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Abstract—As Internet traffic becomes increasingly complex,
a growing number of applications are carrying different ser-
vices. To provides service-aware traffic classification, allowing
network operators to better analyze network composition as
well as manage and schedule efficiently network resources to
facilitate sustainable development network, fine-grained traffic
classification has become a crucial and challenging problem.
Software defined networks has become the most promising new
network architecture in the future with two major advantages
of centralized control and programmability. Deep learning has
also become a mainstream technology by its excellent feature
extraction ability for large datasets. Thus the combination of
software defined networks and deep learning can effectively
solve the challenge of data set collection and feature extraction
in the field of traffic classification. Inspired by research in
computer vision, in this paper we propose an improved residual
convolutional network approach to network traffic classification,
which addresses the network degradation problem that occurs
with increasing network depth in traditional deep learning
methods for fine-grained network traffic identification, and can
effectively learn deeper network features to achieve fine-grained
network traffic classification. Experimental results show that the
overall accuracy of the proposed method can reach 99.93%,
which is about 4%, 13%, 7% and 2% higher than other state-
of-the-art models such as classical residual networks ResNet-
18, One-dimensional Convolutional Neural Networks (1D-CNN),
Long Short-Term Memory (LSTM) and combined model CNN-
LSTM respectively, thus verify the effectiveness of our method.

Index Terms—Deep Learning (DL), Fine-grained Traffic Clas-
sification, Long Short-Term Memory (LSTM), Residual Convo-
lutional Networks, Software Defined Networks (SDN).

I. INTRODUCTION

Software Defined Network is an emerging and promising
network model that can greatly simplify network manage-

ment, improve network resource utilization, optimize network
performance and promote innovation and growth [1]. SDN
undoubtedly offers new opportunities to achieve intelligence
within the network. However, there are many challenges in the
development and application of software defined networks, one
of which is fine-grained traffic classification.

With the development of network technology and vari-
ous new applications emerging, network traffic is growing
exponentially, making the network overwhelmed and prone
to problems such as wasted resources and network conges-
tion [2]. Therefore, classifying traffic into multiple priorities
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through traffic classification is an extremely important net-
work function. The results of classification algorithms can be
classified into two categories: coarse-grained and fine-grained
[3]. Coarse-grained classification identifies traffic into several
categories based on coarse traffic types such as protocols or
applications. Nevertheless, fine-grained classification aims to
distinguish individual applications or service types instead of
classifying them into coarse traffic categories, which facilitates
operators to further analyze traffic composition and efficiently
allocate network resources to improve Quality of Service
(QoS) and Quality of Experience (QoE) [4], as well as to
further promote sustainable network development.

In addition, the results of traditional machine learning
methods for traffic classification are very dependent on the
feature engineering of network traffic, which requires a lot of
time and manpower, and is not applicable to some core or edge
devices. Deep learning is an end-to-end learning approach, and
its output is not affected by the input data features and does
not require human extraction of features, which gets rid of the
heavy feature learning and feature selection work, so the deep
learning-based methods can perform more accurate, faster, and
finer-grained traffic classification problems. Contributions of
this paper are summarized as following three folds:

1) We reconstruct a fine-grained traffic dataset named
CIC_TF based on the public traffic and then present
a complete preprocessing algorithm to convert it into
image data for further training.

2) A new residual convolutional network is proposed for
the traffic classification task, which solves the gradi-
ent disappearance problem of traditional deep learning
methods when performing fine-grained classification.

3) Extensive experiments conducted on the other datasets
and state-of-the-art methods show that the method pro-
posed in this paper significantly outperforms other in
terms of the accuracy and other metrics, demonstrating
its superiority to effectively classify different network
traffic and identify its underlying application types.

To the best of our knowledge, this interesting attempt is the
first application of residual convolutional network approach
to fine-grained traffic classification domain. In this paper, a
new method based on representation learning and residual
convolutional networks is proposed to achieve more efficient
and fine-grained traffic classification in SDN.
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II. RELATED WORK

With the iteration of technology, artificial intelligence has
gradually applied to various areas of the network such as
network resource scheduling [5], multimedia data processing
[6], traffic classification [7], anomaly detection [8], etc.

Software Defined Networks have been widely discussed and
studied as very promising network architecture. Xie et al.
[3], [9] summarize the various challenges and problems of
applying deep learning (DL) methods to SDN and discusses
the application of machine learning (ML) algorithms in detail.
It is a good overview for the study of traffic classification
tasks. Yan et al. [7] present several representative works on
traffic classification in SDN, discusses the research challenges
and future directions of traffic classification, and provide
inspiration for the research direction of this paper. Wang et al.
[4], [10] provides a comprehensive survey of state-of-the-art
traffic classification methods, focusing on the deep learning-
based classification of encrypted traffic for mobile services,
and discusses some noteworthy issues and challenges.

Network traffic classification techniques have evolved
through roughly three stages so far:

A. Port-based And Payload-based Traffic Classification

Port-based and payload-based [11] traffic classification is
the earliest classification technology, but with the emergence
of dynamic ports and encrypted traffic, the identification
accuracy of this method has significantly decreased.

B. Machine Learning-based Traffic Classification

Currently popular machine learning-based traffic classifica-
tion can be divided into three categories: supervised learning
[12], unsupervised learning [13], and semi-supervised learning
[14]. These methods are mainly based on some external
statistical characteristics of the traffic, but requires complex
feature engineering, which increases the complexity of the
methods.

C. Deep Learning-based Traffic Classification

The feature extraction and selection of deep learning-
based methods are done automatically by model training,
compared with traditional machine learning methods, deep
learning methods have higher learning ability and can learn
the features of the original traffic directly without additional
manually designed unique or private traffic information, these
characteristics make DL-based approach is a highly desirable
traffic classification method [1], [15]–[18]. Wang [8] proposes
an end-to-end encrypted traffic classification method with a
one-dimensional convolutional neural network (1D-CNN) that
integrates feature extraction and classifier into a unified end-
to-end framework. Hohammad [19] proposes a Deep Packet
framework, which implements Stacked Auto-Encoder (SAE)
and 1D-CNN, respectively, for automatic extraction of network
traffic to accurately classify traffic. Zeng [20] proposes a
lightweight traffic classification and intrusion detection frame-
work based on deep learning, which implements 1D-CNN,

Long Short Term Memory (LSTM), and SAE. In [21], a semi-
supervised learning encrypted traffic classification method
based on Generative Adversarial Networks (GAN), is proposed
to be embedded in SDN edge gateways to achieve the goal of
traffic classification and further improve network resource uti-
lization. Lin [2] proposes a new encrypted traffic classification
scheme TSCRNN based on stream spatio-temporal features
for efficient management of industrial Internet of Things
(IoT). Lan [22] proposes a novel self-attentive deep learning
method for dark network traffic classification and application
identification. Reference [23] proposed an online multimedia
traffic classification framework based on convolutional neural
network (CNN), which is capable of fast early classification
and class incremental learning.

In summary, there are several major problems with the
current related traffic classification literature as follows. First,
most researchers have selected traffic datasets with high con-
sistency in each category and clear differentiation between
different categories of traffic, and thus are able to achieve high
accuracy. Secondly, there is no unified traffic pre-processing
scheme, and various methods of feature processing or traffic
extraction substantially increase the time consumption of pre-
processing. Third, in terms of model selection, most stud-
ies have chosen CNN and LSTM, and only a few articles
discuss the performance of other deep learning approaches.
To tackle these issues, this paper firstly selects datasets with
both discrimination and similarity between categories from
public dataset websites, and then processes the original net-
work traffic dataset into image data using the unified traffic
preprocessing method and further transforms it into the model-
recognizable form, and finally proposes an improved model
framework based on residual convolutional networks to clas-
sify the preprocessed data and conducts several comparative
experiments to verify the reliability of the model.

III. PROBLEM DEFINITION

The segmentation granularity and classification granularity
of the original traffic is a prerequisite that needs to be clarified
before performing the traffic classification task.

A. Segmentation Granularity

Network traffic splitting granularity includes TCP connec-
tions, flows, sessions, services, and hosts [24]. Different split
granularity results in different traffic units. Flows are defined
as all packets with the same 5-tuple (timestamp, source IP,
destination IP, protocol, and packet length). Sessions are bidi-
rectional flows, including traffic in both directions. In addition,
the inherent characteristics of the flow are intuitively reflected
in the application layer, and the data of other layers should
also contain some traffic characteristic information. Therefore,
this paper uses the segmentation granularity of all layers and
sessions to retain the data characteristics of the original traffic
to the maximum extent.

Suppose network traffic T consists of a series of consecutive
packets P = {p1, p2, . . . , pi, . . . , pn}, where pi represents
the i-th packet. By using the traffic slicing tool SplitCap
[25] to extract the five tuples from the packet headers, each
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Fig. 1. Basic architecture of fine-grained traffic classification in SDN.

packet can be defined as pi = (ti, srci, dsti,proi, leni) , i ∈
{1, 2, . . . , |P |}, where ti represents the timestamp, srci rep-
resents the source address, dsti represents the destination ip
address, proci represents the protocol type, and leni represents
the packet length.

B. Classification Granularity

The first step in building a traffic classifier is to specify
the classification goals. Typical objectives include Quality of
Service (QoS), resource allocation, and intrusion detection. To
achieve these goals, traffic classes can be classified according
to the following classification granularity.

• protocols (e.g. Ftp, Http)
• applications (e.g. Youtube, QQ)
• service types (e.g. Video, Audio, Chat)

Therefore, the goal of traffic classification is to label each flow
with the corresponding traffic category. This paper focuses on
solving the more complex traffic classification problem based
on service type.

C. Basic Architecture

The traffic classification task in SDN can be summarized
in the following steps: (1) The switch collects network traffic
and sends it to the controller via OpenFlow protocol. (2) The
controller extracts the traffic data and then sends the features
to the preprocessing module to process the raw data set. (3)
The processing results are sent to the classification module to
classify the flows. (4) The classification results are then sent
to the SDN controller. (5) The controller analyzes the traffic
composition and makes efficient management and scheduling
decisions based on the classification results [7]. The specific
process is shown in Fig. 1.

IV. DATA

A. Data Preparation

Due to the limitations of the experimental conditions, we
cannot collect data from the actual SDN environment, so we
obtained the original datasets of 16 real-world environments
from the Canadian Cyber Security Institut [26], and named
them CIC_TF, this dataset involves several common classes
of audio, video, and session traffic datasets, including both
coarse-grained datasets of different applications and fine-
grained datasets of different sessions of the same application.

TABLE I
COMPOSITION OF THE DATASET.

Type Quantity ratio (%) Type Quantity ratio (%)
email 342 2.41 hangout_chat 34 0.24
facebook_chat 31 0.22 Outlook 1413 9.96
facebook_video 16 0.11 skype_audio 9 0.06
FTP 6000 42.31 skype_chat 428 3.02
ftps_down 7 0.05 vimeo 12 0.08
ftps_up 13 0.09 spotify 14 0.10
Gmail 1638 11.55 weibo 4113 29.00
hangouts_audio 88 0.62 youtube 24 0.17

The number of packets contained in each class is shown in
Table I, where the proportion of various traffic data varies and
the video traffic data accounts for a larger proportion, which
is in line with the traffic distribution in real traffic distribution.

B. Pre-processing Process

The purpose of this process is to convert the original traffic
data in PCAP format into data in IDX format that can be
recognized by the residual convolutional network and to solve
problems such as data inconsistency and redundant data. It
consists of four steps: traffic segmentation, normalization,
imagination, and PNG to IDX.

• Traffic segmentation. We split the original continuous
PCAP traffic data into smaller discrete PCAP traffic
data in the form of session and all layers as granularity
and then remove the empty files and duplicate files to
eliminate interference.

• Normalization. This step trims all files to a uniform
length. We unify the files to 784 bytes (28*28), if the
file size is less than 784 bytes, add 0x00 at the end to
make up to 784 bytes. Finally, all files are divided into
test and training sets in a ratio of 1:9.

• Imagination. This step converts the files with the same
size processed in the previous step into grayscale images.
Each byte of the original file represents one pixel, 0x00
means black, and 0xff means white.

• PNG to IDX. This step requires further conversion of the
image data in PNG format to a data format recognizable
by the network model. We use the IDX padding generator
to convert the image data of the same size into a two-
dimensional format IDX file.

Algorithm 1 describe the detailed steps of the whole pre-
processing process in detail.

C. Visualization Analysis

In this section, some of the images generated in step 3
of the data preprocessing process are visualized as shown in
Fig. 2, where each grayscale image has a size of 28 * 28
bytes. As can be seen from Fig. 2, there is no obvious degree
of distinction between the traffic of different service types of
the same application, such as audio, chat, and video traffic in
facebook. There is also no high degree of consistency between
uniform service type traffic from different applications, such
as facebook_video, hangots_video, and youtube. Therefore, it
is necessary to learn as many features as possible to maximize
the differentiation of these smaller granularity service traffic.
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Algorithm 1 Data Preprocessing

1: Input: T1, T2, . . . , Tn

2: Output: Processed Dataset G(G,L)
3: for each p in (1, n) do
4: Split the Tp into T 1

p , T
2
p , . . . , T

i
p, . . .

5: for each i do
6: Purify T i

p

7: end for
8: Remove duplicated packet from T 1

p , T
2
p , . . . , T

i
p, . . .

9: for each i do
10: Divide the test set and training set into 1:9
11: Normalize the length of T i

p to 784 bytes
12: end for
13: for each i do
14: Generate PNG traffic image G1

p, G
2
p, . . . , G

i
p, . . .

15: end for
16: for each i do
17: Changing MSB for image data (Gj

p, L
j
p)

18: end for
19: end for

Fig. 2. Data visualization.

V. RESEARCH METHODOLOGY

A. Overview of Residual Convolutional Networks

The main idea of the residual network is identity mapping
to ensure that the deep layer effect is not weaker than the
shallow one [27]. The basic structure of the residual blocks is
shown in Fig. 3.

As shown in Fig. 3, the residual block is divided into two
parts: identity mapping and residual mapping. Suppose the
input of the neural network is X , and the expected output is
H(X), the input X is directly passed to the output by means of
direct mapping (i.e., the right part of the curve in the figure),
and if the channels of F(X) and X are the same, the output
result is H(X) = F(X) + X, and if the channels of F(X)
and X are not the same, the number of channels is adjusted
by using the special one-dimensional convolutional kernel to
make it the same as the channels of X , and the output result is
H(X) = F(X) +WX, when F(X) = 0, then the output result
in both cases are H(X) = X , that is identity mapping.

Fig. 3. Basic structure of the residual block.

B. Convolutional Layer

The biggest advantages of convolutional networks over
traditional neural networks are parameter sharing and sparse
connections, which greatly reduce the complexity of neural
network model training and have been widely used in various
fields such as image recognition and target detection. Suppose
the input shape is nh ∗ nw, the shape of the convolutional
kernel is kh ∗ kw, the padding size is p, and the step size is s,
then the output shape is calculated as follows [28]

⌊nh + 2p− kn

s
+ 1⌋ ∗ ⌊nw + 2p− kw

s
+ 1⌋ (1)

The complete feature map is obtained by multiple convolution
kernels, and the output of the k-th feature map in the l-th layer
at position (i, j) is represented as follows.

zli,j,k = wl
kx

l
i,j + blk (2)

where wl
k and blk are the weight vector and bias term of the

k-th convolution kernel in the l-th layer, respectively, and xl
i,j

is the perceptual field centered at position (i, j) in the l-th
layer.

This paper uses the batchnorm (BN) method [29] to nor-
malize the data while avoiding the problem of overfitting the
network. For each Mini-Batch, the training process contains
m training instances, and the specific BN operation is to
transform the activation value of each neuron in the hidden
layer as follows.

BN(zli,j,k) =
zli,j,k − E[zli,j,k]√

V ar[zli,j,k]
(3)

where E is the mean and var is the variance. The output ali,j,k
after the activation function processing can be expressed as

ali,j,k = a(BN(zli,j,k)) (4)

C. Adaptive Averaging Pooling Layer

The addition of the pooling layer can downsample the
sample features collected by the convolutional layer to further
reduce the number of parameters. The adaptive averaging
pooling layer can dynamically calculate the size of the kernel
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Fig. 4. Structure of the residual convolutional network model.

and the step size of each move adaptively by inputting the
original size and the target size and using the average method
for each operation [30]. Assuming that the padding is zero,
the size of the pooling kernel can be simplified and expressed
as

kernel_size = ⌈output_size
input_size

⌉ (5)

D. Proposed Method

The residual network structure was first proposed by Kaim-
ing He et al [27]. The method won the championship of image
classification in the visual recognition competition. However,
to obtain higher accuracy, the number of stacked residual
blocks usually reaches tens to hundreds, which also increases
the time complexity of training. To balance time and efficiency,
the network structure is improved in this paper. The specific
architecture of the residual convolutional network structure
proposed in this paper is shown in Fig. 4. The model first reads
batch_size = n grayscale traffic images of size I = 28∗28∗1
from the IDX file. Then it goes through two residual layers,
each residual layer includes a convolutional layer, a batch
normalization layer and an activation function layer. To make
the network training easier and the network generalization
stronger, this paper uses batch norm and relu functions to
optimize the network results and then transforms them into
n_classes of feature maps through a convolutional layer and a
normalization layer, and finally outputs each class of features
through an adaptive average pooling layer AdaptiveAvgPool2d
outputs the feature values of each class. The specific network
structure and parameters settings are shown in Table II.

TABLE II
PARAMETER SETTINGS OF THE CLASSIFICATION MODEL.

Layer Parameter Setting Output Shape Param
Conv2d in=1, out=8, kernel=3, stride=2, padding=15 [-1, 8, 28, 28] 80

BatchNorm2d features=8, eps=1e-05, momentum=0.1 [-1, 8, 28, 28] 16
Conv2d in=8,out=16, kernel=3, stride=2, padding=15 [-1, 16, 28, 28] 1,168

BatchNorm2d features=16, eps=1e-05, momentum=0.1 [-1, 16, 28, 28] 32
ResBlock / [-1, 16, 28, 28] 0
Conv2d in=16,out=16, kernel=3, stride=2, padding=15 [-1, 32, 28, 28] 4,640

BatchNorm2d features=32, eps=1e-05, momentum=0.1 [-1, 32, 28, 28] 64
Conv2d in=32, out=16, kernel=3, stride=2, padding=15 [-1, 16, 28, 28] 4,624

BatchNorm2d features=16, eps=1e-05, momentum=0.1 [-1, 16, 28, 28] 32
ResBlock / [-1, 16, 28, 28] 0
Conv2d in=16,out=11, kernel=3, stride=2, padding=15 [-1, 11, 28, 28] 1,595

BatchNorm2d features=11, eps=1e-05, momentum=0.1 [-1, 11, 28, 28] 22
AdaptiveAvgPool2d out_size=1 [-1, 11, 1, 1] 0

VI. EXPERIMENTAL SETTING AND RESULTS

A. Experimental Setting and Evaluation Metrics

The experimental environment for this paper is as follows.

NVIDIA-SMI 460.32.03 GPU as the accelerator, Python
3.7.13 and Pytorch 1.12.0 as the experimental framework,
experimental data randomly selected one-tenth of the data
as test data, and the rest as training data. The minimum
batch size read during training is 128, the loss function is
selected as the cross-entropy loss function, Pytorch’s built-in
SGD is used as the optimizer and and setting the parameter
momentum to further avoid overfitting, the learning rate is
0.01, the momentum parameter is set to 0.9, and the training
time is 150 epochs. The pseudo-code of the training process
is shown in algorithm 2.

The models are evaluated in terms of accuracy, recall,
precision, and F1-score commonly used in classification tasks.

Algorithm 2 Residual Convolutional Network Training Pro-
cess (RCNTraining)

1: Input: {(xi, yi)}Ndata
i=1 , a dataset of sequence pairs.

2: Hyperparameters: Nepochs, Nbatch_size
3: Output: zi, the training result of xi.
4: for n = 1 to Nepochs do
5: for i = 1 to Ndata do
6: (xi, yi)← the i-th training sample
7: zi ← RCNTraining(xi)
8: loss← CrossEntropyLoss(zi, yi)
9: Back propagation calculate and update the gradient

10: i← i+Nbatch_size
11: end for
12: end for

B. Experimental Results

Table III shows the precision, recall, and F1 score of each
category in the dataset CIC_TF on the residual convolutional
network model proposed in this paper, and finally, the results
of macro-average and weighted average are calculated. The
experimental results show that the overall classification ac-
curacy of the model can reach 99.93%, the macro-average
accuracy, recall, and F1 score can reach 99.98%, 100% and
100%, respectively, and the weighted average accuracy, recall
and F1 score can reach 100%, 100% and 100%, respectively.
In a word, no matter the small sample size of ftps_down,
skype_audio traffic, or the large sample size of FTP traffic,
it can achieve high accuracy. In addition, the model can
also accurately classify different service flows of the same
application such as session and video traffic in facebook,
and similar service flows of different applications, such as
facebook’s video flow, hangouts’ video flow, and skype video
flow, the model can also effectively extract features and
classified. In conclusion, the residual convolutional network
model proposed in this paper has a good performance in
classifying similar fine-grained traffic data.

To better observe the specific types that each type of
traffic is classified by the model when it is classified, we
also calculate the confusion matrix of the model classification
results, as shown in Fig. 5, where the right side indicates
the heat value of the classification accuracy, the higher the
accuracy, the higher the classification accuracy and the darker
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TABLE III
EVALUATION RESULTS OF THE RESIDUAL CONVOLUTIONAL

NETWORK MODEL ON THE CIC_TF DATASET.

Classes Precision Recall F1-score Samples
email 1.00 1.00 1.00 342
facebook_chat 0.97 1.00 0.98 31
facebook_video 1.00 1.00 1.00 16
FTP 1.00 1.00 1.00 6000
ftps_down 1.00 1.00 1.00 7
ftps_up 1.00 1.00 1.00 13
Gmail 1.00 1.00 1.00 1638
hangouts_audio 1.00 1.00 1.00 88
hangout_chat 1.00 0.97 0.99 34
Outlook 1.00 1.00 1.00 1413
skype_audio 1.00 1.00 1.00 9
skype_chat 1.00 1.00 1.00 428
vimeo 1.00 1.00 1.00 12
spotify 1.00 1.00 1.00 14
weibo 1.00 1.00 1.00 4113
youtube 1.00 1.00 1.00 24

accuracy / / 0.99 14182
macro avg 0.99 1.00 1.00 14182
weighted avg 1.00 1.00 1.00 14182

Fig. 5. Confusion matrix of the residual convolutional network model
on the CIC_TF dataset.

the color, the abscissa represents the model prediction result,
and the ordinate indicates the real label. It is obvious from the
figure that the value on the diagonal line has the darkest color,
which also shows that the model can distinguish various types
of traffic very well, and it can also be seen to which categories
various types of traffic will be classified by the model in the
classification, for example, 0.031% of samples in email traffic
are classified as hangouts_audio traffic.

C. Comparative Experiments

1) Dataset: To verify the effectiveness of the model on
different traffic datasets, we conducted experiments on the
USTC-TK traffic dataset [8] using the same hyperparameters
as the experiments above, which contains ten types of traffic,
including eight common different application traffic, part of
this traffic is malware traffic collected from real network

TABLE IV
EVALUATION RESULTS OF THE RESIDUAL CONVOLUTIONAL

NETWORK MODEL ON THE USTC-TK DATASET.

Classes Precision Recall F1-score Samples
BitTorrent 1.00 1.00 1.00 752
Facetime 1.00 1.00 1.00 600
FTP 1.00 1.00 1.00 300
Gmail 1.00 1.00 1.00 863
MySQL 1.00 1.00 1.00 200
Outlook 1.00 1.00 1.00 752
Skype 1.00 1.00 1.00 632
SMB 1.00 1.00 1.00 266
Weibo 1.00 1.00 1.00 495
WorldOfWarcraft 1.00 1.00 1.00 788

accuracy / / 1.00 22148
macro avg 1.00 1.00 1.00 22148
weighted avg 1.00 1.00 1.00 22148

TABLE V
PARAMETER SETTINGS FOR COMPARISON MODELS.

Methods Parameters
Proposed epochs=150, batch_size=128, block_num=2, lr=1e-2, mom-

entum=0.9
ResNet-18 epochs=200, batch_size=128, block_num=4, lr=5e-3
1D-CNN epochs=100, batch_size=128, padding_size = 15, lr=1e-2
LSTM epoch = 50, batch_size=128, hidden_size=128, lr=1e-2
CNN-LSTM epochs=50,batch_size=128, hidden_size=128,seq_length=28,

num_directions=1,lr=1e-2

environments, and the other part is normal traffic collected
using IXIA BPS traffic simulation devices. The experimental
results are shown in Table IV. Since the ten classes of
traffic in the dataset belong to different applications and are
clearly distinguishable, our model can achieve almost 100%
classification accuracy.

2) Other Advanced Methods: To verify the advancedness
of the model proposed in this paper for fine-grained traffic
classification tasks, we compared the performance of the clas-
sical residual network model ResNet-18 [27] on the CIC_TF
dataset horizontally, while comparing other deep learning
methods such as 1D-CNN [8], LSTM [20] and CNN-LSTM
[31] vertically, with the specific parameter settings of the
model shown in Table V (subject to the best results during
the experiments). The accuracy, precision, recall, and F1 score
results of the experiments are shown in Table VI and Fig. 6.
From Table VI, it can be seen that the current advanced deep
learning methods can achieve more than 80% classification
accuracy, specifically, the overall classification accuracy of
the ordinary ResNet-18,1D-CNN, LSTM and CNN-LSTM can
reach 95%, 86%, 92% and 94%, respectively, The overall
accuracy of the improved residual convolution model proposed
in this paper can reach about 99.93%, which can be improved
by 4%, 13%, 7% and 2% respectively compared with the other
methods. From Fig. 6, it can be more intuitively seen that the
model proposed in this paper significantly outperforms other
types of deep learning methods.

3) Hyperparameters: We conducted a series of experiments
on the dataset CIC_TF to explore the effect of hyperparameter
settings on model accuracy. The main hyperparameters include
training period epoch, number of residual blocks block_num,
learning rate lr, and batch size batch_size. For each exper-
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TABLE VI
EXPERIMENTAL RESULTS OF VARIOUS COMPARISON

METHODS.

Methods Accuracy Precision Recall F1-score
Proposed 0.99 0.99 1.00 1.00
ResNet-18 0.95 0.89 0.87 0.90
1D-CNN 0.86 0.85 0.83 0.84
LSTM 0.92 0.91 0.88 0.90
CNN-LSTM 0.94 0.93 0.92 0.96

Fig. 6. Bar chart of experimental results for various comparison
methods.

iment, only one parameter value is changed, and the default
values are used for the other parameters. As shown in Fig. 7a,
the model accuracy increases as the epoch increases and
reaches the optimal accuracy about 100% at the epoch of 150,
but when the epoch continues to increase, the learning ability
of the model begins to decline. Fig. 7b shows the effect of
the number of residual blocks on the model effect. When the
number of residual blocks is only one, the model does not learn
all the features well, and when the number of residual blocks
increases to 2, the model effect has a significant improvement,
but the model may start to degrade as the number of residual
blocks increases to 3, 4 or even more. Fig. 7c shows the
relationship between the learning rate and the performance
of the model. The training process updates the size of the
learning rate by 0.5 times, and it is evident that for our model
in this paper, the learning rate of 0.01 works best, and as the
learning rate is further reduced, the model performance drops
catastrophically. Fig. 7d explores the effect of batch size on
the classification effect of the model. The relevant practice
has proved that the batch size is usually and the effect is
the best. After further experiments, it is found that as the
batch continues to increase, the model effect is significantly
improved, and at 128 reaching the optimum, but when the
batch continues to increase, the model cannot learn more
subtle features so that the accuracy of the model begins to
decline.

In summary, the setting of the model hyperparameters plays
a pivotal role in the classification results, and the values of the
parameters are not linearly correlated with the results, and we
need to find the optimal values in the experiments to achieve
the optimal results.

VII. CONCLUSIONES

Based on the systematic summary of related papers on traf-
fic classification methods, this paper proposes a fine-grained

(a) Epochs (b) Block_num

(c) Learning_rate (d) Batch_size

Fig. 7. Graph of experimental results for each hyperparameter.

traffic classification model based on residual convolutional
networks in SDN. We design a fine-grained traffic dataset and
a preprocessing method based on representation learning, and
then propose a classification method based on an improved
residual convolutional network to achieve high accuracy clas-
sification effect. What’s more, the method proposed in this
paper improves the traditional convolutional neural networks
and effectively solves the gradient disappearance problem that
may occur when traditional deep learning methods identify
fine-grained traffic.

However, there are still some limitations in this paper, the
main goal of this paper is high precision, so we didn’t analyze
the time complexity. In practical applications, both time and
accuracy are important metrics. So in future work, we will
further consider traffic classification from real-time or online,
identification of new types of traffic and optimization of model
parameters.
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