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Abstract— Liver cancer is the primary reason of death around 

the globe. Manually detecting the infected tissues is a challenging 

and time-consuming task. The computerized methods help make 

accurate decisions and therapy processes. The segmentation 

accuracy might be increased to reduce the loss rate. Semantic 

segmentation performs a vital role in infected liver region 

segmentation. This article proposes a method that consists of two 

major steps; first, the local Laplacian filter is applied to improve the 

image quality. The second is the proposed semantic segmentation 

model in which features are extracted to the pre-trained VGG16 

model and passed to the U-shaped network. This model consists of 

51 layers: input, 23 convolutional, 4 max pooling, 4 transpose 

convolutional, 4 concatenated, 8 activation, and 7 batch-

normalization. The proposed segmentation framework is trained on 

the selected hyperparameters that reduce the loss rate and increase 

the segmentation accuracy. The proposed approach more precisely 

segments the infected liver region. The proposed approach 

performance is accessed on two datasets such as 3DIRCADB and 

LiTS17. The proposed framework provides an average dice score of 

0.98, which is far better compared to the existing works. 

 
Index Terms— Convolutional Neural Network, Segmentation, 

Datasets, Liver. 

 

I. INTRODUCTION 

he liver regularly purifies the blood that flows through the 

body, transforming substances ingested through the 

digestive tract into chemicals ready for use. Other crucial tasks 

carried out by the liver include clearing poisons and harmful 

chemical products in blood and preparing them for disposal. 

The liver is particularly susceptible to cancer cells moving 

through the bloodstream since it is the organ through which all 

blood in the body passes. Primary liver cancer, which develops 

in the liver, and cancer that begins in further regions of the body 

and extent to the liver, can both impact the liver [1, 2]. 
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A significant number of people worldwide die from liver 

cancer each year. It is a notably prevalent cancer. Early 

identification, diagnosis, and treatment are essential to increase 

the survival chance and overall quality of life for individuals 

with liver cancer. Computed tomography (CT), which has a 

good signal-to-noise ratio, excellent spatial resolution, rapid 

scanning speed, and a relatively inexpensive cost, is frequently 

utilized in clinical practice to detect hepatic malignancy [3]. For 

disease diagnosis and therapy planning, segmented liver tumor 

pixels using CT scans is a crucial and critical stage. It can offer 

exact details, such as the shape, and location size of tumors, to 

assist clinicians in selecting the best course of therapy. But 

segmentation is often carried out manually by skilled 

radiologists, which is time-consuming and exhausting. 

Therefore, there is a critical need for and growing interest in 

developing automatic or semi-automatic systems for 

segmenting liver tumors. Because of variations in the 

anatomical structure of the tumor, shape, and size (1), (2) 

irregular boundaries among surrounding liver tissues, and the 

tumor (3) noise appearance caused through CT, robust and 

accurate tumor segmentation is still a challenge. Only low-level 

visual characteristics, such as gradient, intensity, and texture, 

which can be directly deduced from the image, are used to 

accomplish segmentation through image-based algorithms, 

which primarily include thresholding, region growth, and 

clustering. These techniques readily result in the leakage of 

boundaries on ambiguous boundaries because of the minimal 

information used. Some model-based approaches, such as level 

sets and graph cuts, use the information of low and high-level 

to increase the accuracy. The techniques often succeed in 

producing appropriate segmentations for tumors with 

homogenous intensities and solid borders, but they fall short 

with appearance variability and poor contrast. 

Furthermore, the model and image techniques might not 

provide fully automated segmentation because of a lack of prior 

knowledge [4]. Therefore, the attention scale model is utilized 

for the segmentation, giving a dice score of 0.844 [5]. The three-

dimensional U-net is used for segmentation with a 0.59 F1 score 

[6]. The liver region is extracted using 3D-Unet and divided the 

region of liver into similar superpixels through the LI-SLIC 

method. It recursively decomposed superpixels based on the 

intensity and boundaries of the tumor pixels. 

Moreover, SVM is used to classify the normal/abnormal 

slices based on texture and intensity features [7]. Adaptive 

histogram equalization improves the image quality, and Otsu is 

used to segment the liver tumor using ultrasound images with 
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0.99 accuracy [8]. The pre-trained ResNet is used behind the U-

net for segmentation. This method is evaluated on the 

IRCADB01 dataset and gives 0.99 accuracy [9]. The four-

dimensional DL model with LSTM for lesion segmentation 

with 0.82 dice score [10]. The edge-based localization model is 

applied to localize the tumor region. This model performance is 

evaluated on the local dataset that contains 215 subjects and 

provides 0.90 accuracy [11]. In literature, much work is done 

for segmentation. However, there is still a gap in this domain 

because liver images of CT are complex, where contrast among 

tissues and organs is low, and feature extraction is a challenging 

task [12]. Therefore, it is essential to adopt a technique carried 

out to model global spatial information effectively and 

efficiently [44][45] [46] [47]. In this research attenuation-

based, U-network is proposed, which is trained on the selected 

learning parameters for segmentation.  

 A visual geometry group based on a U-Shaped model is 

proposed for the segmentation. The proposed segmentation 

framework is trained on the selected hyperparameters that 

significantly reduce the loss rate and increase the segmentation 

accuracy.  

 The proposed segmentation model results are also 

compared to the traditional semantic segmentation models such 

as FCN, SegNet, and U-network. The experimental 

investigation reveals that the results are far better than those of 

traditional segmentation models.  

II. RELATED WORKS 

The cascaded model is developed for the segmentation. This 

method fuses features at distinct levels and combines with the 

attention method to concentrate the significant information. The 

spatial atrous pyramid attention pooling block is utilized to 

extract multiple features. These features are fused fully at every 

network layer. The results are computed on 3DIRCADb and 

LiTS datasets with a 0.81 dice score [13-16]. The pyramid-

decoupled correlation model is used for segmentation. This 

model performance is accessed on the MICCAI-2017 dataset, 

giving dice of 0.76 [17]. The scale attention axis (SAA) model 

is proposed for segmentation, and results are computed on the 

LiTS2017 dataset that provides a 0.84 dice score [5]. The u-

network is modified skip pathways based on locally 

reconstructed features and fusion of the features representing 

contextual detailed high-level features information for tumor 

segmentation [18, 19]. The results are evaluated on 3DIRCADb 

and LiTS datasets with average dice score of 0.77 [20]. The 

residual path is added in activation and deconvolution 

operations. The skip connection is avoided where low-

resolution feature information is duplicated in U-net. Therefore, 

an improved U-net is suggested for segmentation using the 

LiTS-2017 dataset that provided a DSC of 0.89 [21]. FCN 

model is modified for segmentation based on CT images and 

the results are computed on JDRD and 3Dircadb datasets that 

provided VOE of 8.1 ± 4.5 and 15.6 ± 4.3, respectively [22]. 

The hybrid densely U-network is proposed for segmentation 

that consists of a three-dimensional counterpart for aggregating 

hierarchically volumetric features and performing end-to-end 

learning. The results of this method are computed on 

3DIRCADb and MICCAI-1017 datasets [23]. The deeplabv3 is 

used for segmentation in which the Pix2pix model is used as the 

generation of the adversarial. This model is trained on the multi-

scale cross-entropy loss that provided a 0.97 dice score at the 

testing phase [24]. The deep network with the addition of dense-

Unet and pyramid mapping of the features is used for the 

segmentation [25]. The two-dimensional E^2-Network is 

designed for segmentation [26]. The handcrafted contextual, 

range and variance features are extracted from CT liver slices 

and fed to the SVM, random forest, and AdaBoost, which 

provided 80.06% ± 1.63% dice score, 82.67% ± 1.43% 

precision, and recall of 84.34% ± 1.61% [27]. The deep hybrid 

model is used for segmentation using CT images, and results 

are computed on 3D-IRCADb and LiTS datasets that give 0.94 

and 0.73 dice score [28]. The hybrid attention connection model 

is designed by combining hard and soft attention and short/long 

connections of the skip. The cascaded model is also used with 

improved loss function for more accurate segmentation of the 

infected liver region. The results are computed on two datasets, 

such as 3DIRCADb, with a dice score of 0.95 liver/0.73 tumor 

[29]. Watershed and graph-cut methods are used for 

segmentation [30]. The two-dimensional U-network is used 

with a random forest for segmentation [31]. The U^3 and U^2 

networks are used for segmentation. The results are computed 

on 3DIRCADb and LiTS datasets that provided liver/tumor 

with 0.964/0.733 and 0.963/0.736 dice score [32]. 

 

The most recent related works have a gap to improve the 

results in terms of accuracy and dice score. Some methods only 

calculate the accuracy while dice score is also an important 

measure that is not computed. Few articles computed accuracy 

and dice score but these results can also be improved by 

proposing new method. Therefore, the method is proposed for 

segmentation of liver that consists of Local Laplacian Filter to 

improve the image quality and Vgg-16 is used with U-net which 

is trained on the selected hyperparameters to segment the tumor 

more accurately. 

 

III. PROPOSED METHODOLOGY 

The semantic segmentation architecture is designed for 

segmentation using CT images as illustrated in Figure 1. In the 

proposed segmentation model features are derived from the pre-

trained VGG-16 model and provided as input to the U-shaped 

model that consists of 51 layers. The proposed model is trained 

on the selected hyperparameters such as sgdm optimizer solver, 

32 batch-size, and 100 training epochs. 
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Fig. 1. Proposed semantic segmentation model. 

A. Noise Reduction  

Local Laplacian filters (LPF) is an operator of edge-aware 

where the output of the image O is defined by constructing 

{L[O]} coefficient [33]. The coefficient computation is 

independent of others. The Laplacian coefficient Lℓ[O](x, y) is 

used to estimate the ℓ level and (x, y) position. Finally, (ℓ, x, y) 
coefficient of the pyramid is utilized as the value output of 

Lℓ[O](x, y). First, the original image performed point-wise non-

linearity r (.), which relies upon 𝑔 = Gℓ[I](x, y) pyramid of 

Gaussian coefficient at ℓ level and position (x, y). For example, 

when to maximize the detail information, S local U-shaped 

curve on g centered that makes values of I near to the g farther 

from it leaves distant unchanged values. The results are 

combined on different values of g and achieve the outcome. The 

LPF is applied on the CT slices as presented in Figure 2. 

 
  (a)                                   (b) 

Fig. 2. Results of the LPF (a) original CT slice (b) noise reduction. 

 

The LPF parameters are depicted in Table 1. 

 
Table I 

Parameters of LPF 

Symbol Values 

Σ 0.2 

𝛼 0.2 

Table 1 depicts the LPF parameters in which Σ=0.2, 𝛼 = 0.2  

values are selected after extensive experiments that provide 

better results for noise reduction. 

B. Proposed Semantic Segmentation Model  

In the proposed model features are extracted from VGG-16 [34] 

and passed input to the U-net model [35] as visualized in the 

Figure 3. The U-shaped network consists of encoder/decoder 

network. The network depth computes the time of the 

downsampled/upsampled input image for processing. The 

encoder net down samples input through 2D factor, D denotes 

the depth of the encoder module. The decoder module up-

sampled the encoder module output through 2D factor.  

height − ∑ 2i(ch − 1)D
i=1           (1) 

width − ∑ 2i(cw − 1)D
i=1           (2) 

Here ch and cw present height/width of 2D-Conv kernel and 

D=3 depth of encoder. 

 
Fig. 3. Proposed steps of the segmentation model. 

 

The proposed VGG-16-U-Shaped model contains 51 layers, 

such as 23 convolutional, 4 max pooling, 4 transposes 

convolutional, 4 concatenated, 8 activations, and 7 batch-

normalization as mentioned in Table 2. 

 
Table II 

Structure of VGG-16-U-Shaped model 

InputLayer None, 224, 224, 3 Transpo-2D-

Conv 

None, 28, 

28, 512 

2D-Conv None, 224, 224, 

64 

Concatenate None, 28, 

28, 1024 

2D-Conv None, 224, 224, 

64 

2D-Conv None, 28, 

28, 512 

2D-

MaxPooling 

None, 112, 

112, 64 

BatchNorma None, 28, 

28, 512 

2D-Conv None, 112, 

112, 128 

Activation None, 

28, 28, 512 

2D-

MaxPooling 

None, 56, 56, 

128 

2D-Conv None, 

28, 28, 512 

2D-Conv None, 56, 56, 

256 

BatchNorma None, 

28, 28, 512 

2D-Conv None, 56, 56, 

256 

Transpo-2D-

Conv 

None, 

56, 56, 256 

2D-

MaxPooling 

None, 28, 28, 

256 

Concatenate None, 

56, 56, 512 

2D-Conv None, 28, 28, 

512 

2D-Conv None, 

56, 56, 256 

2D-Conv None, 28, 28, 

512 

BatchNorma None, 

56, 56, 256 

2D-Conv None, 28, 28, 

512 

Activation None, 

56, 56, 256 

2D-

MaxPooling 

None, 14, 14, 

512 

2D-Conv None, 

56, 56, 256 

2D-Conv None, 14, 14, 

512 

Activation None, 

56, 56, 256 

2D-Conv None, 14, 14, 

512 

Transpo-2D-

Conv 

None, 

112, 112, 

128 

2D-Conv None, 14, 14, 

512 

Concatenate None, 

112, 112, 

256 

2D-Conv None, 112, 

112, 128 

Activation None, 

112, 112, 

128 

BatchNorma None, 112, 

112, 128 

2D-Conv None, 

112, 112, 

128 

BatchNorma None, 112, 

112, 128 

Activation None, 

112, 112, 

128 

Transpo-2D-

Conv 

None, 224, 

224, 64 

Concatenate None, 

224, 224, 

2D
-C

onv (2 layers)

N
one, 224, 224, 64

2D
-M

axPooling

N
one, 112, 112, 64

2D
-C

onv 

N
one, 112, 112, 128

2D
-M

axPooling

N
one, 56, 56, 128

2D
-C

onv (2 layers) 

N
one, 56, 56, 256

2D
-M

axPooling

N
one, 28, 28, 256
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-C
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N
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128 

2D-Conv None, 224, 224, 

64 

BatchNorma None, 224, 

224, 64 

Activation None, 224, 224, 

64 

2D-Conv None, 224, 

224, 64 

BatchNorma None, 224, 224, 

64 

Activation None, 224, 

224, 64 

2D-Conv None, 224, 224, 1   

 

Table 3 presents the hyperparameters of proposed VGG-16-

U-Shaped model. 
 

Table II 

Hyperparameters of the proposed VGG-16-U-Shaped model 

Optimizer solver Sgdm 

Epochs 100 

Batch size 32 

  

Table 3 depicts the hyperparameters that are used for model 

training which provide accurate outcomes for segmentation. 

IV. RESULTS 

The proposed method segmentation results are validated using 

3D-IRCADb and LiTS datasets. The liver segmentation is 

performed using FCN, SegNet, U-net and VGG-16-U-net 

models in term of average accuracy, loss rate and dice score. 

A. Experiment Design 

The proposed method results are evaluated on two publicly 

benchmark datasets such as 3D-IRCADb [36] and LiTS [37]. 

The LiTS17 dataset contains 131 cases of CT images having 

512 × 512. 3D-IRCADb has 20 cases of which 10 are female 

and 10 are male. In this dataset 1353 training images with the 

corresponding binary masks are included.  

The segmentation of liver and liver tumor results are computed 

numerically in term of accuracy and DSC. 

 

Accuracy =
∝ +∂

∝ +∂ + τ + ω
 

 

DSC =
2(a ∩ b)

a + b
 

Where ∝, ∂, τ, ω denotes true positive/negative and false 

positive/negative respectively. The achieved segmentation 

results are also visually shown with ground masks.   

 

The experiment is performed on Python, Jupyter Notebook, 

CORE-I7, Nvidia Graphic Card with 2071 RTX GPU, windows 

11, operating system. 

 

B. Experiment 1: Segmentation of the Liver and Liver Tumor 

In this experiment, the performance of the segmentation 

method is accessed using different measures such as IoU, dice 

score, and accuracy. The graphical presentation of the presented 

model performance is visualized in Figure 4. 

 

(a)                        (b)        (c) 
Fig. 4. Graphical presentation of results (a) accuracy (b) dice (c) loss rate. 

 

In this research FCN [38], SegNet [39], U-network, and 

proposed method results are implemented to compute the 

segmentation results in different iterations as depicted in Table 

4. 
Table IV 

Segmentation of liver in terms of dice using 3D-IRCADb 

Iterations FCN SegNet U-net VGG-16-U-Shaped  

1-20 0.80 0.79 0.89 0.92 

21-40 0.82 0.78 0.90 0.98 

41-60 0.83 0.77 0.88 0.98 

61-80 0.81 0.70 0.80 0.99 

81-100 0.85 0.76 0.86 0.99 

101-120 0.86 0.73 0.85 0.99 

121-140 0.85 0.71 0.92 0.99 

141-160 0.87 0.78 0.91 0.99 

161-180 0.84 0.75 0.90 0.99 

181-200 0.87 0.71 0.89 0.99 

 

In Table 4 segmentation of the liver is computed using FCN, 

SegNet, U-net, and the proposed VGG-16-U-Shaped model. In 

this experiment, we achieved maximum dice score of 0.87 on 

FCN, 0.79 on SegNet, 0.92 on U-net, and 0.99 on the proposed 

segmentation model. The outcomes demonstrate that the 

proposed model accurately segments the liver as compared to 

traditional segmentation models. The proposed segmentation 

model results are also compared to the existing segmentation 

model for segmentation of the liver tumor in Table 5. 

 
Table V 

Segmentation of liver tumor in term of dice using 3D-IRCADb 

Iterations FCN SegNet U-net VGG-16-U-Shaped 

1-20 0.70 0.75 0.88 0.90 

21-40 0.83 0.72 0.93 0.97 

41-60 0.81 0.79 0.87 0.96 

61-80 0.82 0.71 0.89 0.98 

81-100 0.87 0.73 0.84 0.95 

101-120 0.89 0.79 0.82 0.94 

121-140 0.82 0.75 0.90 0.93 

141-160 0.81 0.78 0.89 0.92 

161-180 0.86 0.72 0.88 0.91 

181-200 0.89 0.79 0.84 0.97 

 

In Table 5, segmentation of liver tumor results are presented 

in which we achieved maximum dice score of 0.89 on FCN, 

0.79 on SegNet, 0.93 on U-net, and 0.98 on segmentation of the 

liver tumor.  

The proposed segmentation outcomes on the LiTS17 dataset 

are mentioned in Table 6. 
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Table VI 

Results of segmentation of liver in terms of dice using LiTS17 

Iterations FCN SegNet U-net Proposed VGG-16-U-

Shaped 

1-20 0.79 0.78 0.88 0.91 

21-40 0.80 0.77 0.89 0.99 

41-60 0.81 0.73 0.87 0.98 

61-80 0.80 0.72 0.85 0.95 

81-100 0.84 0.71 0.84 0.93 

101-120 0.83 0.70 0.83 0.96 

121-140 0.82 0.73 0.91 0.96 

141-160 0.86 0.76 0.90 0.99 

161-180 0.82 0.77 0.89 0.92 

181-200 0.85 0.78 0.82 0.94 

 

Table 6 depicts the segmentation of the liver based on 

LiTS17 dataset results in which we achieved a maximum dice 

score of 0.86 on FCN, 0.78 on SegNet, 0.91 on U-net, and 0.99 

on the Proposed VGG16-U-Shaped model. Table 7 presents the 

segmentation of liver tumor outcomes on the LiTS17 dataset. 

 
Table VII 

Segmentation of liver tumor results on LiTS17 dataset 

Iterations FCN SegNet U-net VGG-16-U-Shaped 

1-20 0.68 0.74 0.87 0.92 

21-40 0.81 0.71 0.91 0.95 

41-60 0.79 0.78 0.85 0.98 

61-80 0.79 0.73 0.88 0.99 

81-100 0.76 0.75 0.83 0.92 

101-120 0.74 0.77 0.81 0.95 

121-140 0.73 0.78 0.89 0.96 

141-160 0.76 0.79 0.82 0.97 

161-180 0.81 0.71 0.86 0.98 

181-200 0.85 0.76 0.83 0.99 

 

Table 7 depicts the liver tumor segmentation on the LiTS17 

dataset in which the proposed VGG-16-U-Shaped model 

performed better compared to FCN, SegNet, and U-net models. 

The segmentation results are also computed in terms of binary 

accuracy concerning loss rate on benchmark datasets mentioned 

in Tables 8 and 9. 

 
Table VIII 

roposed method results of segmentation in terms o 

f loss rate and accuracy based on 3D-IRCADb 

Loss rate Binary Accuracy 

0.1388 0.9701 

0.0271 0.9861 

0.0200 0.9863 

0.0186 0.9853 

0.0171 0.9858 

0.0165 0.9855 

0.0160 0.9856 

0.0154 0.9859 

0.0149 0.9861 

0.0152 0.9856 

Average 

Accuracy 

0.98±0.004 

  

Table 8 depicts the segmentation outcomes, in which the 

proposed method performance is validated on 100 slices of CT 

in terms of binary accuracy and loss rate. The achieved average 

accuracy is 0.98±0.004. Figure 5 depicts the segmentation 

results.  

 
(a)                  (b) 

Fig. 5. Outcomes of segmentation (a) original CT images (b) segmented 

region. 

 

Segmentation outcomes using the 3D-IRCADb dataset are 

mentioned in Table 9. 

 
Table IX  

Proposed method results of liver tumor segmentation in terms of loss rate 

and accuracy based on LiTS17 

Loss rate Binary Accuracy 

0.1289 0.9801 

0.0108 0.9961 

0.021 0.9753 

0.0159 0.9883 

0.0181 0.9808 

0.0138 0.9842 

0.018 0.9815 

0.0163 0.9810 

0.0183 0.9820 

0.0149 0.9810 

Average accuracy 0.9846 

Table 9 depicts the segmentation method performance on CT 

of the LiTS17 dataset. In this experiment achieved average 

accuracy is 0.9846. The proposed method segmentation results 

are also mapped on the original images, as presented in Figure 

6.  

 
               (a)            (b)             (c)                 (d) 
Fig. 6. Segmentation results (a) original CT slice (b) segmentation (c) 

localization (d) mapped segmentation outcomes on input image. 

B. Liver Segmentation Results Comparison 

Table 10 presents the proposed segmentation method results 

in comparison.  
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Table X 

Proposed segmentation results in comparison to the existing methods 

Ref Years Datasets Methods Results 

(Dice) 

[7] 2022 3DIRCADb  3D U-Net, superpixel, 

SVM 

0.71 ± 0.07  

[40] 2021 3DIRCADb  Encoder and decoder 

CNN model 

0.65 

[17] 2022 LiTS-2017 Pyramid decoupled co

rrelation model 

0.96 

[41] 2022 LiTS-2017 Unet, GAN, GLCM 0.67 

[42] 2022 3DIRCAD 

LiTS-2017 

Hybrid residual model 0.72 

[20] 2022 3DIRCAD 

LiTS-2017 

HFRU-Net 0.61 

[43] 2021 3Dircadb  Graph cut, region 

growing, and adaptive 

region 

0.85 ± 0.05 

Proposed Model 3DIRCADb 

LiTS-2017 

VGG-16-U-Shaped 

model 

0.99 

0.98 

 

Table 10 contrasts the findings of the proposed method with 

existing techniques, including [7] [40] [17] [41] [42] [20] [43]. 

The three-dimensional U-net model is used with superpixel 

SLIC and SVM to segment the 3DIRCADb  dataset with 

0.71 ± 0.07 dice score [7]. The CNN model based on an encoder 

and decoder is presented for segmentation with 0.65 dice [40]. 

The pyramid decoupled correlation model is used to detect liver 

tumors, providing 0.96 dice [17]. The U-net-based generator 

and discriminator model are employed with GLCM for liver 

tumor detection. This method is tested on the LiTS-2017 dataset 

with 0.67 dice scores. The hybrid residual model provides 0.72 

dice for liver tumor [42]. The HFRU-Net is designed and 

validated on 3DIRCADb and LiTS-2017 datasets that provide 

a global DSC of 0.61 [20]. The graph cut, region growing, and 

adaptive region methods are used for segmentation. The results 

are computed on the 3Dircadb dataset, and it provides a 

0.85 ± 0.05 dice score [43].   

Compared to existing works, the method proposed for liver 

segmentation consists of Local Laplacian Filter to improve the 

image quality, and Vgg-16 is used with U-net, which is trained 

on the selected hyperparameters to segment the tumor more 

accurately. 

 

V. CONCLUSION 

Segmentation of the liver is challenging because of its 

irregular structure and fuzzy boundaries. Therefore, in this 

research semantic segmentation model is proposed by the 

combination of VGG16 and U-network. The proposed 

segmentation network is trained on selected hyperparameters 

that provide more precise segmentation results. The proposed 

segmentation approach performance is calculated on two 

datasets such as 3DIRCADb and LiTS-2017. On the 

3DIRCADb dataset, the proposed method provides a 0.99 dice 

score on the liver and 0.98 on liver tumor segmentation. 

Similarly, the LiTS-2017 proposed method gives a 0.97 dice 

score on the liver and 0.98 on the liver tumor. Compared to the 

current existing works, the proposed method performed better.  

VI. FUTURE WORK 

This work can be deployed in hospitals, and the results can 

benefit the radiologists' time analysis and diagnostic accuracy 

at an early stage to save the time and cost of treatment. In 

addition, the proposed method segments the 2D tumor region. 

Future research work might be extended/improved for tumor 

3D liver segmentation. 

VII. ABBREVIATIONS 

All abbreviations used in this work can be indentified in table 

11. 

 
Table XI 

Abbreviations Table 

FCN Fully Convolutional Neural Network 

CT Computed Tomography 
LI-SLIC Local information based SLIC 

SVM Support Vector Machine 

LSTM Long Short-Term Memory 
DL Deep Learning 

SAA Scale Attention Axis 

DSC Dice Similarity Coefficient 
3D-IRCADb 3D Image Reconstruction for 

Comparison of Algorithm Database 

VOE Volumetric Overlap Error  
MICCAI  Medical Image Computing and 

Computer-Assisted Intervention 

AdaBoost  Adaptive Boosting 
LPF Local Laplacian Filter 

GLCM Gray-Level Co-Occurrence Matrix 

HFRU-Net High-Level Feature Fusion and 
Recalibration UNet  

SLIC Simple Linear Iterative Clustering 

 

REFERENCES 

[1] Understanding Liver Cancer,  

https://www.webmd.com/cancer/understanding-liver-cancer-basic-

information, Accessed by 15/8/2022. 
[2] J. Amin, M. A. Anjum, M. Sharif, S. Kadry, A. Nadeem, and S. F. 

Ahmad, "Liver Tumor Localization Based on YOLOv3 and 3D-

Semantic Segmentation Using Deep Neural Networks," Diagnostics, 
vol. 12, p. 823, 2022. 

[3] C. Mattiuzzi and G. Lippi, "Cancer statistics: a comparison between 

world health organization (WHO) and global burden of disease (GBD)," 
European journal of public health, vol. 30, pp. 1026-1027, 2020. 

[4] A. Krishan and D. Mittal, "Effective segmentation and classification of 

tumor on liver MRI and CT images using multi-kernel K-means 
clustering," Biomedical Engineering/Biomedizinische Technik, vol. 65, 

pp. 301-313, 2020. 

[5] C. Zhang, J. Lu, Q. Hua, C. Li, and P. Wang, "SAA-Net: U-shaped 

network with Scale-Axis-Attention for liver tumor segmentation," 

Biomedical Signal Processing and Control, vol. 73, p. 103460, 2022. 

[6] A. Hänsch, G. Chlebus, H. Meine, F. Thielke, F. Kock, T. Paulus, et al., 
"Improving automatic liver tumor segmentation in late-phase MRI using 

multi-model training and 3D convolutional neural networks," Scientific 

Reports, vol. 12, pp. 1-10, 2022. 
[7] S. Di, Y. Zhao, M. Liao, Z. Yang, and Y. Zeng, "Automatic liver tumor 

segmentation from CT images using hierarchical iterative superpixels 

and local statistical features," Expert Systems with Applications, vol. 
203, p. 117347, 2022. 

[8] D. S. Uplaonkar and N. Patil, "Modified Otsu thresholding based level 

set and local directional ternary pattern technique for liver tumor 
segmentation," International Journal of System Assurance Engineering 

and Management, pp. 1-11, 2022. 
[9] H. Rahman, T. F. N. Bukht, A. Imran, J. Tariq, S. Tu, and A. Alzahrani, 

"A Deep Learning Approach for Liver and Tumor Segmentation in CT 

Images Using ResUNet," Bioengineering, vol. 9, p. 368, 2022. 



 

AMIN et al.: VISUAL GEOMETRY GROUP BASED ON U-SHAPED MODEL                            563 

[10] R. Zheng, Q. Wang, S. Lv, C. Li, C. Wang, W. Chen, et al., "Automatic 
Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI Using 

4D Information: Deep Learning Model Based on 3D Convolution and 

Convolutional LSTM," IEEE Transactions on Medical Imaging, 2022. 
[11] J. Zhang, S. Luo, Y. Qiang, Y. Tian, X. Xiao, K. Li, et al., "Edge 

Constraint and Location Mapping for Liver Tumor Segmentation from 

Nonenhanced Images," Computational and Mathematical Methods in 
Medicine, vol. 2022, 2022. 

[12] S. Gul, M. S. Khan, A. Bibi, A. Khandakar, M. A. Ayari, and M. E. 

Chowdhury, "Deep learning techniques for liver and liver tumor 
segmentation: A review," Computers in Biology and Medicine, p. 

105620, 2022. 

[13] Y. Wu, H. Shen, Y. Tan, and Y. Shi, "Automatic liver tumor 
segmentation used the cascade multi-scale attention architecture method 

based on 3D U-Net," International Journal of Computer Assisted 

Radiology and Surgery, pp. 1-8, 2022. 
[14] J. Amin, M. Sharif, G. A. Mallah, and S. Fernandes, "An Optimized 

Features Selection Approach based on Manta Ray Foraging 

Optimization (MRFO) Method for Parasite Malaria Classification," 
Frontiers in Public Health, p. 2846. 

[15] J. Amin, M. Sharif, M. A. Anjum, A. Siddiqa, S. Kadry, Y. Nam, et al., 

"3d semantic deep learning networks for leukemia detection," 2021. 
[16] J. Amin, M. Sharif, M. A. Anjum, Y. Nam, S. Kadry, and D. Taniar, 

"Diagnosis of COVID-19 infection using three-dimensional semantic 

segmentation and classification of computed tomography images," 
Computers, Materials and Continua, vol. 68, pp. 2451-2467, 2021. 

[17]    Y. Zhang, J. Yang, Y. Liu, J. Tian, S. Wang, C. Zhong, et al., 
"Decoupled pyramid correlation network for liver tumor segmentation 

from CT images," Medical Physics, 2022. 

[18] J. Amin, M. Sharif, and M. Almas Anjum, "Skin Lesion Detection Using 
Recent Machine Learning Approaches," in Prognostic Models in 

Healthcare: AI and Statistical Approaches, ed: Springer, 2022, pp. 193-

211. 
[19] U. Yunus, J. Amin, M. Sharif, M. Yasmin, S. Kadry, and S. 

Krishnamoorthy, "Recognition of Knee Osteoarthritis (KOA) Using 

YOLOv2 and Classification Based on Convolutional Neural Network," 
Life, vol. 12, p. 1126, 2022. 

[20] D. T. Kushnure and S. N. Talbar, "HFRU-Net: High-level feature fusion 

and recalibration unet for automatic liver and tumor segmentation in CT 
images," Computer Methods and Programs in Biomedicine, vol. 213, p. 

106501, 2022. 

[21] H. Seo, C. Huang, M. Bassenne, R. Xiao, and L. Xing, "Modified U-Net 
(mU-Net) with incorporation of object-dependent high level features for 

improved liver and liver-tumor segmentation in CT images," IEEE 

transactions on medical imaging, vol. 39, pp. 1316-1325, 2019. 
[22] C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, et al., "Automatic 

segmentation of liver tumors from multiphase contrast-enhanced CT 

images based on FCNs," Artificial intelligence in medicine, vol. 83, pp. 
58-66, 2017. 

[23] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, "H-

DenseUNet: hybrid densely connected UNet for liver and tumor 
segmentation from CT volumes," IEEE transactions on medical 

imaging, vol. 37, pp. 2663-2674, 2018. 

[24] K. Xia, H. Yin, P. Qian, Y. Jiang, and S. Wang, "Liver semantic 
segmentation algorithm based on improved deep adversarial networks in 

combination of weighted loss function on abdominal CT images," IEEE 

Access, vol. 7, pp. 96349-96358, 2019. 
[25] J. Chi, X. Han, C. Wu, H. Wang, and P. Ji, "X-Net: Multi-branch UNet-

like network for liver and tumor segmentation from 3D abdominal CT 

scans," Neurocomputing, vol. 459, pp. 81-96, 2021. 
[26] Y. Tang, Y. Tang, Y. Zhu, J. Xiao, and R. M. Summers, "E $$^ $$ Net: 

An Edge Enhanced Network for Accurate Liver and Tumor 

Segmentation on CT Scans," in International Conference on Medical 
Image Computing and Computer-Assisted Intervention, 2020, pp. 512-

522. 

[27] W. Li, "Automatic segmentation of liver tumor in CT images with deep 
convolutional neural networks," Journal of Computer and 

Communications, vol. 3, p. 146, 2015. 

[28] J. Zhang, Y. Xie, P. Zhang, H. Chen, Y. Xia, and C. Shen, "Light-Weight 
Hybrid Convolutional Network for Liver Tumor Segmentation," in 

IJCAI, 2019, pp. 4271-4277. 

[29] H. Jiang, T. Shi, Z. Bai, and L. Huang, "Ahcnet: An application of 
attention mechanism and hybrid connection for liver tumor 

segmentation in ct volumes," IEEE Access, vol. 7, pp. 24898-24909, 
2019. 

[30] J. Stawiaski, E. Decenciere, and F. Bidault, "Interactive liver tumor 

segmentation using graph-cuts and watershed," in Workshop on 3D 
segmentation in the clinic: a grand challenge II. Liver tumor 

segmentation challenge. MICCAI, New York, USA, 2008. 

[31] G. Chlebus, H. Meine, J. H. Moltz, and A. Schenk, "Neural network-
based automatic liver tumor segmentation with random forest-based 

candidate filtering," arXiv preprint arXiv:1706.00842, 2017. 

[32] S.-T. Tran, C.-H. Cheng, and D.-G. Liu, "A multiple layer U-Net, U n-
Net, for liver and liver tumor segmentation in CT," IEEE Access, vol. 9, 

pp. 3752-3764, 2020. 

[33] M. Aubry, S. Paris, S. W. Hasinoff, J. Kautz, and F. Durand, "Fast local 
laplacian filters: Theory and applications," ACM Transactions on 

Graphics (TOG), vol. 33, pp. 1-14, 2014. 

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., 
"Imagenet large scale visual recognition challenge," International 

journal of computer vision, vol. 115, pp. 211-252, 2015. 

[35] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional 
networks for biomedical image segmentation," in International 

Conference on Medical image computing and computer-assisted 

intervention, 2015, pp. 234-241. 
[36] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel, P. 

Bilic, et al., "Automatic liver and lesion segmentation in CT using 

cascaded fully convolutional neural networks and 3D conditional 
random fields," in International conference on medical image 

computing and computer-assisted intervention, 2016, pp. 415-423. 
[37]   C. Zhang, Q. Hua, Y. Chu, and P. Wang, "Liver tumor segmentation 

using 2.5 D UV-Net with multi-scale convolution," Computers in 

Biology and Medicine, vol. 133, p. 104424, 2021. 
[38] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for 

semantic segmentation," in Proceedings of the IEEE conference on 

computer vision and pattern recognition, 2015, pp. 3431-3440. 
[39] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: 

Surpassing human-level performance on imagenet classification," in 

Proceedings of the IEEE international conference on computer vision, 
2015, pp. 1026-1034. 

[40] B. M. Tummala and S. S. Barpanda, "Liver tumor segmentation from 

computed tomography images using multiscale residual dilated encoder‐
decoder network," International Journal of Imaging Systems and 

Technology, vol. 32, pp. 600-613, 2022. 

[41] Y. Liu, F. Yang, and Y. Yang, "Free-form Lesion Synthesis Using a 
Partial Convolution Generative Adversarial Network for Enhanced 

Deep Learning Liver Tumor Segmentation," arXiv preprint 

arXiv:2206.09065, 2022. 
[42] R. Bi, C. Ji, Z. Yang, M. Qiao, P. Lv, and H. Wang, "Residual based 

attention-Unet combing DAC and RMP modules for automatic liver 

tumor segmentation in CT," Mathematical Biosciences and 
Engineering, vol. 19, pp. 4703-4718, 2022. 

[43] Z. Yang, Y.-q. Zhao, M. Liao, S.-h. Di, and Y.-z. Zeng, "Semi-automatic 

liver tumor segmentation with adaptive region growing and graph cuts," 
Biomedical Signal Processing and Control, vol. 68, p. 102670, 2021G. 

O. Young, “Synthetic structure of industrial plastics,” in Plastics,  2nd  

ed.,  vol.  3, J .  Peters, E d . New Y o r k , NY, USA: McGraw-Hill, 
1964, pp. 15–64.  

[44] Nie, Yali, Paolo Sommella, Marco Carratù, Mattias O’Nils, and Jan 

Lundgren. "A Deep CNN Transformer Hybrid Model for Skin Lesion 

Classification of Dermoscopic Images Using Focal 

Loss." Diagnostics 13, no. 1 (2022): 72. 

[45] Hassan, Loay, Adel Saleh, Mohamed Abdel-Nasser, Osama A. Omer, 
and Domenec Puig. "Promising deep semantic nuclei segmentation 

models for multi-institutional histopathology images of different 

organs." (2021). 
[46] A Laishram, K Thongam, Automatic Classification of Oral 

Pathologies Using Orthopantomogram Radiography Images Based on 

Convolutional Neural Network, International Journal of Interactive 
Multimedia and Artificial Intelligence 7(4), pp.69-77, 2022 

[47] Khattak, Muhammad Irfan, Mu’ath Al-Hasan, Atif Jan, Nasir Saleem, 

Elena Verdu, and Numan Khurshid. "Automated detection of COVID-
19 using chest x-ray images and CT scans through multilayer-spatial 

convolutional neural networks." (2021). 

  

 



564                              IEEE LATIN AMERICA TRANSACTIONS, VOL. 21, NO. 4, APRIL 2023 
 

Javeria Amin currently serves as an 

Assistant Professor in the Department of 

Computer Science, University of Wah. She 

is a computer vision expert. Her research 

focuses on anomaly detection in various 

parts of the human body with the help of 

machine learning, deep learning, and 

quantum computing algorithms. She is also 

the chief Editor of UWCS Journal and guest editor and reviewer 

for numerous well-reputed computer science journals. Her 

research work published in different international journals have 

a cumulative impact factor of 200+ with over 1000 citations. 

 

Muhammad Almas Anjum is currently 

serving as Dean of University at National 

University of Technology (NUTECH), 

Pakistan. His areas of specialization are 

pattern recognition, security systems 

(biometrics), and computer vision. Apart of 

his more than 100 international 

publications in his area of specialization, 

he is the author of a book titled Face Recognition a Challenge 

in Biometrics: Image Resolution Issues in Face Recognition. He 

led the team for establishing Center of Excellence Information 

Technology, College of Electrical & Mechanical Engineering, 

and has served as its first pioneer head. He also designed and 

established a Center of Innovation and Entrepreneurship, 

College of Electrical and Mechanical Engineering. He has also 

served as the Dean for the Faculty of Computer Sciences, 

University of Wah, and the Director of Research and 

Development for the College of Electrical and Mechanical 

Engineering, NUST. 

 

 Muhammad Sharif, Ph.D. (Senior 

Member IEEE) is Associate Professor at 

COMSATS University Islamabad, Wah 

Campus Pakistan. He worked for one year 

in Alpha Soft UK-based software house in 

1995. He is OCP in the Developer Track. 

He is in the teaching profession since 

1996 to date. His research interests are 

Medical Imaging, Biometrics, Computer 

Vision, Machine Learning, and Agriculture Plants. He is being 

awarded COMSATS Research Productivity Award from 2011-

2017. He served in TPC for IEEE FIT 2014-19 and currently 

serving as Associate Editor for IEEE Access, Guest Editor of 

Special Issues, and reviewer for well-reputed journals. He also 

headed the department from 2008 to 2011 and achieved the 

targeted outputs. He has more than 285+ research publications 

in IF, SCI, and ISI journals as well as in national and 

international conferences, and obtained 550+ Impact Factor. He 

has supervised/co-supervised 10 Ph.D. (CS) and 90+ MS (CS) 

theses to date. 

 

 

 

 

 

 

 

Seifedine Kadry received the bachelor’s 

degree from Lebanese University, in 

1999, the M.S. degree from the 

University of Reims, France, and the 

EPFL, Lausanne, in 2002, the Ph.D. 

degree from Blaise Pascal University, 

France, in 2007, and the H.D.R. degree 

from the University of Rouen Normandy, 

in 2017. He is currently a Full Professor 

of data science with the Noroff University College, Norway. He 

is also an ABET Program Evaluator of computing and an ABET 

Program Evaluator of engineering technology. His current 

research interests include data science, education using 

technology, system prognostics, stochastic systems, and 

probability and reliability analysis. 

 

 

Rubén González Crespo is a full 

professor in Computer Science and 

Artificial Intelligence. Currently he is 

Vice-Rector of Academic Affairs in the 

Universidad Internacional de La Rioja. He 

is also EiC and associate editor in several 

indexed journals. His main research areas 

are Artificial Intelligence, Accessibility 

and Project Management. He has published more than 250 

scientific publications and managed several research projects. 

He is an advisory board member for the Ministry of Education 

in Colombia and Spain   Mr. Author’s awards and honors 

include the Frew Fellowship (Australian Academy of Science), 

the I. I. Rabi Prize (APS), the European Frequency and Time 

Forum Award, the Carl Zeiss Research Award, the William F. 

Meggers Award and the Adolph Lomb Medal (OSA). 

 

 

 

 

 

 

 

 

 

 

 

 

 


