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Abstract—This work evaluates the influence of the reference 

trajectory on the tracking error in a servo-positioner control system. 

Thus, the objective is to improve the ideal tuning of the gains of a 

controller applied to the tracking of the positional trajectory of a 

hydraulic actuator through the physical characteristics of the plant 

and the trajectory. The applied controller uses a cascade strategy 

and consists of dividing the mathematical model into two 

interconnected subsystems, one hydraulic and the other mechanical, 

applying specific control strategies to each subsystem. The proposed 

methodology is implemented using the Firefly Metaheuristic 

Algorithm (FMA). The first stage consists of generating the 5th 

order optimal trajectories by means of b-splines functions, in which 

they must minimize the acceleration along the actuator's path, 

considering speed and flow restrictions related to the hydraulic 

servo-position. The second step consists in determining the effective 

value of the error during the execution of the trajectory and the 

respective gains applied to the model. The results show that this 

strategy proved to be useful for obtaining adequate trajectories and 

gains in plants with significant non-linearities, because the 

trajectory error was 27% lower than the empirical adjustment 

method of gains compared in this study. 

 
Keywords— Firefly Metaheuristic Algorithm, Cascade Control, 

Hydraulic Servo Positioner, Optimization, Trajectory Planning 

 

I. INTRODUCTION AND PROBLEM STATEMENT 

he hydraulic actuators has characteristics that hinder their 

feedback control in high performance applications [1], [2]. 

The mathematical model of this system shows important non-

linearities [2], such as the relationship between the control 

variable and the oil flow, the frictional force between the 

hydraulic cylinder and the piston, the internal system leaks, the 

dead zone and saturation, which are present in the control 

valves.  

Many control algorithms have been developed seeking to 

increase the performance in the control of hydraulic actuators 

and, with this, expand the field of applications of these systems. 

Among the control techniques, we can highlight those based on 

feedback linearization [3], neural networks [4], backstepping 

[5], among others. Another control strategy that can be used in 

this area is that of cascade control [6]–[8]. This type of 

controller is characterized by allowing the interpretation of the 

hydraulic plant as subdivided into a mechanical and a hydraulic 

subsystem. There are different types of approach to the cascade 

strategy, such as, for example, controllers with fixed gains [8], 

adaptive [6] and using neural networks [9], [10].  

In order to obtain an adequate performance regard to the 

position path error in hydraulic actuators, it is essential to make 

an adequate adjustment of the gains on the controllers [6]. Some 

adjustment techniques for automatic tuning of controller gains 

are presented in [11]–[13], which propose a method for tuning 

the gains of a PID controller (Proportional-Integral-Derivative) 

through intelligent systems. Although this approach is efficient, 

it has limitations due to the position error when using a PID 

controller. This is due to the presence of undamped poles in the 

dynamics of the hydraulic actuators (open loop) and the non-

linearities of the system [14]. There are also studies that present 

strategies for adjusting the gains of controllers that use non-

linear control algorithms. In the case of cascade controllers, for 

example, there are works that apply heuristic tuning methods 

[15], [16], automatic tuning methods [6], methods based on 

metaheuristic algorithms [17], among others.  

The adjustments of the gains are fundamental to obtain 

desirable performances in the use of the controllers, however, 

the characteristics of the reference trajectory applied to the plant 

can also directly influence the result of the tracking error. To 

apply some control strategies, as in [11] and [18], the paths used 

in cascade controllers must be smooth and continuous until their 

3rd derivative, when the system requires position, speed and 

acceleration references. In [17], for example, sinusoidal and 5th 

order polynomial trajectories were used to determine the 

optimal gains of a cascade controller applied to a hydraulic 

servo-positioner. 

Heuristic algorithms are techniques that are increasingly 

being used to solve problems related to the adjustment of gains 

and the generation of optimal trajectories for the most different 

types of industrial controllers. According to [19], these 
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algorithms are characterized by applying a simple set of 

procedures to obtain solutions, even if it is not the optimal 

global solution, simply and quickly. This work proposes the use 

of the Firefly Metaheuristic Algorithm (FMA), which present 

similar performances to deterministic optimization methods. 

The FMA is characterized by its effectiveness in the search for 

a local optimum and a global optimum in a synchronous way. 

These algorithms allow the adjustment of parameters such as 

the variation of attractiveness and randomization adjustment, 

which are presented in more detail in [20]. The choice of this 

algorithm is based on the fact that the physical system and the 

proposed controller have a non-linear behavior, and these 

methods allow to obtain optimal global results [20], [21]. Other 

works have used different metaheuristic algorithms for 

generating trajectories and non-linear control. For example, in 

[22], the Bald Eagle Search (BES) algorithm with dimension 

learning-based hunting (DLH) was used for research on 

autonomous vehicles. In [23], a proposal for manipulator robot 

control using Butterfly Optimization Algorithms (BOA) was 

presented, with the aim of minimizing the robot trajectory error. 

In  [24] the author employed a non-linear model predictive 

control (NLMPC) for manipulator robots, and optimized the 

controller gains using a Neural Network Algorithm (NNA) to 

compensate for non-linearities and reduce the error in the 

robot's trajectory tracking. 

Non-linear control algorithms have a satisfactory 

performance when applied to hydraulic servo-positioners [10]. 

Recently, some studies have sought to apply intelligent 

techniques based on heuristic strategies to adjust the gains of 

this type of controller [17], [25], [26], among others. In this 

sense, it is possible to observe that there are few approaches that 

deal with the use of optimized trajectories to improve the 

performance of these systems.  

The contribution of this paper is to propose a method for 

improving the efficiency of cascade controllers [10], [17] in 

terms of reducing the error in tracking the trajectory. Since a 

cascade controller requires a physical system (plant), a 

specified trajectory, and a method for adjusting the gains, this 

paper evaluates the impact of the reference trajectory on the 

tracking error, demonstrating that the optimal adjustment of the 

gains can be improved by considering both the plant's physical 

characteristics and the trajectory. 

The proposed method for finding the optimal reference 

trajectory, presented in subsection IV.C, uses the FMA to 

minimize the derivative of the speed along the actuator's path, 

while respecting the inequality restrictions related to the 

actuator's kinematic characteristics and the peculiarities of the 

hydraulic system, as described in section II. This is crucial for 

reducing errors resulting from the dynamics of hydraulic 

systems. In subsection IV.D, the gain adjustment technique is 

presented. The methodology proposed uses the FMA to 

minimize the error during the execution of the trajectory in 

order to obtain the optimal gains. The optimal solution is the 

best combination of gain values that minimize the error in the 

system's response while respecting the limits for the cascade 

controller's gains. The results show that the tracking error 

decreases significantly, without sacrificing the control signal or 

the actuators' efforts, compared to the method presented in [10]. 

The rest of the manuscript is organized as follows: in sections 

II and III present, respectively, the mathematical model of the 

hydraulic actuator used and the theoretical aspects of the 

cascade control strategy. In Section IV, the methodology for 

optimization the trajectory and gains applied to the cascade 

controller is presented. In Section V, the simulation results 

obtained applying the proposed methodology are presented and 

discussed. Finally, Section V presents the conclusions of this 

work. 

II. THE HYDRAULIC ACTUATOR MODEL 

According to Newton's second law, the dynamic response of 

the mechanical system is represented by (1). 

 

𝐹𝐻 = 𝑝1𝐴1 − 𝑝2𝐴2 = 𝑀𝑦̈ + 𝐵𝑦̇ (1) 

 

where 𝑦, ẏ and y ̈ are the piston position, speed and 

acceleration. The camera pressures are 𝑝1 and 𝑝2. 𝐴1 and 𝐴2 are 

the piston areas. 𝑀 represents the mass of the piston and charge. 

𝐹𝐻 is the hydraulic force of the piston, resulting from the 

pressures 𝑝1 and 𝑝2 and the viscous friction coefficient 𝐵, 

which, multiplied by the speed, represents the frictional force 

between the piston and the cylinder 𝐹𝐴. 𝑉1 and 𝑉2 are the 

camera’s volumes. The signal control is 𝑢, 𝑃𝑜 and 𝑃𝑆  are the 

fluid pressure, and finally, 𝑄1 and 𝑄2 are the fluid flow. Fig.1 

shows the hydraulic actuator used in this work. 

 

 
 

According to [14], the mathematical model of its dynamic 

behavior can be obtained by applying Newton's second law and 

the fluid flow continuity equation. Now, combined (1) with (2), 

explains the derivative of hydraulic force and facilitates the 

application of the control scheme proposed in section III. 

 

𝐹̇𝐻 = (𝐴1𝑓1𝐾𝑣1𝑔1 + 𝐴2𝑓2𝐾𝑣2𝑔2)𝑢 − (𝐴1
2𝑓1 + 𝐴2

2𝑓2)𝑦̇ (2) 

 

More information about the hydraulic actuator model sees in 

[15].  

III. THE CASCADE CONTROLLER 

The cascade control strategy applied to hydraulic actuators is 

based on the mathematical model of the hydraulic actuator and 

considering two interconnected subsystems (Fig.2), a hydraulic 

 
Fig. 1. The hydraulic system: double-acting cylinder and 5/2-way 

proportional valve [2]. 
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subsystem and another mechanical subsystem [2], [14]. This 

form of control can also be described as follows: 

(i) Calculate a control law 𝐹𝐻𝑑 (desired hydraulic force) for 

the mechanical subsystem, so that the output 𝑦 (position) 

follows the trajectory 𝑦𝑑  (desired position) with the least 

possible error. 

(ii) Calculate a control law 𝑢 for the hydraulic subsystem, so 

that the hydraulic force 𝐹𝐻 follows the reference 𝐹𝐻𝑑 provided 

by the previous control law, with the least possible error. 
 

 
As in [14], where a mechanical subsystem expressed by (1) 

is proposed, the control law is based on the Computed Torque 

law, used in [2] and [14], where the desired hydraulic force is 

expressed by (3). 

 

𝐹𝐻𝑑 = 𝑀𝑦̈𝑟 − 𝐾𝑑𝑧 + 𝐵𝑦̇𝑟 (3) 

 

where 𝑦̈𝑟 and 𝑧 are defined by (4). 

 

𝑦̈𝑟 = 𝑦̈𝑑 − 𝜆𝑦̃,̇ 𝑦𝑟 = 𝑦̇𝑑 − 𝜆𝑦̃,      𝑦̃ = 𝑦 − 𝑦𝑑 ,    
 𝑧 = 𝑦̇ − 𝑦̇𝑟 = 𝑦̃ + 𝜆𝑦̃ 

(4) 

 

where 𝐾𝑑 and 𝜆 are the controller gains, 𝑦̈𝑟 is a reference 

acceleration and 𝑧 is the tracking error. Applying this control 

law, the expression in closed loop is obtained in (5). 

 

𝐹̃𝐻 = 𝑀𝑧̇ + (𝐾𝑑 + 𝐵)𝑧 (5) 

 

where the force error is defined in (6). 

 

𝐹̃𝐻 = 𝐹𝐻 − 𝐹𝐻𝑑 (6) 

 

In the hydraulic subsystem, expressed by (3), the feedback 

linearization strategy is used as a control law, where the non-

linearities of the system are cancelled when all parameter values 

are known. The feedback linearization strategy allows the 

cancellation of non-linearities and the imposition of linear 

dynamics and can be applied in cases of non-linear systems 

described in the companion form. A system is said in the 

companion form if its dynamics is represented by (7). 

 

𝑥(𝑛) = 𝑓(𝒙) + 𝑏(𝒙)𝑢 (7) 

 

where 𝑢 is a scalar control input, 𝑥 is the scalar output of 

interest, 𝒙 is the state vector, 𝑓(𝒙) and 𝑏(𝒙) are the nonlinear 

state functions. Using this representation and choosing the 

control input, we obtain (8). 

 

𝑢 =
1

𝑏
(𝑣 − 𝑓) (8) 

 

Using (3) and (8), we have the control law in (9). 

𝑢 = (𝐹̇𝐻𝑑 − 𝐾𝑝𝐹̃𝐻 + (𝐴1
2𝑓1

+ 𝐴2
2𝑓2)𝑦̇)

1

(𝐴1𝑓1𝐾𝑣1𝑔1 + 𝐴2𝑓2𝐾𝑣2𝑔2)
 
(9) 

Through this law and when all parameters of the model are 

known, the dynamics of the closed-loop system is expressed by 

(10). 

𝐹̇̃𝐻 = −𝐾𝑝𝐹̃𝐻 (10) 

In this case, asymptotic convergence of the position error to 

zero occurs, and the time is dependent on the value of the 𝐾𝑑, 𝜆 

and 𝐾𝑝 gains [2], [14]. 

IV. OPTIMIZATION OF THE TRAJECTORY AND GAINS APPLIED 

TO THE CASCADE CONTROLLER 

The cascade controller parameters are optimized in two steps 

through an offline procedure. The optimization techniques 

presented in subsections IV.C e IV.D were applied using the 

Firefly metaheuristic algorithm (FMA). To obtain the optimal 

trajectory interpolated by 5th degree b-splines functions, it is 

first necessary to establish the intermediate points. The 

proposed method is based on determining the trajectory that 

minimizes the acceleration during the movement of the 

actuator, considering the physical and kinematic restrictions of 

the system. A trajectory with high accelerations leads to high 

actuator efforts and, consequently, a significant increase in 

tracking error due to saturation in the system. The controller 

gain optimization technique is similar to the approach presented 

in [17], where the ideal values of the 𝑘𝑑, 𝑘𝑝 and 𝜆 gains are 

determined for a situation in which the trajectory is 

predetermined. The main contribution of this work is the 

development of a strategy that improves the dynamic response 

of a closed loop system. This strategy will be applied to a 

hydraulic actuator, by optimizing the reference trajectory and 

the controller's gains. Thus, a strategy will be presented to 

determine the optimal trajectory of reference, considering the 

characteristics of the plant (1st stage of optimization), to later 

determine the optimal adjustment of gains. The results of the 

optimizations are later used in simulations with the purpose of 

evaluating the performance of the closed loop system. The 

result of the proposed strategy is evaluated by means of a 

simulation of the displacement of the piston in the entire path 

of the servo-positioner, considering the two stages of 

optimization proposed.  

 

A. The Firefly Metaheuristic Algorithm 

 

The FMA was elaborated by [20] based on observations of 

flashing behavior of fireflies, so that the bioluminescence effect 

is the essence of the method. Specifically in the case of fireflies, 

the grouping for these insects is based in the rhythmic flash, the 

rate of flashing and the amount of time it remains on. Also, in 

nature, distance plays an important role since it may impair the 

visibility of other fireflies, and on optimization problems, the 

cost function is evaluated as the brightness of the fireflies. 

 

 
FiFig.  2.  Schematic diagram of Cascade Control [2]. 
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According to [20], the FMA algorithm was developed for 

optimization problems based on three ideal rules: all fireflies 

are unisex; the attractiveness decrease as the distance increases; 

and a random search is used in the case of no existence of 

brighter firefly.  

 
1) Attractiveness, absorption and light intensity 

 

According to [20] and presented in [27] and [28], the 

formulation of the attractiveness and the variation of light 

intensity are two important issues that should be addressed. As 

previously said, the objective function 𝑓(𝐱𝑖) is associated to the 

brightness 𝐼(𝐱𝒊) where 𝐱𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑑)𝑇 is a tentative 

solution vector. So, 𝐼(𝐱𝒊)  𝑓(𝐱𝑖). The distance impairs the 

visibility so the attractiveness β is relative. Thus, the distance 

𝑟𝑖𝑗  between firefly i and firefly j will affect this attractiveness. 

The attractiveness can be set to vary with the degree of light 

absorption (). 

For fixed light absorption coefficient , the light intensity I 

may be formulated as follows [20] and [28], as show in (11). 

 

𝐼(𝑟𝑖𝑗) = 𝐼0exp (− 𝑟𝑖𝑗
2) (11) 

where 𝐼0 means the original light intensity. The attractiveness  

(light intensity for the neighbor fireflies) of a firefly in this 

paper is modelled as in (12). 

 

𝛽(𝑟𝑖𝑗) = 𝛽0exp (− 𝑟𝑖𝑗
2) (12) 

 

where 𝛽0 means the attractiveness at 𝑟𝑖𝑗 = 0. For a fixed , 

the attractiveness  →𝛽0  when 𝑟𝑖𝑗→0 and conversely if 𝑟𝑖𝑗→  

then  →0.  The way this variation happens can be calibrated 

beforehand based on the values of the cost function and the 

behavior of the algorithm. This is one of the metaheuristic 

parameters that should the defined by the user. The position 

update of firefly i attracted to a brighter one j is defined by (13). 

 

𝐱𝑖 = 𝛽0exp (− 𝑟𝑖𝑗
2) + (𝐱𝑖 − 𝐱𝑗) 𝛆𝑖 (13) 

 

where the second term is due to the attraction and the third 

term  𝛆𝑖  is a randomization term composed by a vector of 

random numbers (ε𝑖). According to [27], [28] these random 

number are meant to perturb the natural firefly movements. 

They are generated from a uniform distribution [-1,1] and the 

randomization parameter   is used to decrease its influence 

along iterations. In this paper, it is used alpha values updated 

along iterations i (for all examples) as  (𝑖)=0.99  (𝑖−1). The 

general idea for Eq. (13) is to perform a random search biased 

towards brighter fireflies. 

The parameter  characterizes the variation of the 

attractiveness and determines the speed of the convergence and 

efficacy of FMA in finding a global optimum. A very similar 

technique is used by Simulated Annealing to improve the 

convergence rate. As indicated by [20],   [0,). This 

parameter typically varies from 0.1 to 10 for normalized cost 

functions. Fig. 3 shows a pseudo-code for the firefly algorithm 

in minimization problems. 

 

 
Fig. 3.  FMA pseudo-code. Adapted from [10] and [28]. 

B. Definition of the Ttrajectory Using Fifth-Order B-Splines 

Considering that the cascade control method applied to the 

hydraulic actuator was based on the calculated torque strategy, 

which, according to [29], requires that the trajectory to be used 

has continuity in the position function and its first three 

derivatives, in this work, we chose to use 5th degree 

trajectories. The choice for 5º b-spline functions is because they 

are consolidated techniques for generating trajectories, with 

equations already known in the literature for implementation in 

optimization algorithms. According to [30] and [31], to 

interpolate n + 1 points, the b-spline function can be defined as 

(14). 

 

𝑄𝑘 = 𝐶(𝑢𝑘) = ∑ 𝑁𝑖,𝑝(𝑢𝑘)𝑃𝑖

𝑛

𝑖=1

 (14) 

 

where Pi (i = 0.1, ......., n + p + 1) are the control points to be 

determined, Ni,p (u) are the base functions and uk is the value of 

the node corresponding to the intermediate point Qk of the 

trajectory. 

The basic functions of b-splines are determined by the De 

Boor recurrence method, which is useful for computational 

implementations [31]. The i-th base function of the degree p (or 

equivalently order p + 1) b-spline is defined according (15) and 

(16). 

 

𝑁𝑖,0(𝑢) = {
1, 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1

0, 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
 

 
(15) 

𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖

𝑢𝑖+𝑝 − 𝑢𝑖

𝑁𝑖,𝑝(𝑢)

+
𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖+1

𝑁𝑖+1,𝑝−1(𝑢) 

 

(16) 



 
 IZQUIERDO et al.: APPLICATION OF OPTIMIZATION TECHNIQUES FOR GENERATING                    929 

𝑤𝑖𝑡ℎ  𝑝 > 0 

From the obtained control points, which are determined 

through (15), the b-spline function is calculated, in which the 

resulting curve will pass through all the points Qk. More 

information about the formulations of the b-splines functions 

can be found in [30] and [31]. 

 

C. Generation of the Optimal Reference Trajectory 

Once the intermediate points of the actuator are known, the 

proposed method is based on determining a path that is 

continuous in its derivatives of position, speed and acceleration. 

The objective function aims to minimize the derivative of the 

speed along the path of the actuator, with small time increments 

(∆t = 0.1s), as (17). 

 

𝐹𝑜𝑏𝑗 = |
𝑑𝑣(∆𝑡)

𝑑𝑡
| (17) 

 

The inequality restrictions are associated with the kinematic 

characteristics of the actuator and the particularities of the 

hydraulic system, presented in section II. The kinematic 

restrictions are based on the limitations of the maximum values 

of speed and acceleration, defined by the actuator manufacturer, 

as presented in (18) and (19). 

 

|𝑞(𝑡)| ≤ 𝑃𝐶  

 

(18) 

|𝑞̇(𝑡)| ≤ 𝑉𝐶 (19) 

 

where 𝑞(𝑡) and 𝑞̇(𝑡) are the position function and its derivative 

(position and speed in the actuator along the path), 𝑃𝐶  is the 

limit of displacement of the actuator along the path and 𝑉𝐶 is 

the maximum speed specified actuator manufacturer. 

The restrictions on the physical properties of the hydraulic 

system consist of limiting the flow values and their variation 

along the path of the actuator. This is because large variations 

in the flow values can cause a significant increase in the 

acceleration of the actuator and, consequently, in the error of 

trajectory tracking. The formulation of this restriction is 

presented in (20). 

 

𝑄1 < 𝐾𝑣1𝑢𝑔1 𝑔1 = {
√𝑝𝑠 − (𝑝1 + 𝑙1), 𝑢 ≥ 0

√𝑝1 − 𝑙3, 𝑢 < 0
 

𝑄̇1 < 𝑀𝑎𝑥(𝑄̇1) 

𝑄2 < 𝐾𝑣2𝑢𝑔2 𝑔2 = {
√𝑝2 − 𝑙4, 𝑢 ≥ 0

√𝑝𝑠 − (𝑝2 + 𝑙2), 𝑢 < 0
 

𝑄̇2 < 𝑀𝑎𝑥(𝑄̇2) 

(20) 

where 𝐾𝑣1 and 𝐾𝑣2 are the volumetric flow gains that 

characterize each valve orifice; 𝑙1. . . 𝑙4 are the pressure losses in 

the hoses; 𝑄̇1,2 is the variation of the maximum flow allowed to 

avoid high accelerations; 𝑝𝑠, 𝑝1, 𝑝2 and 𝑢 are the variables 

corresponding to supply pressure, chamber pressure and valve 

control voltage, respectively. 

The design variables (𝑣) are represented by the time interval 

(ℎ𝑖) that the actuator needs to move between two successive 

points in the trajectory, according (21). 

 

𝑣 = (ℎ1, ⋯ , ℎ𝑝)
𝑇
 (21) 

 

where ℎ𝑖 is calculated considering the position between two 

successive points to be interpolated and the maximum speed of 

the actuator (𝑉𝐶). The calculation of the lateral restrictions to 

interpolate p intermediate points is represented by (22). 

 

ℎ𝑖 = 𝑚𝑎𝑥 {
|𝑞𝑖+1 − 𝑞𝑖|

𝑉𝑐

} 𝑖 = 1, ⋯ , 𝑝 − 1 (22) 

 

D. Gains Adjustment Technique 

For the controller to be executed in time, it is necessary to 

use the optimal trajectories described in the previous section 

and to tune the values of the most appropriate gains for the 

operation of the controller. The methodology proposed in this 

work is based on the approach presented in [17]. The objective 

function is to minimize the effective value of the error during 

the execution of the trajectory, according (23). 

 

𝐹𝑜𝑏𝑗 = √
1

𝑇
∫ 𝑒(𝑡)2𝑑𝑡

𝑇

0

 (23) 

 

where 𝑒(𝑡) is the error characterized by the difference between 

the path of the hydraulic actuator and the desired trajectory, and 

𝑇 is the total time of the path of the actuator in a movement 

cycle. 

The design variables used in this step refer to the gains of the 

cascade controller, as in (24).  

 

𝑉𝑃 = (𝑘𝑝, 𝑘𝑑, 𝜆) (24) 

 

After processing the algorithm, the optimal solution consists 

of the best combination of the set of gain values that minimize 

the error of the system's response. The lateral constraints are 

maximum and minimum allowable winnings. Limit values for 

gains 𝑘𝑝, 𝑘𝑑 and 𝜆 are presented in (25). 

 

𝑘𝑝𝑚𝑖𝑛 ≤ 𝑘𝑝 ≤ 𝑘𝑝𝑚𝑎𝑥 

𝑘𝑑𝑚𝑖𝑛 ≤ 𝑘𝑑 ≤ 𝑘𝑑𝑚𝑎𝑥 

𝜆𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆𝑚𝑎𝑥  

(25) 

V. RESULTS 

This chapter seeks to define the ideal parameters of the 

cascade controller that minimize the error of trajectory tracking 

for a given movement of the actuator. The analyses performed 
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refer to the implementation of the optimization algorithm in the 

generation of an optimal reference trajectory and in the tuning 

of the controller's gains.  

In subsection V.A presents the values of the parameters used 

to generate the optimal trajectory, such as the physical 

limitations for the path of the hydraulic actuator (maximum 

flow, maximum speed, position, among others). The aspects 

evaluated in the trajectory optimization algorithm are: 1) the 

objective function, checking if this value, in this case, 

acceleration, meets the operating requirements of the hydraulic 

actuator; and 2) the kinematic restrictions, analysing whether 

the position, speed and flow values were violated during the 

course. 

In subsection V.B, it seeks to evaluate which are the 

adjustable parameters of the cascade controller that minimize 

the error of following the actuator's trajectory. Knowing the 

reference trajectory determined in the previous section, this step 

presents the results of the optimal adjustment of the controller's 

gains. This method is evaluated by comparing the trajectory 

tracking errors produced by the original gains of the control 

algorithm and by the optimal gains.  

An experimental analysis was not developed because issues 

of non-linearity, noise and uncertainties were discussed in the 

work presented in [10] for the same physical system and 

controller proposed in this article. The author carried out an 

experimental analysis to evaluate the trajectory segment error, 

allowing adjustments to be made to compensate for the non-

linearities present in the control model and in the plant. In 

addition, [10] demonstrated that uncertainties, friction and 

noise errors did not compromise the experimental results, since 

the hydraulic forces are much greater than these uncertainty 

values. That is, the most important variables to evaluate the 

trajectory segment error are the change in controller gains and 

the reference trajectory in hydraulic systems. The constraints 

applied to the optimization problems in subsections V.A and 

V.B were obtained from the experimental analysis presented in 

[10]. These constraints were used to limit the physical 

characteristics of the hydraulic actuator, such as maximum 

flow, maximum speed, and position, among others. This was 

done to assess the impact of the reference trajectory on the 

tracking error and to find the optimal adjustment of the gains 

for the cascade controller.  

A. Analysis of the Optimal Reference Trajectory for the 

Controller 

To show the trajectory generation method and evaluate its 

results, a case study is presented. In this approach, the actuator 

travels a set of 18 points established within its operating limits. 

The key points for the generation were previously defined.  

To illustrate the problem proposed in subsection IV.C. the 

following conditions are considered: 1) The key points used to 

generate the reference trajectory are 𝑄𝑖  = [0.1000 0.1002 0.1042 

0.1146 0.1300 0.1454 0.1557 0.1595 0.1600 0.1600 0.1597 

0.1558 0.1454 0.1300 0.1146 0.1042 0.1005 0.1000]. These 

points were chosen through a sampling of the point-to-point 

trajectory presented in [10]; 2) The maximum allowable flow 

rate in the chambers (𝑄1,2)𝑚𝑎𝑥 is 3.2253 × 10−5 𝑚³/𝑠; 3) The 

dynamic aspects of the controller, such as force, friction, 

pressure, temperature, control signal, among others, are not 

defined as restrictions of the optimization problem; 4) The 

maximum values of position and speed (inequality restrictions) 

are 0.2 𝑚 and 0.2 𝑚/𝑠, respectively; 5) The minimum and 

maximum values for the time interval  (ℎ𝑖) between two 

successive points of the trajectory (lateral restrictions) are 

0.0005 𝑠 and 0.9 𝑠, respectively; 6) The performance of the 

generated trajectory is evaluated by comparing the results 

obtained with the FMA and the 7th degree reference trajectory 

presented in [10]. The choice for this type of trajectory is 

because the cascade controller requires a trajectory of reference 

that is continuous, both for position, speed and acceleration. 7) 

For both paths, the same gains were used as those used in the 

controller by [10]; and, finally, 8) the path generated will 

henceforth be called TCH (Trajectory- Cylinder - Hydraulic).  

To compare the trajectory of [10] and the TCH, the type of 

trajectory, the maximum flows in chambers A and B, the 

maximum acceleration and the maximum position obtained 

along the proposed route were analysed. Tab. I presents the 

results obtained in the 1st optimization stage, implementing 

both trajectories as a reference in the controller under study. 

The controller gains used in this analysis were determined by 

[10]. 

The comparison between the trajectories interpolated with 

7th order polynomials and with 5th order polynomials is valid 

because both cases guarantee the continuity of the position 

function and its three derivatives. This is a necessary 

requirement for the reference paths of cascade controllers [29]. 

Analyzing the results of Tab. I, it can be concluded that both 

trajectories meet the operational limits of the studied hydraulic 

actuator. Although the methods show similar behavior in terms 

of flow and position, it is important to note that the TCH 

generated maximum acceleration values significantly lower 

than the trajectory of [10]. It is understood that these results 

were obtained because the proposed optimization method 

considers the minimization of acceleration in the actuator's path 

(objective function). Fig.4 and Fig.5 show the position and 

acceleration curves obtained by applying both trajectories as a 

reference in the analyzed control algorithm. In this work, the 

pressure curves in the chambers are not presented. 

The results obtained in this analysis show that both 

trajectories can be applied to the controller under study. TCH 

highlights the ease of implementation of the algorithm, 

regardless of the path of the actuator, and this trajectory also 

presents movements with less flow and acceleration.  

TABLE I 

RESULTS OBTAINED IN THE 1ST OPTIMIZATION STEP. 

 Trajectory by [10] TCH 

Type of trajectory 
7th order 

polynomial 
5th-order B-spline 

Effective flow rate 
chamber A 

1.54 × 10−5 𝑚3/𝑠 1.35 × 10−5 𝑚3/𝑠 

Effective flow rate 

chamber B 
7.43 × 10−6 𝑚3/𝑠 6.53 × 10−6 𝑚3/𝑠 

Maximum acceleration 0.11 𝑚/𝑠2 0.0673 𝑚/𝑠2 

Maximum position 0.16 𝑚 0.16 𝑚 
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In Fig.5, between 2 and 4 seconds, it is possible to observe 

that the trajectory proposed in [10] presents better results, 

because the understanding in this period is equal to zero. 

However, mean squared error and acceleration peaks are 

smaller in TCH during the operating cycle. 

 

 
 

 
Subsection V.B analyzes the implementation of the 

optimization technique for the cascade controller gains 

adjustment, comparing the trajectory tracking error obtained 

with the TCH with the optimized gains and the trajectory and 

gains of [10]. 

 

B. Gain Analysis for the Cascade Controller 

In order to establish the ideal adjustment of the gains for the 

cascade controller, the present work proposes the use of an 

optimization algorithm based on the minimization of the 

actuator position error. Thus, for the trajectory tracking 

problem, presented in subsection IV.C, two situations are 

considered: the gains are empirically tuned [10] and the gains 

are obtained through the adopted strategy. Thus, the results of 

2 simulations are presented. The first simulation consists of 

using the TCH and the empirical gains proposed by [10]. The 

second simulation uses the TCH as input to the controller, and 

the optimum gains of the control algorithm are obtained 

according to the procedure described in subsection IV.D. This 

trajectory is characterized by a useful distance of 0.06 m and 

with the completed cycle (advance and return of the actuator) 

of 6 seconds. The simulations for TCH applying the gains 

presented in [10] and the optimal gains are presented in Fig. 6. 

 

 
 

It is possible to observe that in Fig.6 there is a small 

difference in the error of trajectory tracking comparing the 

errors obtained by the empirical method of adjustments of gains 

[10] and by the proposed optimization algorithm. This can also 

be seen in Fig.7, since the trajectories are practically 

overlapping, due to the low tracking error presented in both 

methods.  

 

 
 

An important aspect in the analysis of the efficiency of the 

reference parameters of a controller is to evaluate the control 

signal during the travel of the actuator, since high values of the 

control signal can saturate the actuators, influencing the 

tracking error. It is also important to mention that the control 

signal is proportional to the energy consumed by the system. 

Fig. 8 shows the valve control signal considering the gains 

shown in [10] and the optimum gains 

The control signal for both methods showed a similar 

behavior. The quadratic mean (RMS) of both curves was 0.5131 

[10] and 0.5134 for the proposed optimization method. These 

results indicate that the proposed technique for the optimization 

of gains meets the functionalities of the controller and hydraulic 

 
Fig. 4.  Comparative graph of the trajectory tracking between TCH and [10] 
for the same controller. 

 

[10] 

 
Fig. 5.  Comparative graph of accelerations between TCH and [10] for the 
same controller. 

 

[10] 

 
Fig. 6.  Position errors using empirical tuning and optimized tuning, for a 

point-to-point trajectory. 
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Fig. 7.  Desired point-to-point trajectory and effector position. 
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actuator under study. Although the control signals provide 

similar results, it is important to mention that the smallest 

tracking error occurs with the gain optimization technique. 

 
 

The values of the gains applied in the cascade controller were 

obtained using TCH (reference). The maximum errors of 

trajectory tracking are shown in Tab. II. The maximum and 

minimum limits adopted for the controller gain values (lateral 

constrains) 𝐾𝑝, 𝐾𝑑 and 𝜆 are [250 4100 350] and [15 500 30], 

where 𝐾𝑝, 𝐾𝑑 and 𝜆 are the variables of the design vector. The 

optimal parameters provided by the FMA algorithm are: 𝑛 =
15, 𝛼 = 1, 𝛽0 = 0.5, 𝛾 = 0.2 and the maximum number of 

iterations is 10. The parameters for the FMA were determined 

through an empirical process of trial and error, observation, and 

experience. The stopping criteria for the FMA algorithm were 

established using three metrics: the coefficient of variation 

(CV) of the objective function for each individual, the 

Euclidean distance between the best solutions found in 

consecutive iterations, and the maximum number of iterations. 

These criteria were set to ensure that the algorithm converges 

to a solution in a reasonable amount of time. The convergence 

of the process can be measured by the CV, as if a global 

optimum is found, all individuals will be attracted to that 

solution, thus significantly reducing the CV. 

VI. DISCUSSION AND CONCLUSIONS 

The results of the simulations show that the proposed method 

is suitable for generating optimal reference trajectories and for 

tuning the gains of cascade control algorithms. It is also 

observed that the proposed method can be applied to different 

types of control strategies and servo-positioning systems, since 

it is necessary to supply to the optimization algorithm only the 

points to be covered by the actuator and its physical limits, 

considering the 1st optimization step.  

For the 2nd stage of optimization, it is necessary to provide 

only the maximum and minimum values of the gains that the 

controllers support. It is important to mention that the result 

regarding the implementation of the two optimization steps, 

results in a set of points that are used with reference to the 

controller of the hydraulic servo-positioner. The 

implementation of optimization techniques considering the 

specific plant and control system, show that TCH presents a 

behavior similar to the trajectory presented in the work of [10]. 

However, the TCH provides lower values of acceleration and 

flow when applied to the controller under study. This result 

does not allow to infer which trajectory is most suitable for this 

system, since there were no significant differences in the 

interpolation of the analyzed intermediate points. Still, the 

analyzed trajectories are not overlapping. This is due to the fact 

that the trajectory of [10] is of the point-to-point type, 

interpolated in a time interval of 6 seconds, not considering any 

type of time parameter for the interpolation of the points. 

The results analysis in subsection V.B shows that the 

proposed iterative technique for tuning the controller gains 

resulted in a 27% reduction in the trajectory error compared to 

the gain adjustment method presented in [10]. Despite the 

significant difference in the errors of tracking the trajectory 

provided by the analyzed methods, there were no major 

variations in the control signal of the valve, which consists of 

an indicator of the amount of energy consumed by the system. 

The comparative analysis of the gains was carried out using the 

TCH as a reference signal for the cascade controller. The 

implementation of the optimization algorithms proposed in 

steps 1 and 2 requires high computational cost of simulation. 

The optimal adjustment of the gains in controllers applied to 

hydraulic servo actuators has proven to be a crucial aspect in 

ensuring the performance and stability of these systems. Future 

work could focus on exploring advanced optimization 

algorithms, incorporating more complex models of the 

hydraulic system, and considering multiple objectives to 

achieve an optimal trade-off between performance and 

robustness. Additionally, investigating the impact of different 

control strategies, such as robust control and model predictive 

control, on the optimization of gain parameters could provide 

valuable insights into the design of high-performing hydraulic 

servo actuator systems. 
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