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A Travelling Salesman Problem Approach to
Efficiently Navigate Crop Row Fields with a

Car-Like Robot
Ismael Ait , Ernesto Kofman , and Taihú Pire

Abstract—In recent years, interest in the use of mobile robots
in the agricultural industry has increased, both to address labor
shortages in rural areas and to increase food production in a
more sustainable way. In order to have an efficient navigation
system to cover long crop row fields, a path planner algorithm
must consider maneuvering restrictions of the targeted robot.
Most state-of-the-art works in agricultural navigation systems
are intended for robots with a high degree of maneuverability
that can typically make in-place turnings. This work aims to fill
the gap in terms of the development of an efficient navigation
system for car-like robots with limited turning radius in crop
row fields. For this, we combine the global path planner A*
and the local trajectory planner Timed Elastic Band (TEB).
Additionally, we state the problem of finding an optimal path
that covers the entire field as a Travelling Salesman Problem
(TSP) that is based on the different turning maneuvers the robot
can perform at field headlands. The solution of the TSP results
in a time efficient coverage strategy that aligns with the robot’s
kinematics. Experiments performed in the Gazebo simulation
environment show a reduction in field completion times of up
to 20%, compared to trivial coverage paths. On the other hand,
deviation of the robot with respect to the center of the field
furrows was in all cases less than 10 cm, which proves that the
entire system operates with sufficient accuracy to avoid damaging
the crops.

Index Terms—Autonomous Navigation, Robot Simulation, Pre-
cision Agriculture, Agricultural Robotics, Travelling Salesman
Problem.

I. INTRODUCTION

P recision agriculture is constantly changing the way farm-
ers all over the world operate fields. It promotes the use of

new technologies to combat labor shortages in rural areas and
increase food production in a more sustainable way, a major
concern as the world population continues to grow [1]–[3].
The applications are very diverse and involve multiple areas
like artificial intelligence [4], deep learning [5], [6], IoT [7],
Unmanned Aerial Vehicles (UAV) [8], and Unmanned Ground
Vehicles (UGV) [9], [10].

Agrochemicals have been used for years by farmers as weed
and insect regulators to increase yields. However, chemical
residues negatively impact human health through environmen-
tal and food contamination [11]–[13]. It is in this context
that the soybean weeding robot shown in Figure 1 has been
developed by CIFASIS (French Argentine International Cen-
ter for Information and Systems Sciences, CONICET-UNR,

Ismael Ait is with FCEIA, National University of Rosario, Argentina e-
mail:ismaelaitd@gmail.com.
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Argentina), conceived as an environmentally friendly and
low-cost alternative for weed control. The robot is designed
to move along the crop rows in a completely autonomous
way, while detecting through computer vision, the presence
of weeds and applying herbicides in a localized way with
precision sprayers, thus preventing damage to the environment
and to people [14].

(a) Actual prototype (b) Gazebo simulated world

Fig. 1. Soybean weeding robot developed by CIFASIS.

Most of today’s applications of mobile robots in agriculture
are intended for vehicles with a high degree of maneuverability
that can typically make in-place turnings. This work aims
to fill the gap in terms of the development of an efficient
navigation system for car-like robots with limited turning
radius in crop row fields. The path planning problem consists
of determining an obstacle-free geometric path from an initial
to a goal point, while trajectory planning algorithms take a
given geometric path and endow it with time information,
involving not only the robot’s kinematics but also its dynamics.
Much work can be found in the robotic literature dealing with
these problems. Path planning algorithms are usually divided
according to the methodologies used to generate the geometric
path, namely: roadmap techniques based on the reduction
of the configuration space to a set of one-dimensional path
to search, cell decomposition algorithms [15], and artificial
potential methods [16]. Roadmap techniques include works
using search algorithm like Dijkstra [17] or A* [18], rapidly
exploring random trees (RRT) [19], probabilistic roadmap
methods (PRM) [20], and sampling-based methods [21]. On
the other hand, the trajectory planning deals with the obstacle
avoidance in dynamic environments based on the feedback in-
formation obtained from the robot’s sensors. Those algorithms
modify the trajectory of the robot in real time, and include
methods like Virtual Force Field (VFF) [22], Vector Field
Histogram (VFH) [23], Dynamic Window Approach [24],
and Elastic Band concept [25]. Our work uses the traditional
global path planner A* in combination with the local trajectory
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planner Timed Elastic Band (TEB) [26], [27].
Most of the agricultural robots found in the literature consist

of vehicles with the ability to make zero turning radius
rotations. Some of them are made up of four steerable wheels
[28]–[30], and others use a skid-steer configuration [31]–[34].
The path planning methods used include state machine-based
algorithms, pure pursuit algorithms or just PID controllers to
keep the robot centered between crops, but all are custom im-
plementations and none take into account unexpected obstacle
avoidance. The few works found that use car-like robots have
an application to orchards rather than crop fields, and they also
use custom-developed local planner methods [35], [36].

In this work we are looking to take advantage of the ROS
navigation stack and its standard libraries. There are some
relevant papers studying planners available in ROS but in
other non-agricultural domains. In [37], a great comparison
of the most commonly used local planners in ROS is pro-
vided. The TEB planner stands out as the one that generates
smoother trajectories during obstacle avoidance, resulting in
shorter execution times. Likewise, [38] performs an exhaustive
analysis of both the global and local planners available in
ROS. Regarding global planners, the results indicate that A*
and Dijkstra generate the shortest but not the smoothest paths.
However, as these paths are adjusted later by the local planner
in a two-planner model, it is concluded that smoothness should
not be a problem. For local planners, the effectiveness and
robustness of the TEB is again highlighted. In addition, [39]
explores the use of Dijkstra’s global planner together with
the local planner TEB with a car-like vehicle autonomously
driving around a university campus.

Most of the agricultural robot prototypes use custom-built
planners that divide the problem into two stages: one that keeps
the robot in the middle of the crop rows as it drives in a
straight line, and another stage that handles the turns at the
headlands. However, these methods usually do not take into
account the possibility of avoiding unexpected obstacles and
are not suitable for non-holonomic robots with limited turning
radius.

We will use the Gazebo simulator [40] to develop a vir-
tual model of the weeding robot and different layouts of
agricultural fields. This will allows us to safely experiment
with multiple approaches, which in real environments would
involve high costs in terms of logistics and implementation.
For the navigation system, we will use the ROS framework
[41] and the approach of two (global and local) planners [42].
All source code for the simulation and navigation system,
along with the experiments and data analysis performed, is
publicly available for the benefit of the Agricultural Robotics
community [43].

The contribution of this work can be summarized as follow:

• Creation of a virtual model of the weeding robot and
multiple soybean fields in the Gazebo simulator.

• Development of a fully functional navigation system,
properly designed to work with the Ackermann steering
mechanism present in the robot, which uses the ROS
navigation stack, the A* global path planner and the TEB
local trajectory planner.

• Analysis of the possible turning maneuvers of the robot,
and the subsequent generation of an efficient coverage
route for soybean fields arranged in rows. For this, we
define the time-optimal coverage problem in terms of the
Travelling Salesman Problem.

II. MATERIALS AND METHODS

This work makes extensive use of the ROS platform and
the Gazebo simulator. The targeted robot consists of a four-
wheeled car-like vehicle specially designed for performing
autonomous weed control in soybean fields. It has multiple
sensors available for perception and navigation, such as the
motor encoders, a stereo camera, an IMU, and a GPS-RTK.
Power is provided by four batteries that are charged with solar
panels located at the top of the vehicle.

The field consists of soybean crops arranged along mul-
tiple parallel rows, which have to be covered by the robot’s
sprayers. We aim to prevent the robot from crushing the plants,
so its navigation will consist of driving in a straight line
through the crop rows with its wheels in the furrows that have
no plants. On each run along the field, the robot will cover a
certain number of crop rows with its sprayers, which is known
as a swath. When it reaches the end of a swath, it must perform
a turning maneuver at the field headland to move to the next
swath to be covered.

We divide the problem into two main parts. On one hand,
we propose a method to determine an efficient way to cover
the entire field by formulating the problem in terms of TSP.
For this, we first collect the execution times of the different
possible turning maneuvers for the targeted robot, then solve
the resulting TSP in an offline manner, to finally use the
obtained swath ordering as input to the navigation system.
These steps are depicted in Figure 2. On the other hand, we
develop a navigation system that allows the robot to move
autonomously between two waypoints in the field, avoiding the
driving over the crops. This last part of the system will run on
an on-board computer in real-time while the robot navigates
through the field.

Start

End

Model car-like robot and field environment

Run headland turning maneuver tests and 
collect execution times

Build TSP weighted graph with turning times

Search optimal swath sequence using 
branch and bound algorithm

Generate waypoints and send to the navigation system

Fig. 2. Flow chart of the different steps involved.
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A. Simulation Setup

An XML file in URDF (Unified Robot Description Format)
is used to create the virtual model of the robot. This format
allows to express the robot structure as a tree of links and
joints: where links represent rigid parts of the robot, and
joints represent connections between them. For each part,
physical properties (like mass, center of mass, moment of
inertia and friction coefficients) and visual properties are
described. As shown in Figure 3, two virtual models of the
weeding robot are developed: a visual model with 3D meshes
exported from SolidWorks and a simplified collision model.
The collision model is used by the physics engine to compute
the interactions between the robot and the environment, while
the visual model just provides the looks to the simulation. The
use of a simplified collision model reduces the computational
complexity of running the simulation.

(a) Collision model (b) Visual model

Fig. 3. Collision model is used by the physics engine, while visual model
just provides a realistic rendering of the scene.

These car-like vehicles have an Ackermann steering mech-
anism that prevents the wheels from sliding sideways when
turning. The mechanism uses an arrangement of four-bar
linkage to ensure the correct steering angle for the front
wheels, making the perpendicular lines to both steered wheels
intersect at one point known as its center of rotation (CoR).
Turning radius of the vehicle ρ will be determined by the
distance between CoR and the center of the rear axle. To
simplify this model, an imaginary wheel at the center of the
front axle with steering angle φ is envisioned. Then, using
simple trigonometry we can obtain the turning radius with
equation (1):

ρ =
L

tan (φ)
, (1)

where L denotes the wheelbase of the robot. The actual angles
of the front left and right wheels, φL and φR, are determined
using the Ackermann equations shown in (2):

φL =arctan

(
L

ρ−T
2

)
, φR =arctan

(
L

ρ+T
2

)
, (2)

where T denotes the track width of the robot.
The minimum and maximum values of the steering angle

limit the vehicle turning radius. For the targeted weeding robot,
the minimum and maximum steering angles are by design
±33◦. Replacing this value in equation (1) gives a minimum
turning radius of approximately 2.4m.

Since it is not possible to define a closed loop of four links
with URDF, we emulate the Ackermann steering geometry
with a driver as shown in the diagram of Figure 4. The

navigation component provides the linear and angular velocity
controls (v, w). Firstly, these commands are converted to
an angular velocity ω for the rear wheel and an angular
position φ for the direction of the front imaginary wheel. After
that, another conversion is performed using the Ackermann
geometry equations (2) to obtain the left and right wheel
steering angles.

Navigation Controller Driver Gazebo

Fig. 4. Control commands received from the navigation system, adapted for
a car-like vehicle in the Gazebo simulator.

B. Navigation Between Waypoints

A waypoint is generated at the beginning and end of each
swath in the order they should be visited, as shown in Figure
5a. The robot must be able to plan a path to move from one
waypoint to another while avoiding driving over the crops.
The component responsible for doing this, is divided into a
global planner that creates a path with the prior knowledge of
the environment, and a local planner that fine-tunes the path
taking into account the robot’s maneuverability constraints and
unexpected obstacles.

For the global planner, we use the well-known A* algo-
rithm. As input for this planner we provide a static map
depicting the information known in advance about the field,
consisting of the dimensions and layout of each crop row.
For the local planner we use the TEB (Timed Elastic Band)
method, described in [27]. This planner makes adjustments
to the global path in order to adapt it to the dynamic and
kinematic constraints of the robot. It creates a series of inter-
mediate poses of the form pi = (xi, yi, θi) that the robot must
follow and then generates the commands of linear velocity
v and angular velocity w that will be sent to the robot’s
controller. This planner uses a map of the robot’s surroundings
that is built and updated online with the information obtained
from the sensors of the robot. From the stereo camera data,
a point cloud is generated and used to detect the crop rows,
and other obstacles that may exist in the field. Since there will
be two crop rows crossing the robot footprint when it drives
along the field, we apply a filter to the point cloud to clear
the points that can pass under the robot. More precisely, the
points removed are those located below the robot’s chassis,
up to a height of 50 cm, and within the robot’s wheel width,
approximately 1m. The local map is then built from this
filtered point cloud and the two crop rows under the robot
are not considered as obstacles.

The Figures 5b and 5c show the paths generated by the
global and local planners when the robot is driving between
crops and when it is maneuvering to the next swath, respec-
tively. The region of the environment that represents the local



646 IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 5, MAY 2023

(a) (b) (c)

Fig. 5. Navigation system steps captured from RViz. (a) Field showing crop rows, swaths made up of 4 rows and waypoints with purple arrows. (b) Shows
navigation between crop rows along the field and (c) shows a turning maneuver at headland. Global and local paths are depicted by a green line and by red
arrows, respectively.

map is constantly updating as the robot moves through the
environment, a technique known as rolling window.

C. Field Coverage

For field weeding to be successful, by the time the robot
completes its route throughout the entire field, the sprayers
should have passed over each of the crop rows at least once.
To achieve this, we first divide the field into disjunct swaths
(not sharing rows) and number them from left to right, in order
to be able to identify them easily, as it is shown in Figure
5a. Then we focus on the problem of determining the most
convenient order in which to travel these swaths.

The trivial swath sequence consist of covering the swaths
in order, starting from the leftmost and continuing to the
immediately next to the right until the rightmost swath. Since
the robot has a minimum turning radius greater than the
distance between two consecutive swaths, a turn to an adjacent
swath is not particularly time efficient. In order to get better
sequences, we need to consider turns to farther swaths and
analyze the time the robot will need to perform each of them.
The works [44], [45] identify three main different turning
maneuvers, as shown in Figure 6.

(a) T -turn (b) Ω-turn (c) Π-turn

Fig. 6. Turning types. For T -turns the robot must have reverse. For Ω and Π-
turns the robot always drives forward. To make a Π-turn the distance between
the centers of initial and target swaths must be at least twice the minimum
turning radius.

Every crop row, comprising the sowing area and half a
furrow on each side, is 0.52m wide. This means that a swath
of 4 crop rows is 2.08m wide. Considering that the robot’s
minimum turning radius is 2.4m, a Π-turn can only be made
by jumping at least 3 or more swaths. For maneuvers of 1 or 2
swath jumps, a T or Ω-turn should be used. From now on, we
will represent a turning maneuver with the letter corresponding

to its type (i.e. T , Ω or Π) followed by a subscript indicating
the number of swath jumps. We measure the time the robot
takes to perform all possible turns, in order to determine how
efficient each one is. To find the optimal swath sequence
that minimizes the time the robot spends at field headlands,
we build a graph G = (V,E) where the set of vertices V
represents the swaths and the set of edges E represents the
different turning maneuvers between swaths. This graph has
the following characteristics:

• Complete, since the robot can go from one swath to any
other with a turning maneuver at the headland.

• Weighted, with a weight or cost proportional to the time
the robot needs to go from one swath to another.

• Undirected, since the time needed to jump from one
swath to another depends only on the distance between
them. It does not matter whether the target swath is at
right or left of the initial one.

The objective now is to find the minimum cost path that tra-
verses all the nodes in the graph, without visiting a node more
than once. This problem is equivalent to the classic Travelling
Salesman Problem [46]. TSP is an NP-hard problem, which
implies that the computational cost required to solve it will
increase dramatically with the size of the problem. In Figure
7 we can see, as an example, the resulting graph for a 4-swath
field. One optimal solution is the sequence ⟨2, 4, 1, 3⟩, which
consists of two T2 turns and one Π3 turn. This sequence is
more efficient than the trivial sequence ⟨1, 2, 3, 4⟩, that has all
T1 turns.

start end

(a)

start end

(b) (c)

Fig. 7. Coverage of a 4-swath field. Figure (a) shows the trivial sequence,
while (b) shows an optimized one obtained after solving the TSP represented
by graph (c).
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D. Final Navigation Framework

The diagram in Figure 8 summarizes the entire navigation
and simulation system for the weeding robot. Starting from
the bottom left, the waypoint server node is in charge of
generating a series of ordered waypoints that split the field
into disjoint swaths. These waypoints are fetched in order by
the goal publisher node which publishes them one at a time
using the ROS action protocol. Each time the robot reaches a
waypoint within a configurable proximity, the goal is replaced
by the next waypoint.

Then, the global planner node generates a collision-free
path to the next goal using the A* algorithm, but with-
out taking into account the robot’s dimensions and kine-
matic constraints. To perform this, it receives through the
global costmap and map server nodes a static global map
constructed from a PGM image with the previously known
information about the field (i.e. its dimensions and layout of
the crop rows). On the other hand, it receives the current
location of the robot through the localization node, which in
turn gets the information directly from the simulator.

Next, the path generated by the global planner is taken by
the local planner node, which makes the necessary adjust-
ments to adapt it to the robot’s maneuverability capabilities.
This local planner also receives the robot’s location through
the localization node, but unlike the global one, it uses a map
reduced to the robot’s surroundings and updated online by
the robot’s sensors. The trajectory generated by this node is
converted to linear and angular velocity commands for the
robot chassis, and the commands are sent to the Ackermann
controller component.

Subsequently, the ackermann steering controller converts
these commands to rear wheel rotation speeds and front wheel
steering positions, to be sent to the Gazebo simulator through
the Transmission and the Hardware Interface components.
Meanwhile, the simulator provides the state of each part of
the robot through the State Transmission component to the
joint state publisher node, that publishes the data in a topic
to be used by the ROS visualization tool RViz.

III. RESULTS AND DISCUSSION

Different experiments were designed to evaluate the accu-
racy, robustness and efficiency of the developed navigation
system using the simulation environment. All trajectories
generated were evaluated offline with data recorded into bag
files during the execution of the experiments. The hardware
used for running the experiments corresponds to an Intel®

Core™ i7-1065G7 1.30GHz quadcore computer, 8GB RAM
and Nvidia GeForce MX230 graphics card.

A. Turn type Evaluation

The robot will not be able to perform a Π-turn towards a
swath that is less than 3 swaths away. For jumps of 1 and 2
swaths it should perform a turn of type T or Ω. To evaluate
its performance, 8 different turns are taken into account. For
each turn, 30 trials were run with the simulated weeding robot
and path length and duration data were collected. Figure 9a
displays one of the trajectories performed by the robot for each

TABLE I
MEDIAN LENGTH, DURATION AND SPEED BY TURN TYPE.

Turn type Length (m) Duration (s) Speed (m/s)
T1 8,941 20,730 0,437
T2 9,119 19,475 0,468
Ω1 16,303 25,108 0,648
Ω2 13,367 20,733 0,642
Π3 9,667 14,093 0,687
Π4 11,716 16,307 0,718
Π5 14,010 19,425 0,725
Π6 16,149 22,036 0,735

of the turns analyzed and the boxplots in Figure 9b reveal the
obtained results in terms of the time required to perform each
maneuver. Time variations within the same maneuver come
from noise in sensors and actuators incorporated in the Gazebo
simulation, that mimics the real situation. These experiments
must be corroborated in future work with field tests.

If only the length of each turning maneuver is considered,
we might think that T -turns are the most efficient, but if we
analyze the duration data we can see that turns Π3 and Π4

perform considerably better than the previous ones. It is only
after turn Π4 that we obtain a time duration similar to turn
T2. This implies that sequences with more 3 and 4 swath
jumps will be more efficient than the trivial sequence with
only 1-swath jumps. Table I summarizes the median values
for the different turns in terms of length, duration and speed.
The duration column values will be used as the costs of the
weighted TSP graph presented in the previous section. The
cost assigned to the edge (v, w) will correspond to the time the
robot needs to make a jump of |v−w| swaths. For the case of
1 and 2 swath jumps, T -turns are chosen, since they are more
efficient than Ω-turns and the targeted robot can perform them
due to its reverse driving capability. For jumps of 3, 4, 5 and
6 swaths, the corresponding Π-turns are used. And for jumps
of more than 6 swaths, the time of the Π6 turn is used, as a
lower bound to the real cost. Then, the problem of finding the
sequence that minimizes the time at the headlands is reduced
to solving the TSP problem for that graph.

B. Optimal Swath Sequence

In this work, we tested three exact algorithms to solve the
TSP problem. The most direct solution for the TSP problem
is to try all possible sequences and see which one has the
minimum cost (i.e. brute-force search). Let n be the number
of swaths in the field, the time complexity for this approach
is O(n!). As a result, it was only possible to compute the
solution for a field of up to 12 swaths using the brute-force
algorithm with the available hardware.

A better approach to find an exact solution to this prob-
lem is by using the dynamic programming technique, which
eliminates the recalculation time for optimal solutions of sub-
problems. The algorithm for solving the TSP problem using
this approach is named Bellman-Held-Karp after its authors
and has a computational complexity of O

(
n22n

)
. Using this

algorithm, it was possible to find the optimal solution for fields
of up to 23 swaths. In this case the limitation was the memory
utilization of the algorithm rather than the execution time.
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Fig. 8. Summarizing diagram showing the interaction between ROS nodes and Gazebo components.
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Fig. 9. Turn type evaluation. (a) Shows trajectories made for the different turning maneuvers. The swath number is displayed at the top. Each swath has a
width of 2.08m. Boxplots (b) compare the execution times after 30 trials.

Finally, we tested the branch and bound approach, which
performs an exploration of the search space represented by a
tree. This technique systematically explores each branch of the
tree and saves time by not continuing the search along paths
that are detected as impossible to lead to an optimal solution.
The theoretical worst-case complexity for this algorithm is the
same as that of brute force. However, for this particular use
case it turns out to be the most efficient of the three algorithms,
being able to solve fields of up to 35 swaths. Basically, because
branches with partial solutions that already have several low-
performing turns can be pruned quite early.

The Table II shows the results obtained with the branch
and bound method for fields of up to 35 swaths. For a 15-
swath field we see that there is an optimal sequence that

uses only turns of type Π3 and Π4, so the entire path can
be performed without using reverse driving. For fields with
a number of swaths greater than 15, we see that the optimal
sequence obtained solving the TSP follows a pattern that uses
almost all Π3-turns except for only two turns that are of type
T , one at the right end and one at the left end of the field. An
example of this pattern can be seen in Figure 10a. We find that
the pattern can be extended to fields of any number of swaths
as follows. The robot starts at a swath near the left end of the
field and makes Π3-turns until the right end. Then, it makes
a T -turn and returns to the left end again making Π3-turns.
When it reaches this other end, it makes a second T -turn and
returns to the right end making Π3-turns once again. In each
travel between the left and right ends of the field, the robot
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TABLE II
RESULTS OF THE OPTIMAL SWATH SEQUENCE SEARCH.

# Swaths # Turns Total Average Time
1 2 3 4 Time (s) per Turn (s)

4 2 1 53,043 17,681
5 1 2 1 65,223 16,305
6 3 2 74,893 14,978
7 4 2 88,986 14,831
8 5 2 103,079 14,725
9 1 6 1 121,595 15,199

10 2 7 137,601 15,289
11 2 8 151,694 15,169
12 1 8 2 166,088 15,098
13 8 4 177,972 14,831
14 9 4 192,065 14,774
15 10 4 206,158 14,725
16 2 13 222,159 14,810
17 2 14 236,252 14,765
18 1 1 15 251,600 14,800
19 2 16 264,438 14,691
20 2 17 278,531 14,659
21 1 1 18 293,879 14,693
22 2 19 306,717 14,605
23 2 20 320,810 14,582
24 1 1 21 336,158 14,615
25 2 22 348,996 14,541
26 2 23 363,089 14,523
27 1 1 24 378,437 14,555
28 2 25 391,275 14,491
29 2 26 405,368 14,477
30 1 1 27 420,716 14,507
31 2 28 433,554 14,451
32 2 29 447,647 14,440
33 1 1 30 462,995 14,468
34 2 31 475,833 14,419
35 2 32 489,926 14,409

will be covering all the swaths which dividing by 3 result
in the same reminder (modulus operation). Given n the total
number of swaths in the field:

• If n mod 3 = 0. Start at swath 1. Visit all swaths s such
that s mod 3 = 1. Make a T2-turn from n− 2 to n. Visit
all swaths s such that s mod 3 = 0. Make a T1-turn from
3 to 2. And visit all swaths s such that s mod 3 = 2.

• If n mod 3 = 1. Start at swath 2. Visit all swaths s such
that s mod 3 = 2. Make a T2-turn from n− 2 to n. Visit
all swaths s such that s mod 3 = 1. Make a T2-turn from
1 to 3. And visit all swaths s such that s mod 3 = 0.

• If n mod 3 = 2. Start at swath 2. Visit all swaths s such
that s mod 3 = 2. Make a T2-turn from n to n− 2. Visit
all swaths s such that s mod 3 = 0. Make a T2-turn from
3 to 1. And visit all swaths s such that s mod 3 = 1.

C. Case Study: 15-Swath Field

We chosen a field composed of 15 swaths and tested the
coverage with the simulator using 3 different sequences. First
of all, we tried the trivial sequence which the robot starting
from the leftmost swath and visiting each swath to the right
in order using turns of type Ω1 and T1. Figure 10a shows
the sequence following the pattern that uses almost all turns
of type Π3 and only two of type T . And finally, Figure 10b
shows the optimal sequence for 15 swaths, which does not use
reverse driving. We can see that in the headland surroundings,

TABLE III
LENGTH AND DURATION FOR DIFFERENT SEQUENCES.

Sequence Length (m) Duration (s)
Trivial path using Ω1 532,02 741,36
Trivial path using T1 428,51 680,17
Pattern using almost all Π3 441,87 611,81
Optimal path not using reverse 447,41 598,50

the robot moves slightly away from the center of the swath,
but in a few meters it is re-aligned correctly

The Table III shows the full length and duration of each
pattern. There is a clear time savings with the optimal pattern.
However, the impact on the overall time will depend on the
length of the crop rows. Avoiding the use of Ω turns also
removes the need for large headlands, which results in more
space being used for planting.

In order to test the effectiveness of the planner in terms
of not damaging the crops, we measured how far the robot
drives from the center of the swaths. The graphs in Figure 11
plot the translational and rotational ATE errors for the optimal
15-swath path. The peaks shown in the graphs correspond
to moments when the robot performs turning maneuvers. In
general, the errors obtained were relatively small, yielding in
all cases an average distance to swath center of less than 10 cm
and an average deviation in angle of about 0.035 rad (2◦).

D. Future Work

Despite obtaining satisfactory results with the TEB planner
in terms of not driving over the crops, it was necessary to
create several intermediate waypoints at the field headlands for
the robot to perform the desired turning maneuvers. The TEB
planner supports avoidance of previously unknown dynamic
obstacles, but further testing is needed to verify it works as
expected in our system. Another feature that would improve
robustness of the system is the incorporation of a recovery
strategy in case the robot gets stuck on obstacles. As future
work, it is also of great interest the development and testing
of other planners to compare with the results obtained in this
work. Finally, it will be necessary to move the tests performed
on the simulator to the real prototype, in order to check
aspects such as correct real-time operation, sensor responses
and battery charge duration.

IV. CONCLUSIONS

The main contribution of this work consisted of the devel-
opment of a fully functional and efficient navigation system
for a car-like robot operating crop row fields. To this end, we
performed a deep analysis of the different turning maneuvers
that a robot with Ackermann steering mechanism and limited
turning radius can perform at field headlands, and formulated
the problem of finding the least time-consuming coverage path
as the Travelling Salesman Problem. Experiments showed that
the optimized path reduces the total field coverage time by up
to 20% compared to trivial coverage paths. We brought the use
of the ROS navigation stack and the TEB trajectory planner to
an agricultural environment, and proved that the entire system
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Fig. 10. Different coverage patterns for a 15-swath field. The solid blue line corresponds to the path made by the weeding robot and the red dashed line
shows the center of each swath.
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Fig. 11. Absolute Trajectory Errors (ATE) for optimal sequence in a 15-swath field, comparing real path performed against ideal path that passes through the
center of each swath. The translational error in (a) shows the distance to the swath center in meters and the rotational error in (b) shows the angle difference
with respect to ± 90◦, depending on driving direction.

can operate satisfactorily under the kinematic constraints of
the robot and in a field layout of long parallel crop rows. The
resulting navigation system allows the robot to navigate the
field safely without driving over the crops, giving a deviation
of the robot to the swath center of less than 10 cm in all of
the performed tests.
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survey,” Computers and Electronics in Agriculture, vol. 147, pp. 70–90,
2018.

[6] M. Saleem, J. Potgieter, and K. Arif, “Automation in Agriculture
by Machine and Deep Learning Techniques: A Review of Recent
Developments,” Precision Agriculture, vol. 22, 4 2021.

[7] G. Zhang, X. Chen, L. Zhang, B. Feng, X. Guo, J. Liang, and
Y. Zhang, “STAIBT: Blockchain and CP-ABE Empowered Secure and
Trusted Agricultural IoT Blockchain Terminal,” International Journal of
Interactive Multimedia and Artificial Intelligence, vol. 7, 9 2022.

[8] Q. Ding and X. Xu, “Improved GWO Algorithm for UAV Path Planning
on Crop Pest Monitoring,” International Journal of Interactive Multime-
dia and Artificial Intelligence, vol. 7, pp. 30–39, 2022.

[9] S. Bonadies and S. A. Gadsden, “An overview of autonomous crop
row navigation strategies for unmanned ground vehicles,” Engineering
in Agriculture, Environment and Food, vol. 12, no. 1, pp. 24–31, 2019.

[10] P. Maini, B. M. Gonultas, and V. Isler, “Online Coverage Planning for an
Autonomous Weed Mowing Robot With Curvature Constraints,” (IEEE)
Robotics and Automation Letters, vol. 7, no. 2, pp. 5445–5452, 2022.

[11] D. Ecobichon, “Pesticide use in developing countries,” Toxicology,
vol. 160, no. 1, pp. 27–33, 2001.

[12] K. Lewis, J. Tzilivakis, D. Warner, and A. Green, “An international
database for pesticide risk assessments and management,” Human and
Ecological Risk Assessment: An International Journal, vol. 22, no. 4,
pp. 1050–1064, 2016.



AIT et al.: A TRAVELLING SALESMAN PROBLEM APPROACH TO EFFICIENTLY NAVIGATE CROP ROW FIELDS 651

[13] M. Tudi, H. Daniel Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell,
C. Chu, and D. T. Phung, “Agriculture development, pesticide appli-
cation and its impact on the environment,” International Journal of
Environmental Research and Public Health, vol. 18, no. 3, 2021.

[14] T. Pire, M. Mujica, J. Civera, and E. Kofman, “The Rosario dataset:
Multisensor data for localization and mapping in agricultural environ-
ments,” Intl. Journal of Robotics Research, vol. 38, pp. 633–641, 2019.

[15] M. Kloetzer, C. Mahulea, and R. Gonzalez, “Optimizing cell decom-
position path planning for mobile robots using different metrics,” in
2015 19th International Conference on System Theory, Control and
Computing (ICSTCC), pp. 565–570, 2015.

[16] J. Sun, J. Tang, and S. Lao, “Collision Avoidance for Cooperative UAVs
With Optimized Artificial Potential Field Algorithm,” IEEE Access,
vol. 5, pp. 18382–18390, 2017.

[17] M. Luo, X. Hou, and J. Yang, “Surface Optimal Path Planning Using An
Extended Dijkstra Algorithm,” IEEE Access, vol. 8, pp. 147827–147838,
2020.
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