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DonkieTown: a Low-cost Experimental Testbed for
Research on Autonomous Cars

Emmanuel Larralde-Ortiz, Alberto Luviano-Juárez , Flabio Mirelez-Delgado and Diego Mercado-Ravell*

Abstract—In this work, DonkieTown is introduced, an afford-
able and scalable platform for research on autonomous vehicles.
The experimental framework was developed in the Robot Op-
erative System (ROS). The platform integrates multiple small
scale autonomous vehicles called Asinus Cars, which are equipped
with at least a camera, odometer, and onboard computer. The
vehicles are Differential Drive Robots (DDR), forced by software
to behave as car-like vehicles. DonkieTown incorporates a low-
cost localization system to provide the real-time vehicles’ pose,
by means of external cameras which detect ArUco markers,
then Kalman Filters (KF) are used to track and estimate the
pose of each vehicle. The platform includes a base station
computer with a graphical interface for monitoring the system.
DonkieTown also includes a series of algorithms to facilitate
autonomous driving, such as communication, tracking, object
detection, obstacle avoidance, control, trajectory tracking, etc.
Moreover, a centralized vehicular network is implemented to
allow communication between the agents and the base station,
where the agents can share information about their state,
obstacles, maneuver intentions, etc. To facilitate the research on
autonomous cars in Latin America, the developed libraries are
released as open source. Real-time experiments demonstrate the
performance of DonkieTown in autonomous driving missions,
such as following a lane while avoiding Donkey-like obstacles,
and collaborative autonomous driving in convoy.

Index Terms—self-driving cars, low-cost testbed, mobile
robotics, autonomous driving, ROS.

I. INTRODUCTION

Autonomous cars are already assisting people by provid-
ing reliable and safe transportation services, handling

parking problems, and eliminating a substantial number of
accidents previously caused by human errors [1]. In addition,
Connected and Automated Vehicles (CAVs) will reshape trans-
portation and mobility by communicating and conveying real-
time information (e.g., position, speed, sensor data, maneuver
intentions, etc.). CAV technology also provides opportunities
to improve vehicle energy efficiency [2], and introduces coop-
erative autonomous driving capabilities as explained in [3].

Even though CAVs will enable brand-new transportation
functionalities, new collaborative driving architectures must be
developed to ensure the reliability and serviceability of CAVs-
based systems. In order to construct such architectures, and
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Fig. 1. DonkieTown, a low-cost scalable experimental platform for
autonomous cars. Here, a lemniscate-like road is depicted, showing
the Asinus Cars autonomously navigating while avoiding donkey-like
obstacles.

to explore more benefits of collaborative driving, numerous
experiments should be performed in the real world. Nowadays
using real-sized smart vehicles is still unfeasible, especially
for educational institutions in underdeveloped countries, like in
Latin America, hence there is the need to develop scalable and
affordable experimental platforms with mobile robots instead
of constructing a full-scale smart city testbed like in [4], which
costed 10 million USD and covers 32 acres.

Previously, some initiatives of platforms for education and
research on mobile robotics have been adopted with success,
such as [5], the open mobile robotics platform designed
and marketed for the Robotic Operating System (ROS) [6].
Focusing on Automated Vehicles, we can encounter some
recent projects [7]–[9], but most of them are too expensive to
scale up for some cooperative autonomous driving since they
use advanced sensors and high-performance computers. Taking
that into account, other works have appeared with simplified
mobile robot platforms, for example [10]–[12].

In [10] a fleet of 16 Cambridge Minicars operates in coop-
erative driving experiments and autonomous control strategies.
The Cambridge Minicars are low-cost mobile robot platforms
with Ackermann steering, each fits within a 75 × 81 × 197
mm box and costs $76.50 USD. The University of Delaware
Scaled Smart City [11] is a scale-size smart city with 1 : 25-
scale Ackermann-steering mobile robots, pretty much like the
Cambridge Minicar. Both use a central computer to drive each
car. The major difference between those two robots is that the
former uses no sensors and a Raspberry Pi Zero W as the
main onboard computer, while the latter includes an ultrasonic
sensor and a Raspberry Pi 3B+. The main concern about [10]
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and [11] is that they rely on costly commercial 3D motion
capture systems such as Vicon and OptiTrack, which most
Latin American universities cannot afford.

The Duckietown platform [12] is a well-known worldwide
initiative for AI and robotics education, its hardware is com-
prised of DuckieBots and DuckieTowns. Duckiebots are low-
cost differential-drive robots with multiple onboard sensors
and either a Raspberry Pi or NVIDIA Jetson Nano computer.
DuckieTowns are the urban environments: roads and the
signage that the robots use to navigate around. In DuckieTown,
instead of using an expensive 3D tracking system, Duckiebots
navigate independently by identifying simplified road patterns
and signage marked with Augmented Reality Tags. Also, they
can communicate maneuver intentions with LEDs like normal
vehicles do with turn signal lights.

In this work, it is presented an affordable platform (Fig. 1)
primarily conceived for education on robotics and autonomous
driving and additionally for exploring different possibilities
enabled by inter-vehicular communication. To do so:

1) a cheap 2D localization/tracking system has been imple-
mented instead of an expensive 3D motion capture system.
2) The Asinus car is introduced, functionally similar to
Duckiebots, but simplified to make them cheaper, while still
being capable of performing all navigation operations onboard,
contrasting with other cooperative driving platforms whose
driving algorithms are computed by an external processor.
3) An artificial neural network is added on to detect poten-
tial donkey-like pedestrians and to perform reactive obstacle
avoidance.
4) An inter-vehicle messaging protocol, based on international
standardization initiatives, has been implemented by software,
making DonkieTown the first scaled platform with such capa-
bility.

A video explaining the DonkieTown platform can be found
at https://youtu.be/ZRRlJkVQ5IM.

Besides the implementation of a messaging protocol, the
contribution of this work is the integration of multiple well-
known techniques into an affordable and scalable platform,
that not only could be used to teach the basics of mobile
robotics but also to rapidly validate real-time experiments of
sophisticated cooperative autonomous driving approaches.

The paper is organized as follows: in Section II, all elements
of the platform (localization, vehicles, base station, road, and
vehicular communication) are described; in Section III the
driving software stack is addressed, including lane following,
obstacle detection and avoidance, and the top layer behavioral
who facilitates the cooperative driving feature; in Section IV a
series of experimental results are analyzed. Finally, in Section
V concluding remarks are discussed.

II. THE DONKIETOWN PLATFORM

DonkieTown consists of one or more Differential-Drive
Robots (DDR) called Asinus cars, a base station, a localization
system, and a series of trusted techniques that easily allow
the implementation and validation of different strategies for
collaborative autonomous driving.

A. The Asinus car

To be aligned with the objective of building an affordable
platform, the so-called Asinus Cars (AC) (Fig.2) were de-
signed to limit the number of sensors and selecting low-cost
but capable materials, actuators, and computing devices while
aiming to build 1:10-scale compact cars.

Despite the fact that car-like robots using Ackermann Steer-
ing mimics real commercial cars, differential drive robots
(DDRs) are cheaper, easier to design, and their motion may
be limited by software to behave as car-like vehicles. This
limitation is accomplished by saturating its control inputs
taking into account a configurable minimum turning radius.
Being DDRs, the ACs use one front Pololu caster wheel with
3/4" metal ball (pololu item #: 955) and two Bringsmart GB12-
N20B micro metal brushed 6V DC gear motors with encoder,
each coupled with one HobbyPark plastic wheel with a rubber
tire. Wheel diameter and width are 60 mm and 26 mm each.

The chassis is a 0.15×0.27 m black acrylic sheet, structural
elements are mounting screws, acrylic sheets, and 3D printed
PLA plastic pieces; the sensor system is as simple as one RGB
camera employing a Sony IMX219 sensor and 120◦ FOV (field
of view) lens and the magnetic encoders that came fixed to
each motor, and the onboard computer is a Nvidia Jetson nano
2GB Developer Kit. The onboard computer is connected to a
Wireless Local Area Network (WLAN) via one TP-Link TL-
WN725N USB Wi-Fi adapter. The onboard computer is wired
to the RGB camera and one Arduino nano which controls the
motors’ spinning speed by means of the magnetic encoders
and one DRV8833, a dual H-bridge motor driver, controlled
by the Arduino with PWM (Pulse-Width Modulation). Note
that the use of the Arduino is optional, and it can be replaced
to use only the Jetson nano, but it allows an easier integration
with other sensors. Additionally, each AC includes one unique
ArUco Marker [13] for global localization, as explained later.
See Fig.2 for more details.

Finally, all electronic components are supplied by a Luckso
power bank featuring a 10,000 mAh battery (dedicating one
of its two ports to power the motors and the other for the
remaining electronic devices), and the total cost for each
vehicle was less than $200.00 USD, while the list-price of
a similar platform as the one in [12] is around $369.00 USD.

B. Base Station

A personal computer is used as Base Station for data
visualization, inter-vehicle communication management, and
to host a simulation environment. In order to allow data
sharing and direct data visualization, ROS is used in every
computer involved (i.e., upper camera’s computer, vehicles’
onboard computer, and Base Station). Although ROS Noetic
is the latest version of ROS and ROS2 solves most of the
problems that are not contemplated in ROS, ROS Melodic is
favored to keep compatibility with former robotics platforms
such as [7]. On the other hand, this base computer is used to
run a simulation environment using Gazebo. The simulator
was primarily developed to test beforehand the algorithms
presented in this work, and to evaluate the performance of

https://youtu.be/ZRRlJkVQ5IM


LARRALDE-ORTIZ et al.: DONKIETOWN: A LOW-COST EXPERIMENTAL TESTBED FOR RESEARCH 717

Fig. 2. The Asinus Car: A differential-drive robot with an ArUco
marker at the top and a stacked circuity system for pedestrian
detection and localization, state variables control, message production
and communication, and general onboard computing. The top marker
is used to compute vehicle’s relative pose for the global localization
function.

single-board computers (e.g., Jetson nano 2GB and Raspberry
pi 3B+) while running those algorithms.

C. Localization
Since both communication and decisions depend on prox-

imity, a reliable estimation of real-time absolute position is
required for each vehicle.

Real-size Intelligent Vehicles use Global Positioning System
(GPS) for global localization. In addition, several sensors
(such as Lidars, RGB-D cameras, radars, etc.) are used to get
their own and other agents’ relative positions within the road.
DonkieTown is a reduced and simplified world where roads
are known beforehand, to not only let cars navigate with maps
but also to estimate the global position of each car and the
relative position with respect to other agents, such as Donkie-
like pedestrians.

In contrast with a GPS, or expensive motion capture sys-
tems, the proposed localization system (Fig.3) requires an
upper camera and a fixed number of reference markers. The
upper camera is a static USB RGB (red, green, blue) camera
connected to an embedded computer (e.g., Raspberry Pi 3B+),
pointing towards the workspace; all the markers are ArUco
Fiducial Markers [14], with reference markers fixed to the
road and mobile markers fixed to each car. The work [15] has
a detailed explanation of how the ArUco library works and
how it can be implemented for mobile robot tracking.

As shown in Fig.3, let FRMi denote the coordinate frame
(also called coordinate system) of a reference marker, with
i ∈ Z+. Similarly, let FMMv be the coordinate frame of
the mobile marker attached to the vehicle v; FUC be the
coordinate frame of the upper camera, and FRD be the inertial
coordinate frame fixed to the center of the workspace. Thus,
HB

A ∈ SE(3) defines the homogeneous transformation from
any coordinate frame FA to any frame FB , where SE(3) is
the so-called Special Euclidean group in 3 dimensions [16].

Fig. 3. DonkieTown’s localization system. FRM1, FRM2 denote the
coordinate frame attached to some of the markers stuck to the road
(reference markers), while FMMv and FUC are for the coordinate
frames of a car’s marker (mobile marker) and the upper camera,
respectively. Global localization system may consist of one or several
upper cameras pointing towards different areas of the road’s surface.
Each upper camera is connected to a ground computer that processes
images to detect mobile markers. Asinus Cars post-process upper
camera’s outcome to estimate their absolute position.

The pose estimation computation of each of the markers is
decentralized by splitting the procedure as follows:

1) When a frame has been captured, the embedded computer
connected to the camera (1) broadcasts the result of ArUco’s
detectMarkers() function; and (2) computes and broadcasts
each HUC

RMi transformation.
2) The vehicle’s onboard computer periodically updates the

Kalman Filters (KF) [17] for tracking the position of the four
ordered corners of its mobile marker. If the marker is within
the set of detected markers, the data will be taken for the
next steps and will be used to correct the KF prediction,
otherwise, the rejected square closest to the prediction is taken
and used for filter correction. With the four corners’ position,
the transformation HUC

MMv is computed.
Since reference markers are fixed to the road, the transfor-

mation HRMi
RD is known. Hence, the transformation HMMv

RD is
calculated as follows:

HMMv
RD = HRMi

RD HUC
RMi

(
HUC

MMv

)−1
(1)

Although HMMv
RD includes both the 3D orientation and 3D

position of the mobile marker of vehicle v, every vehicle
is considered to drive only on the x − y plane. Therefore,
vehicle´s orientation θ ∈ S1 and absolute position coordinates
(x, y) ∈ R2 are respectively taken from the rotation and
translation parts of HMMv

RD .
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The computation of the translation vector of a homogeneous
transformation like HMMv

RD is straightforward, but the rotation
component is not that evident. It would be required to translate
the orientation part of the homogeneous transformation to a
set of angles and select the one which corresponds to the
vehicle heading (for a comprehensive analysis of rigid motion
in robotics, the reader is referred to [16]).

1) Corners Tracking: As stated before, 4 KFs are used
to estimate the corners coordinates of the ArUco markers in
the image space. Whenever a mobile marker is not found
at a given time, corners estimations are matched with the
rejected square corners that produce the minimum sum of
Euclidean distances, while corners order is kept by means of
the Hungarian Algorithm [17], [18].

A discrete state space model representation with uncertainty
and no control inputs is given as follows for the KF:

xk = Fxk−1 + ωk−1

zk = Hxk + νk
(2)

where F stands for the transition matrix, H is the measure-
ment matrix, xk is the state variable vector at step k, zk is
the measurement vector at step k as well, and ω ∼ N (0, Q)
and ν ∼ N (0, R) are the process and measurement noises,
respectively, with normal distribution and covariance matrices
Q and R. Considering the first-order kinematics

xi =
[
xi vxi yi vyi

]T
(3)

F =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (4)

where xi, yi ∈ R are the corner image coordinates at step
i ∈ N; vxi, vyi ∈ R are the corner velocities defined by

vxi =
xi − xi−1

∆t

vyi =
yi − yi−1

∆t

(5)

with ∆t ∈ R as the fixed time step.
The ArUco’s library returns the image coordinates (x, y) of

the four ordered corners for each detected marker, hence the
measurement matrix H is

H =

[
1 0 0 0
0 0 1 0

]
(6)

In order to speed up estimation, the process noise is treated
as independent between different state variables. In this case

Q =


q11 0 0 0
0 q22 0 0
0 0 q33 0
0 0 0 q44

 (7)

The same assumption is applied to the measurement uncer-
tainty matrix, i.e.

R =

[
r11 0
0 r22

]
(8)

D. Road Assembly

The road is built from multiple 0.6 × 0.6 m puzzle foam
mats with two lanes of 0.3 m width which lines are drawn by
2 cm width masking tape (see Fig. 1).

Different road topologies can be built easily by joining
straight, turn-left, turn-right, and intersection road pieces. For
example, an ellipsoid road, or a lemniscate-like road with an
intersection crosswalk as the one depicted in Fig. 1.

E. Inter-Vehicle Communication

Instead of an inter-vehicle communication protocol, Donkie-
Town implements an inter-vehicle message inspired by the
Cooperative Awareness Message (CAM) [19] and the De-
centralized Environmental Notification Message (DENM) [20]
from the European Telecommunications Standards Institute.

More precisely, DonkieTown’s inter-vehicle message con-
veys the vehicle’s absolute position, longitudinal speed, refer-
ence lane, driving direction (i.e., whether it is moving forward
or in reverse), heading angle, driving state (detailed in Sec. III),
maneuver intentions, identification number and message’s time
stamp. Messages are periodically produced and broadcasted by
Asinus Cars while the Base Station collects and redirects them
based on the following requirements:

• Point-to-point latency shall not exceed 0.1 s.
• To be considered as a message target, the distance from

the message producer to the message target shall not
exceed 3.0 m.

III. AUTONOMOUS DRIVING

The ACs’ autonomous driving function architecture (or the
decision-making architecture) is hierarchically decomposed
into three components: A plain behavioral layer, a motion
planning module, and a local feedback control system.

The behavioral layer is responsible for both selecting car’s
regulated speed and the most appropriate driving state at
any time based on the driving task and the surrounding
environment. Driving states are Finite State Machines (FSMs)
which govern the vehicle’s directions. All Asinus Cars are
loaded with the same FSM, but the FSM should be enlarged
if necessary when trying different use cases. Asinus Car’s base
FSM consists of four self-explanatory states: Lane Following,
Stop, Lane Change Request, and Lane Change Granted. With
these four states, each vehicle can start and finish a route with
regulated speed, overtake other vehicles and avoid collisions.

The motion planning module chooses one vector field (e.g.,
Fig. 4) from a set of stored vector fields based on the AC state
history. Let us say, the vehicle v is following lane A. Vehicle
v’s FSM is in the lane following state and the current vector
field is centered in the lane A. Inside these vector fields, a
displacement vector is assigned to each point of the workspace.
Displacement vectors are calculated with a fixed step size and
direct the vehicle from its current position to the next position
the vehicle should reach.

In order to execute the path described by the current
displacement vector, a local feedback control system is used
to determine appropriate speeds for each wheel and correct
tracking errors while two equal but independent feedback
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Fig. 4. Example of a vector field centered with one lane of an
lemiscate-like road. Vectors direct vehicles from their current position
to the position they should reach.

control algorithms are used to regulate the speed of each
wheel.

To introduce the feedback control algorithm for the path
following, let us define an eccentric point (p, q) as depicted
in Fig. 5. µ is the eccentricity of (p, q) over the main axis
of a Differential-Drive robot, thus, assuming from a unicycle
kinematic model, the first-order kinematics of that very point
could be expressed as follows [21][

ṗ
q̇

]
=

[
cos θ −µ sin θ
sin θ µ cos θ

] [
s
ω

]
(9)

where θ ∈ S1 is the same vehicle’s heading as stated in
Subsection II-C, and s ∈ R, ω ∈ R represent respectively
the longitudinal and angular velocities of the DDR.

Given the model presented in Eq. (9), the suggested feed-
back control system is[

s
ω

]
=

[
cos θ sin θ

− 1
µ sin θ 1

µ cos θ

] [
ṗ∗ − kp1(p− p∗)
q̇∗ − kp2(q − q∗)

]
(10)

Here the superscript ∗ denotes the desired value of a given
variable at that time, e.g., p∗ denotes the desired value of
the coordinate p while p itself is its actual current value. In
addition, both the symbols ṗ∗ and q̇∗ denote the time derivative
of the coordinates of the desired path. Finally, kp1, kp2 ∈ R+

are positive constant control coefficients that are adjusted
empirically.

The coordinates (p, q) and the orientation θ are directly
taken from the outcome of our localization system, even
though the center of the mobile marker may not coincide with
the main axis of the Asinus Cars, the orientation θ is the same
for both the mobile marker and the Asinus Car.

Fig. 5. Eccentric point over the main axis of a Differential-Drive
Robot. Taking an eccentric point rather than taking the vehicle’s axis
midpoint for path following control leverages the usage of the non-
singular feedback control system shown in Eq. (10).

The actual actuator inputs are evaluated from Eq. (10),
considering the DDR geometry

s =
R

2
(v1 + v2)

ω =
R

L
(v2 − v1)

(11)

where R denotes the radius of each wheel, L is the longitude
of the main axis or the distance between both wheels, and
v1 and v2 are the angular speed of the left and right wheels,
respectively.

Two independent PI (proportional-integral) controllers are
used to compute the correspondent duty cycle of a PWM signal
to regulate both angular speeds v1 and v2. Here, v1 and v2
play the role of reference values, while measurements from the
wheel encoders, mentioned in Subsection II-A, are the actual
current angular speeds. As done in Eq. (10), proportional and
integral gains are tuned empirically.

A. Obstacle Detection

Lane change must be performed to avoid collisions with
other vehicles and obstacles such as pedestrians. In Donki-
eTown, each vehicle conveys enough information to allow
nearby vehicles to avoid vehicular collisions, however, pedes-
trians are passive obstacles that are not connected to anything.
DonkieTown’s pedestrians are donkey-like teddy bears (see
Fig. 2) and any of the vehicles can detect and determine if
there is a potential collision involving either pedestrians or
other vehicles.

ACs are able to detect pedestrians via their frontal RGB
cameras, and Single-Shot Detectors (SSD) [22] with a Mo-
bileNetv1 [23] Backbone Artificial Neural Network, initially
trained with the PASCAL VOC Dataset [24] and retrained
with a manually collected dataset of donkey-like teddy bears,
to leverage transfer learning.

The Artificial Neural Network processes the video stream
captured from the onboard camera and returns a bounding box
for each detected pedestrian. Let’s say that, in a given moment,
one AC’s camera captures a frame like the one in Fig. 6, which
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Fig. 6. Example of a video frame captured by an AC’s onboard
camera and post-processed with DonkieNet: a Mobilenetv1-SSD
neural network pre-trained with an open dataset and re-trained with
an in-house hand-labeled dataset of donkey-like teddy bears.

is a 1280 × 720 px RGB video frame. The Artificial Neural
Network will return a collection of (xc, yc, w, h) per detected
donkey-like teddy bears, where (xc, yc) is for the bounding
box center while w and h denotes width and height of the
same bounding box.

To compute the global position of each detected donkey-
like pedestrian, distortion effects must be corrected. After
that, the pinhole camera model is used to transform image
coordinates into global coordinates. Let’s say that a point
lying in the workspace is located at (X,Y, Z), the capturing
camera’s global pose is represented with the transformation
HC, the camera’s intrinsic matrix is denoted as K, and (u, v)
corresponds to the image coordinates of the pixel where that
point is in the image. Hence, the relation between a point in
the 3D world and its image coordinate is given by

[
p̃
]
= K

1 0 0 0
0 1 0 0
0 0 1 0

H−1
C


X
Y
Z
1

 (12)

where p̃ = (ũ, ṽ, w̃) is the homogeneous coordinate of the
world point P = (X,Y, Z) in pixel coordinates. The non-
homogeneous image-plane pixel coordinates are derived from
their homogeneous counterpart as follows:

u =
ũ

w̃
, v =

ṽ

w̃
(13)

When considering that the midpoint of the lower edge of
a bounding box corresponds to the base of a donkey-like
teddy bear which is on the road surface, the third workspace
coordinate (Z), corresponding to the height, turns out to be
0. At a point in time, HC is constant and reproduced from
the vehicle’s current absolute pose and the relative pose of
the camera with respect to the vehicle’s frame. Therefore, Eq.
(12) leads to:[

C11 − C31u C12 − C32u
C21 − C31v C22 − C32v

] [
X
Y

]
=

[
C34u− C14

C34v − C24

]
(14)

where, C denotes the projection matrix or the camera
calibration matrix [25].

C = K

1 0 0 0
0 1 0 0
0 0 1 0

H−1
C

Finally, it is possible to calculate the global position
(X,Y, 0) of each detected pedestrian when solving Eq. (14).
Since the map is already known and lanes are already repre-
sented in memory, (X,Y ) coordinates are used to determine
whether a pedestrian is blocking the road by simply getting
the distance from (X,Y ) to the road lanes.

IV. EXPERIMENTAL RESULTS

In order to assess the usability of the DonkieTown testbed,
two cases of study for autonomous driving were implemented
and evaluated. For the first test, one AC was used for a lane-
following task, without obstacles on the road. Two independent
upper cameras covered half of the workspace, as shown in
Fig.1. Both upper cameras had been configured to capture
1280 × 720 px RGB video at 30 FPS (frames per second).
Fig. 7 depicts the path constructed from raw data (i.e., pose
delivered by the localization system) alongside the path drawn
with the outcome of the Kalman Filter. Any pose returned
by the localization system representing a displacement greater
than two standard-deviations of a series formed with the last
10 measurements is considered an aberrant result and ignored
by the KF. The second experiment consists of a cooperative
autonomous driving mission, where three AC travel through
the road in a convoy formation. In the beginning, each car
identifies its leading car (the nearest car in front), except for
the front car, which acts as the convoy leader. The convoy
leader is the only one with the DonkieNet enabled to detect
Donkie-like pedestrians, and the only one allowed to change
its driving state. When the convoy leader determines that the
current lane is blocked, it will change its driving state to
perform a lane change if possible, otherwise, it will change
its driving state to stop. The Convoy leader driving state is
periodically propagated, via inter-vehicle messages, from the
convoy leader to the convoy tail through each following car.
More information from inter-vehicle messages is taken into
account to keep the convoy shape.

Fig. 8 shows the paths drawn by the three ACs employed in
the convoy test, and the estimation of the absolute position of
the pedestrians detected by the convoy leader, depicted as gray
dots. Data was recorded after the convoy traveled a few laps
and upper cameras were configured as in the lane following
task. The AC was able to successfully travel the lemniscate
shape road in an autonomous convoy formation while avoiding
the obstacles. These experiments demonstrate the capability of
the DonkieTown and the AC to easily implement and evaluate
the performance of intelligent cars in autonomous missions. A
video showing some experiments is provided at https://youtu.
be/ZRRlJkVQ5IM.

V. CONCLUDING REMARKS

In this work, we have presented “DonkieTown", a non-
expensive and scalable platform for education and research
on autonomous cars and extensible to automated multi-car

https://youtu.be/ZRRlJkVQ5IM
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Fig. 7. Experimental results of a single AC autonomously following
a road lane (left). Path followed by the AC (right) as estimated by
the ArUco markers (gray dots) and the KF (red line). The KF filters
out aberrant measurements and provides a good pose estimate in real
time.

scenarios. Our platform is particularly attractive for low-
budget robotics labs since it does not require expensive motion
capture infrastructure and our Differential-Drive Robot allows
us to considerably reduce the cost of the platform, especially
as the number of agents increases. "DonkieTown" is released
as open-source software, becoming one of the very few openly
available platforms that already implements inter-vehicle mes-
saging. We have proposed a driving architecture which demon-
strated to be sufficient for egocentric autonomous tasks such as
lane following and obstacle avoidance, and demonstrated its
applicability for cooperative autonomous driving in convoys
by using inter-vehicle communication.

Hitherto, DonkieTown has been used in some workshops
with the participation of undergraduate engineering students,
graduate students, teachers, entrepreneurs and hobbyists from
around Mexico. Any enthusiast with coding experience is a
potential user since we have developed tools and software
layers to simplify its usage. Furthermore, basic-education stu-

Fig. 8. Three-car convoy with maneuver intentions communication,
avoiding a donkey-like pedestrian (left). Red, green, and blue lines
represent the estimated path produced by the AC 9, 10, and 11,
respectively; gray points are the estimated position of donkey-like
obstacles detected by the convoy leader (right). No donkeys were
harmed during the experiments.

dents could learn to program using DonkieTown and graduate
students may develop from classic perception and planning
algorithms up to light AI algorithms.

All materials are open source and available at our GitHub
repository: https://github.com/L4rralde/DonkieTown. We seek
for other people in the robotics community in Latin America to
contribute to its enhancement and growth. As future work, we
plan to use our platform for testing more interesting multi-car
scenarios, which include intelligent road intersections, multi-
lane convoys, and cooperative overtaking. Also, we aim at
proposing more sophisticated autonomous driving algorithms,
and testing state-of-the-art strategies for control, motion plan-
ning, obstacle avoidance, reinforcement learning, cooperative
driving, etc.
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