In these cases, tests were
performed in greenhouses where the images were captured
at a fixed height and width. Of the 45 articles analyzed, 29
use cameras/sensors coupled to UAVs. In terms of the quality
of the works that use UAVs, they have been carried out mainly
since 2016, and 60% of them have WAQC >= 7.0. That is,
when the number of works that use UAVs and the WAQC of
these articles are considered, it is possible to notice a great
interest of the scientific community in this technology. This
is due to the possibility of capturing a large area in a short
period of time, a characteristic of UAVs that is essential for
HTP.

5) Digital Image Processing Techniques: After capturing
the images, the authors start to pre-process them. Some works
made only basic adjustments to the images with application
of filters, rotations, morphological operations, lighting adjust-
ment, creation of orthomosaics, among others, always with the
aim of facilitating data processing stage. But the most widely
used technique was image segmentation, aiming to separate
the plants from the soil. This technique was used in 23 studies
(S3, S4, S6, S7, S9, S14, S16, S19, S21, S22, S23, S24, S27,
S29, S30, S31, S32, S34, S35, S38, S42, S43 and S44). Of
these 23 studies, 45% scored WAQC > 7.0. Although the
contextualization and problems are well described in these
studies, more information is still needed for QC3, QC4 or
QC5. This is due to the fact that these techniques are still
experimental, and there is a lack of comparative studies on
which DIP technique is ideal for each crop and agronomic
trait. Figure 6 presents the three most frequent techniques.

2RedEdge-M is a MicaSense product.

The other techniques were not mentioned, as they only occur
once or twice.

Fig. 6. Most common image processing techniques.

6) Machine Learning techniques: In general, processing
agronomic traits for a large number of plants is a demand that
has been around for many years but has only recently been
met due to new image capturing tools. But this review has
found that, in addition to quality images, the techniques used
throughout the process are essential to achieve the expected
goals. The ML techniques most often used in the articles are
shown in Figure 7. The analysis showed that Convolutional
Neural Network (CNN), Random Forest (RF) and Support
Vector Machine (SVM) were used in 36 (S1, S4, S5, S7, S8,
S10, S11, S12, S13, S14, S16, S17, S19, S20, S22, S23, S24,
S25, S26, S27, S28, S29, S30, S31, S32, S33, S35, S36, S37,
S39, S40, S41, S42, S43, S44 and S45) of the 45 studies
used in data extraction. In some cases, the authors obtained
satisfactory results when combining techniques, such as, for
example, in S1, which combines RF and SVM. Because of the
details presented by the authors, they reached WAQC = 9.4.

7) Databases: Of the 45 articles used in data extraction,
41 chose to build their own databases. As, for example, in
S7, S8, S14 and S18, which investigated the impact of the
climate conditions of the location under study on the analyzed
crops. In S3, S4, S5, S11, S14, S15, S20, S24, S25, S26, S30,
S33, S37, S38, S39, S40, S44 and S45, the authors needed
to know how productive the cultivated crop would be. Only
four works (S16, S17, S32 and S38) used databases that were
ready previously.

In this sense, although there are some databases focused on
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Fig. 7. The three most frequent machine learning techniques used in
the articles.

HTP available in the literature, as in the case of [47, 80, 101,
102, 103], these databases are for specific crops, locations and
climate conditions. Thus, most articles choose to build their
own databases to analyze their crops and agronomic traits.

The following section answers the RQ, in addition to
presenting the quality analysis of the articles.

V. DISCUSSION

Initially, for each of the 45 articles, information was ex-
tracted to fill out each of the DEF fields (Year, Agronomic
traits, Analyzed crop, Tools used to capture images and
other spectra, Image processing techniques, Machine Learning
techniques, and Database composition). Each of these fields
will be used to respond to the RQ. Finally, the quality analysis
of the full articles will be presented.

A. How are Machine Learning Methods used in High-
throughput Phenotyping?

To answer this question, the data obtained from the DEF
will be divided into three stages described below.

1) Stage 1 – Image capturing: Digital images are obtained
through cameras/sensors coupled to some capture tool, such as
UAVs (as described in section IV-B4). Image capturing can be
carried out for crops such as wheat (S1, S4, S6, S12, S13, S21,
S27, S38 and S44), soy (S9, S11, S14, S18, S20, S26, S34
and S40), sorghum (S1, S17, S19, S25 and S39), etc. (crops
were described in section IV-B2). The type of capture may
vary according to the needs of each study or according to the
agronomic trait to be analyzed (described in section IV-B3).
By changing only the camera/sensor (RGB, multispectral, etc.)
used, or the capture equipment (UAV, 4-wheel platform, slide
rail in greenhouse, etc.), there is a possibility of obtaining
considerably different images. These images will be used to
start the construction of a database.

2) Stage 2 – Pre-processing: After capturing the images
comes the time for pre-processing them (described in sec-
tion IV-B5). This process may vary from basic adjustments to
the images, such as morphological operations (opening S13,
dilation and erosion S2), detection and extraction of areas of
interest (S7, S16 and S41), as well as trait extraction (S13 and
S25) and segmentation (S3, S4, S6, S7, S9, S14, S16, S19,
S21, S22, S23, S24, S27, S29, S30, S31, S32, S34, S35, S38,
S42, S43 and S44). Each of these techniques varies according
to the needs of each study. If the authors are considering yield
(the agronomic trait most often analyzed among the articles),
a segmentation is usually carried out to highlight the planted
area and reduce the importance of the non-planted area in the
next phase. These pre-processed images are also added to the
database.

3) Stage 3 – Processing: The pre-processed images will
be used as inputs for the ML algorithms (described in sec-
tion IV-B6), such as CNN (S5, S7, S10, S12, S16, S17, S19,
S22, S23, S24 S29, S35, S37, S40, S41, S42, S43 and S44),
RF (S1, S8, S11, S20, S25, S26, S28, S30, S31, S32, S33, S36,
S37, S39, S40, S44 and S45), and SVM (S1, S4, S13, S14,
S20, S27, S28, S30, S31, S36, S39, S40, S44 and S45). CNNs
are a subset of ML tools, which are rapidly expanding and
have caused a paradigm shift in image-based HTP. Because
they are efficient in discovering complex structures in high-
dimensional data, they are, therefore, applicable to a wide
variety of images. However, no algorithm is ideal for all tasks.
It is still a challenge to determine the best algorithm for each
given problem [104].

After the ML technique has been chosen, image processing
is performed. Training images (manually labeled) are used so
that the algorithm learns to identify the traits presented to
it. With the training finished, it is possible to carry out the
validation/test. In this case, an image that was not used in
training is presented to the algorithm. Ideally, the algorithm
will have learned from training and will be able to identify
the traits correctly. During the readings carried out, it was
possible to verify that, for ML algorithms to obtain significant
accuracy in HTP, properly choosing the technologies involved
in all stages of the process is essential.

B. Study Quality Analysis

Another important point in the summary of the results is
the relationship between each QC and the RQ, both defined
in Section III.
1) The QC0 and QC1 were key for the exclusion of the 19
articles that passed the initial selection, but were eliminated
during full reading, precisely because they did not detail the
problem and the environment under study. This is something
that directly impacted the whole work, as well as the way in
which problems were solved, from image capture strategies
and database composition to ML techniques.
2) With QC2 it was possible to assess whether the limitations
of each project were documented. This can help similar or
complementary projects developed in the future. However,
several works describe with little detail (S1, S2, S3, S5, S6,
S8, S11, S12, S13, S16, S18, S19, S20, S21, S23, S25, S27,
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S29, S31, S32, S34, S35, S36, S37, S38, S39, S42, S43 and
S45) or did not describe (S4, S9, S15, S22, S24, S30, S33, S40,
S41 and S44) their limitations. These three QC0-3 did not alter
the results of the WAQC significantly, since their weight was
not doubled. However, it was possible to observe that when
the three criteria were met, both the form of capture and the
computational techniques were also described in detail.
3) QC3 also assessed the description of the composition of
each database, in order to subsequently perform comparisons
between the 45 works. However, each study adopted a different
strategy to create its database. For example, some works, such
as S3, S11, S15, S20, S24, S25, S26, S30, S33, S37, S39,
S40, S44 and S45, used UAVs to assess yield. However, it
is extremely complicated to compare the results from these
works, as the camera/sensor used in these 14 studies are not
the same in all cases. If only works that use similar cam-
eras/sensors are compared, there would be S3, S26 and S40,
which opted for a Parrot Sequoia multispectral camera/sensor
3, which provides a RGB sensor and a multispectral sensor (R,
G, NIR and Red Edge); and S24, S25, S37 and S44, which
used a RedEdge-M camera/sensor. And even in those cases
where the studies share a similar camera/sensor, the image
capturing tools, the agronomic traits, and the DIP and/or ML
techniques are different. These were just a few issues that
made it impossible to compare results between the 45 studies
analyzed. But the main point was precisely the database, as
each author performed the tests on a different database.

As for the composition of the databases, some works
described it in more detail (such as S1, S2, S3, S5, S7, S12,
S13, S19, S21, S23, S24 and S26), scoring QC3 = 2. The rest
of the studies describe this criterion in little detail, obtaining
QC3 = 1. Of the works that reached a score of QC3 = 1 for
database composition, 85.71% of them have WAQC < 8.0. As
for the score QC3 = 2 for database composition, 75% of these
studies have WAQC >= 8.0. That is, the details provided for
the composition of the databases directly impacted the WAQC.
With this detailed QC, it was possible to provide a better basis
for the capturing steps (section V-A1) that made up Stage 1
of the answer to the RQ.
4) With QC4 it was possible to assess how the DIP techniques
used to process the agronomic traits were described. When
describing the DIP techniques applied, some studies gave more
details (such as S1, S2, S4, S6, S13, S14, S16, S18, S19,
S21, S22, S23, S26, S28 and S32), scoring QC4 = 2; others
provided less details (S3, S5, S7, S8, S9, S10, S11, S12, S15,
S17, S20, S24, S25, S27, S29, S30, S31, S33, S34, S35, S36,
S37, S38, S39, S40, S41, S42, S43, S44 and S45), obtaining
a score of QC4 = 1. Of the works that obtained a score of
QC4 = 1, 88% of them have WAQC < 8.0. As for the studies
that obtained QC4 = 2, 66.67% of them have WAQC >= 8.0.
That is, these descriptions directly impacted the WAQC. With
this very detailed QC, a better basis for the pre-processing
stage (section V-A2) that made up Stage 2 of the answer to
the RQ was possible.
5) QC5 assessed the description of the use of ML applied to
HTP. When describing the ML algorithms used, some studies

3produced by Parrot, a French company.

provided more details (S1, S5, S7, S8, S9, S10, S11, S12,
S13, S14, S15, S16, S17, S18, S19, S20, S21, S23, S25, S26,
S28, S29, S31, S37, S36, S40 and S41), achieving a score of
QC5 = 2; other provided less details (S2, S3, S4, S6, S22,
S24, S27, S30, S32, S33, S34, S35, S39, S38, S42, S43, S44
and S45), reaching a score of QC5 = 1. Of the studies that
obtained a score of QC5 = 1, 100% of them had WAQC
< 8.0, which shows that ML was essential in the composition
of the WAQC. As for those that score QC5 = 2, 80% of
them had WAQC >= 7.0, while 52% had WAQC >= 8.0.
With this very detailed QC, it was possible to provide a better
foundation for the processing step (section V-A3) that made
up Stage 3 of the answer to the RQ. Another key point in the
analysis of the DEF fields was obtained by cross-referencing
information, described in the next two subsections.

C. Crops Cross-referenced with Agronomic Traits

An interesting fact in cross-referencing the crops with the
agronomic traits is that, if wheat (the most often analyzed
crop among the articles, Figure 4) is cross-referenced with the
22 characters analyzed (Figurea 5), this shows that this crop
was tested for 5 different agronomic traits, namely: Canopy
coverage S1; Plant density S6, S12 and S13; Measurement of
a trait S21; Stay green S27; and Yield S4, S38 and S44. It can
also be seen that, in some cases, the same article performed
several types of analyses and experiments, as is the case of
article S1, which studies the same agronomic trait for different
crops (Lettuce, Sorghum and Wheat). In this case, the authors
used different strategies for each test.

Figure 8 cross-references three frequently assessed agro-
nomic traits with their respective crops. From this crossing of
information, it was possible to observe that yield is a recurring
concern for several crops. Of the 22 crops analyzed, 12 of them
were assessed for yield (Cotton S15, Arabidopsis S4, Rice
S3, Rice S30, Rye S5, Citrus fruits S24, Sunflower S38, Corn
S33, Corn S37, Corn S4, Soy S11, Soy S14, Soy S20, Soy
S26, Soy S40, Sorghum S25, Sorghum S39, Clove S5, Wheat
S38, Wheat S4, Wheat S44, and Sugar cane S45). However,
according to the types of data, each work outlined a different
strategy. As a result, the average WAQC from these studies
was 6.96. There is much to improve; most of these studies
are recent and so far there is no agreed-upon methodology in
the literature on sensors/cameras, image capture methods, and
even DIP and ML techniques.

Another interesting result was obtained by cross-referencing
agronomic traits and image capture method, described in the
following subsection.

D. Agronomic Traits cross-referenced with Image Capture
Method

Figure 9 cross-references the 3 most recurrent agronomic
traits and the image capture method used for each one. Of
the 18 articles that address crop yield, 14 employed UAV (S3,
S11, S15, S20, S24, S25, S26, S30, S33, S37, S39, S40, S44
and S45). This might have to do with what is stated by [40]
about the advantages of UAVs: they are a platform to capture a
large number of images in high spatial, temporal and spectral
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Fig. 8. Crops cross-referenced with agronomic traits.

resolution, storing precise information ideal for HTP in a short
time and at low cost. With the UAVs it is possible to have a
yield estimate consistent with the crop as a whole, because for
that it is necessary to analyze as many plants as possible from
that crop. Of the 13 works that investigated yield and used
UAVs, only S26 had WAQC > 8.0, and the vast majority are
works from 2020 and 2021. That is, they are recent studies
and there is still much to research and discuss about this topic.

Fig. 9. Agronomic traits cross-referenced with Image Capture
Method.

VI. THREATS TO VALIDITY
This section presents the threats to the validity of this SLR,

and what strategies were adopted to mitigate these threats:

1) Regarding the definition of search strings:
• Terms commonly used in primary studies related to this
SLR were applied. For this, a survey and analysis of some
related works was carried out, and the terms present in these
works were used to make up the search strings.
• The study followed terminologies and vocabulary related to
the topic, with the help of a specialist in the area of DIP and
ML, in addition to a specialist in HTP.
• Search string sensitivity tests were performed to achieve
a balance between retrieval and accuracy of search results.
For this, the search strings were added to the databases, the
results obtained were ordered by relevance, and the IC and
EC were applied to the first ten articles from each source.
This string adjustment was only finalized when at least 80%
of these ten articles were really relevant.

2) Regarding the scope of the search strategy:
• The databases were chosen with the help of experts; because
of this, the articles found in the searches were related to the
researched topic.
• The searches were synchronous, that is, all searches in the
data sources were carried out on the same day.

3) Regarding the quality assessment of the primary studies:
• To formulate the QCs and weights used in this work, it
was based on the methodology proposed by [105] since it is
an article that is often cited on the subject.

4) About the congruence between RQ, IC, EC and DEF:
• As much information as possible was related, for example,
to answer the RQ each field of the DEF had to be filled
out, and to assess the quality of the works, again the fields
existing in the DEF were used. As for the IC and EC, if an
article did not address fundamental terms existing in the DEF,
it would be excluded; otherwise, it was included.

5) Possible biased assessment:
• This study had two specialists, one focused on computing
and its techniques, and the other focused on agronomy.
• A pilot test of the selection criteria was carried out to
improve the whole initial selection process.

VII. FINAL CONSIDERATIONS

This work developed a SLR covering the main studies
on High-Throughput Phenotyping in agricultural production
that use Image Processing and Machine Learning techniques
and answering the research question (RQ) described in the
literature review planning protocol.

When comparing the extracted data, it was possible to
identify that each study built its own database and that most
works did not make these bases available to the community,
thus making it difficult to compare their results. In addition,
it should be underlined that one of the advantages of using
ML approaches in HTP is the ability to search and process a
large dataset and discover patterns, simultaneously looking at
a combination of information, something that is not possible
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when each piece of information is analyzed separately. The
possibility of analyzing large amounts of information simulta-
neously, and at a relatively low cost, is what has significantly
enhanced the use of ML techniques in HTP.

The results obtained with this review show the potential for
applying DIP and Machine Learning techniques, and therefore,
can guide future research on the subject. For example, the
recent use of DIP techniques to analyze a specific agronomic
trait, cameras/sensors most used for a certain crop, or even
which techniques to combine depending on the scenario to be
analyzed, and so on. Finally, it is also noteworthy that this
study includes a wide range of works dated until 2022, and
therefore can provide a framework for new systematic reviews
of the literature on the subject.
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