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Abstract—Surrogate models are techniques to approximate
the objective functions of expensive optimization problems. Re-
cently, Random Forests have been studied as a surrogate model
technique for combinatorial optimization problems. Nonetheless,
Random Forests contain several hyper-parameters that are used
to control the prediction process. Despite their importance,
research on the effects of these hyper-parameters is scarce.
Therefore, this paper performs a systematic investigation of the
effects of different combinations of values for the Random Forest
hyper-parameters on the approximation of well-known multi-
objective combinatorial benchmark problems. The results show
that the number of samples to consider when building each tree
and the minimum number of samples to be at the leaf node are
the two most important hyper-parameters in this context.

Index Terms—Decomposition-Based Optimization, Evolution-
ary Algorithms, Expensive Objective Functions, Machine Learn-
ing, Online Learning.

I. INTRODUCTION

Multi-Objective Optimization Problems (MOP) are prob-
lems containing multiple conflicting objective functions

that must be optimized simultaneously [1]. Real-world MOP
often imposes a challenge for researchers, for instance, where
each evaluation requires expensive simulations that demands
from a few minutes to several hours of computational time [1].
The expensive nature of these problems impacts the perfor-
mance of multi-objective evolutionary algorithms (MOEA) as
it drastically reduces the amount of possible objective function
evaluations. To reduce the impacts of expensive evaluations,
researchers have been proposing the application of Surrogate
Models (SM), techniques to predict the objective function
values using some sort of approximation function. Many
SM have been used in the literature of MOP, for instance,
Kriging Models [2], Radial Basis Function Networks [3], and
Polynomial Regression [4], among others. The development
of high-precision, low-cost SM is one of the main research
topics for the future of MOP [1].

Most of these techniques have been proposed for continuous
optimization problems, where the decision variables have real
values. In many real-world problems, the decision variables
have a discrete nature, the so-called Combinatorial Optimiza-
tion Problems [5]. For this purpose, some researchers have
been investigating the application of Random Forests (RF) [6]
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as a technique for surrogate modeling [5], [7]–[11]. The main
benefits of using RF as an SM in combinatorial MOP include:
(i) its natural ability to handle multiple objective functions, and
(ii) its capacity to handle discrete decision variables, including
categorical and nominal values.

RF contains a high number of hyper-parameters that are
used to control the prediction process. The number of decision
trees, the depth of the tree, the minimum number of samples
required to split an internal node, the minimum number of
samples required to be at the leaf node, the number of decision
variables used to build each tree, and the number of samples to
draw from the original data set are some examples of the RF
hyper-parameters [6]. Despite their importance, a systematic
research on the effects of these hyper-parameters on the per-
formance of RF as a surrogate model for combinatorial MOP
have not been studied. Upon this motivation, this paper applies
a comprehensible methodology to test the performance of RF
as a surrogate model for combinatorial MOP. The research
is organized into two main sections: first (i) we perform a
systematic investigation of the effects of different combina-
tions of RF hyper-parameter values on the estimation of well-
known multi-objective combinatorial benchmark problems; (ii)
then, we test the best and worst hyper-parameter combinations
in a recently proposed random forest-assisted MOEA called
MOEA/D-RFTS [11] and compare its performance with other
state-of-the-art MOEA.

This paper is organized as follows. Section II introduces
the basic concepts used in this work. Section III discusses
the related works and our contributions. Section IV presents
the framework of MOEA/D-RFTS. Section V discusses the
research methodology. Section VI presents the results and
discussions. Finally, Section VII concludes this work and
discusses future research.

II. BASIC CONCEPTS

This section presents the basic concepts concerning multi-
objective optimization problems (MOP), surrogate models
(SM), and random forests (RF).

A. Multi-Objective Optimization (MOP)
Equation (1) defines a generic minimization MOP, without

loss of generality:

minimize F (x⃗) = ⟨f1(x⃗), f2(x⃗), . . . , fM (x⃗)⟩
subject to x⃗ ∈ Ω

(1)
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where x⃗ = [x1, x2, . . . , xN ] is the decision vector composed
by N decision variables, M is the number of objective
functions, F (x⃗) is the objective function vector containing
the results of the individual objective functions fi, and Ω is
the feasible region. The goal of a multi-objective optimization
algorithm is to find the set of optimal solutions known as
Pareto Set. These solutions are evaluated based on the concept
of Pareto Optimality: given two solution vectors x⃗ ∈ Ω and
y⃗ ∈ Ω, solution x⃗ dominates y⃗ if x⃗ is no worse than y⃗ in
all objectives and x⃗ is strictly better than y⃗ in at least one
objective. A solution x⃗ ∈ Ω is said to be Pareto Optimal with
respect to Ω if and only if there is no y⃗ ∈ Ω for which y⃗
dominates x⃗.

In expensive environments, access to the real objective
function vector F (x⃗) is limited. In these cases, surrogate
modeling can be employed, which main goal is to estimate
the objective functions of a given decision vector through
an approximation technique from a limited amount of data
D = {(x⃗1, F (x⃗1)), . . . , (x⃗η, F (x⃗η))}, where η is the number
of real function evaluations that can be used to train the
model [12]. The estimation of the objective functions of a
given decision vector is formulated as follows, where F̂ (x⃗)
is the predicted objective function and ε(x⃗) is the estimation
error [12]:

F (x⃗) = F̂ (x⃗) + ε(x⃗) (2)

B. Random Forests (RF)

RF is an ensemble method that constructs multiple Clas-
sification and Regression Trees (CART) and aggregates the
individual results. A CART is a supervised learning method
with a binary tree structure that predicts the outcome of
a target decision vector by learning rules inferred from
data [6]. To build a CART, a training data set composed
of measured data is required, which can be described as:
D = {(x⃗1, F (x⃗1)), (x⃗2, F (x⃗2)), . . . , (x⃗η, F (x⃗η))}, where D
is the training data set, (x⃗i, F (x⃗i)) is a pair composed of
a decision vector and its associated objective functions, and
η is the size of the training data set. To build the binary
tree structure, the input space is split into NR disjoint and
non-overlapping regions {R1, R2, . . . , RNR}, and each region
r provides a prediction F̂r = ⟨f̂1(x⃗), f̂2(x⃗), . . . , f̂M (x⃗)⟩.
Figure 1 illustrates the CART binary structure and its regions.

Fig. 1. Illustration of a CART binary tree structure on a hypothetical
problem containing two decision variables, x1 and x2. Depending
on their value, a given decision vector will be associated with its
corresponding region. Each region r will produce a prediction F̂r =
⟨f̂1(x⃗), f̂2(x⃗), . . . , f̂M (x⃗)⟩.

Therefore, in a RF, the final prediction is the average among
the CART predictions. RF are built to reduce the prediction
noise often found in individual decision trees [6]. RF involves
two main randomization process: (i) train each CART with a
randomly selected subset of samples with replacement from
the entire data set D, and (ii) selection of a subset H of
decision variables from the N available decision variables
(H < N). Step (i) is known as bootstrap sampling, where
samples from the data set are randomly selected, with the
possibility of being selected more than once [6]. By employing
randomization of samples (i) and also of the decision variables
(ii), RF guarantee that each CART is unique and the average
result is immune to overfitting [6]. Therefore, given an uneval-
uated decision vector y⃗ that must have its objective functions
predicted, a RF regression model with multiple trained CART
can be described as:

F̂RF (y⃗) =

[
1

C

C∑
c=1

f̂ c
1(y⃗), . . . ,

1

C

C∑
c=1

f̂ c
M (y⃗)

]
(3)

where f̂ c
i (y⃗) is the prediction of the objective function fi by

CART c, and C is the total number of CART. RF have several
hyper-parameters that are used to tune its prediction. The main
hyper-parameters this paper investigates are: (i) the number of
CART built by the RF; (ii) the maximum depth of the tree; (iii)
the minimum number of samples required to split an internal
node; (iv) the number of features to build each tree; and (v)
the number of samples to draw from the original data set with
replacement (bootstrap sampling).

III. RELATED WORK

RF have been analyzed in problems with discrete decision
variables, which have a completely different structure than
continuous optimization, only in a few works. For instance,
[5] developed a random forest-assisted MOEA, whereas the
number of trees and the number of decision variables were
considered as hyper-parameters. [7] proposed a data-driven
optimization framework for combinatorial problems that com-
bines RF and support vector machines. The authors considered
only the number of trees as a RF hyper-parameter. In [8], [9],
two random forest-assisted algorithms for combinatorial opti-
mization were proposed, based on particle swarm optimization
and an improved stochastic ranking strategy, respectively, and
the authors used the number of trees and samples as RF
hyper-parameters. In [10], the authors proposed a random
forest-assisted evolutionary algorithm that was combined with
a competitive neighborhood search mechanism, where the
number of trees was the only hyper-parameter considered.
These methods were tested on the constrained Multi-Objective
Knapsack Problem [13].

Finally, [11] presented MOEA/D-RFTS, a random-forest
assisted MOEA, which was tested on several combinatorial
constrained and unconstrained benchmark problems. The de-
fined hyper-parameters were the number of trees, number of
samples, number of decision variables, the minimum number
of samples to be at the leaf node, depth, and the minimum
number of samples required to split a node. However, no
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hyper-parameter investigation was performed, and the selected
values were based on previous knowledge of the problems.

Each one of these works considered a different subset of
the available RF hyper-parameters. In addition, their specific
values are also divergent and were defined based on either
previous knowledge or through a hyper-parameter tuning that
considered only the investigated optimization functions. There-
fore, it becomes fairly difficult to understand the impacts of
each RF hyper-parameter on the prediction process of prob-
lems with discrete decision variables. Our work contributes
to the literature by providing a systematic investigation of
the effects of several RF hyper-parameter configurations on
the prediction process of different constrained and uncon-
strained combinatorial benchmark problems. Therefore, this
work provides a baseline for hyper-parameter configuration
to guide future research that use RF as a SM technique for
combinatorial optimization.

IV. FRAMEWORK OF MOEA/D-RFTS

MOEA/D-RFTS is a surrogate-assisted MOEA that uses RF
to explore the search space of combinatorial MOP where ac-
cess to the real objective functions is limited due to expensive
evaluations [11]. The overall framework of MOEA/D-RFTS
can be described as follows:
1) Initialization: the algorithms initialization is performed

with the following steps:
a) Randomly generate the initial population of size P;
b) Create a set of P uniformly spread weight vectors using

Simplex Lattice Design [14], and associate each weight
vector to a corresponding individual i;

c) Generate the initial reference point (in the objective
space), which contains the best objective functions found
so far;

d) Define the neighborhood of each individual i, which
contains the T closest individuals to i based on the
Euclidean distance (in the weight vector space), where
T is an user-input parameter;

e) Create a tabu list, a collection of all decision vectors
created so far with no duplicates;

f) Create an external population archive, which stores all
non-dominated solutions found so far;

g) Create and train a RF with the initial population data.
2) Main loop: this step is performed until all offspring have

been created. For each individual, select two parents from
its current neighborhood. If the parents have different
decision vectors, generate an offspring using crossover and
mutation operators. If not, do the following:
a) Calculate the center vector in the objective space of the

current neighborhood.
b) Generate P unique individuals, using local search, that

are not in the Tabu List.
c) Estimate objective function values of the P individuals

using the Random Forest.
d) Compute the Euclidean Distance between each objective

function estimation and the Center Vector.
e) Select as offspring the solution with the closest estima-

tion to the Center Vector.

3) Update population and model: update the current popula-
tion with the new offspring, through a decomposition func-
tion such as Tchebycheff’s [14]. Train the Random Forest
with the new offspring data. Update the external population
if new non-dominated solutions have been found. Update
the tabu list to include the new decision vectors. Also,
update the reference point if better objective functions have
been found;

4) Termination: if the stopping criteria have been achieved,
end the execution and return the external population. If not,
go back to the Main Loop (2).

As can be seen, RF prediction is an important functionality
of MOEA/D-RFTS. A proper definition of the RF hyper-
parameters can increase or decrease the algorithm’s ability to
identify solutions that will effectively improve its convergence.
Therefore, it is crucial to understand the impacts of the RF
hyper-parameters in the convergence process of algorithms
such as MOEA/D-RFTS.

V. METHODOLOGY

This section presents information about the benchmark
problems, performance metrics, and experimental setup. This
paper employs a methodology to test the RF in an online
learning process, since the decision vectors are not given
beforehand, but become available one by one or in batches as
the optimization progresses. Training and testing highly differ
from the conventional offline learning process, where all data
are assumed to be available. Figure 2 presents the flowchart
of the employed methodology.

Fig. 2. Research methodology.

A. Benchmark Optimization Problems
The first benchmark is the Binary Multi-objective Knapsack

Problem (BIN_MOKP), a NP-hard, multi-modal, constrained
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combinatorial optimization problem [13]. Considering a set
of N items and a set of K knapsacks, each item j has an
associated profit pk,j and weight wk,j , where pk,j is the profit
of item j according to knapsack k and wk,j is the weight
of item j according to knapsack k. Each knapsack k has a
capacity ck. The optimization goal is to find the set of solutions
that maximizes Equation (4) [13]:

maximize Fk(x⃗) =

N∑
j=1

pk,j · xj ∀k ∈ {1, . . . ,K}

subject to

N∑
j=1

wk,j ≤ ck : ∀j ∈ {1, 2, . . . , N}

ck = 0.5

N∑
j=1

wk,j

xj ∈ {0, 1}

(4)

where xj = 1 if and only if j is selected. Infeasible individuals
are repaired using a maximum profit/weight ratio mechanism,
given in Equation 5, that interactively removes the items with
the lowest profit per weight unit until all capacity constraints
are fulfilled [13]:

qj = maxK
i=1

{
pk,j
wk,j

}
(5)

A test instance for each problem dimensionality was gen-
erated, considering N uncorrelated weights and profits, where
w and p are random integers in the interval [10, 100].

The second test instance is an unconstrained variant of
the BIN_MOKP called Binary Multi-Objective Unconstrained
Combinatorial Optimization Problem (BIN_MUCOP). In the
BIN_MUCOP, there is no capacity constraint, thus negative
profits are allowed. Thus, an item can have a positive profit
in one knapsack and a negative profit in the other. Equation 6
defines the BIN_MUCOP:

maximize Fk(x⃗) =

N∑
j=1

pk,j · xj ∀k ∈ {1, . . . ,K}

subject to xj ∈ {0, 1}

(6)

Similar to the BIN_MOKP, a test instance was generated
for each dimensionality, with N uncorrelated profits, where p
is a random integer in the interval [-50, 50].

Finally, the last benchmark problem is a modified version
of the BIN_MUCOP called INT_MUCOP, which allows the
picking of each item up to five times, which increases the
search space and the problem complexity. Equation (7) defines
the INT_MUCOP:

maximize Fk(x⃗) =

N∑
j=1

pk,j · xj ∀k ∈ {1, . . . ,K}

subject to xj ∈ {0, 1, 2, 3, 4, 5}

(7)

In these benchmark problems, the objective functions are
conflicting, since each item has uncorrelated and divergent
profits for each knapsack. Therefore, there is not a single
solution that maximizes the profits of all knapsacks, but
several non-dominated solutions that best consider the trade-
offs between the objective functions.

B. Performance Metrics and Statistical Analysis

This work uses the Inverted Generational Distance (IGD)
[15] and the Mean Absolute Error (MAE) [16] as the op-
timization and model evaluation metrics, respectively. The
IGD computes the Euclidean distance between each objective
vector of the approximated front and its closest objective
vector in the reference set, averaged over the size of the
reference set [15]. Equation 8 describes the general formula
of the IGD:

IGD(A,PF ) =
1

PF

|PF |∑
i=1

|A|
min
j=1

dist(PFi, aj) (8)

where A is the approximation front, PF is the true PF (or a
reference set), aj is the j-th element of A and PFi is the i-th
element of PF. In this work, finding the true PF of each test
instance can only be achieved after all possible combinations
of variables have been found, which cannot be achieved by
a MOEA in polynomial time [17]. For this matter, we use
Reference Sets. These sets contain the best solutions found
by all evaluated algorithms, in all independent executions, for
each test instance. The number of solutions in each reference
set is variable, depending on the complexity and dimension-
ality of the test instance. Due to the characteristics of the test
problems, the reference sets have a convex geometry. The Fast
Non-Dominated Sorting [18] method was applied to obtain the
non-dominated solutions found by each compared algorithm,
at each stage of the optimization problems, and also to obtain
the reference sets for each test instance.

MAE calculates the average absolute distance between each
prediction and the respective objective function, according to
the Equation 9:

MAE =

Npred∑
i=1

|F̂ (x⃗i)− F (x⃗i)|
Npred

(9)

where F̂ (x⃗i) are the objective function predictions, F (x⃗i) are
the true objective functions, and Npred is the total number of
predictions. The non-parametric Wilcoxon test [19] was used
with a significance level of 5% in all problems to identify
whether or not the best hyper-parameter configuration of
MOEA/D-RFTS achieved statistically significant superiority
over the compared methods.

C. Experimental Setup

MOEA/D-RFTS was compared with two state-of-the-
art multi-objective algorithms, including the conventional
MOEA/D [14] and MOEA/D-NFTS [20]. All experiments
were run 10 times independently and the initial population
was randomly generated. Algorithm configurations and genetic
operators were defined according to the studies in [20] and
[11]. The number of individuals was set to 100 for the bi-
objective problems and 120 for the three-objective problems.
The stopping criterion was the number of real objective
function evaluations, fixed at 1,000 for two-objective problems
and 1,200 for three-objective problems. A small number of
real objective function evaluations were defined to simulate
an expensive environment where the use of SM would be



DE MORAES et al.: EFFECTS OF THE RANDOM FORESTS HYPER-PARAMETERS IN SURROGATE MODELS 625

justifiable. Concerning the RF hyper-parameter values, the
following possible values were defined, based on values that
would be plausible for the selected benchmark problems:

• trees: 10, 30, 50, and 100;
• samples_split: 2, 4, 6, and 8;
• depth: 10, 30, 50, and None. None means the tree grows

until all leaves are pure or contain a number of samples
less than samples_split;

• samples_leaf: 2, 4, 6, and 8;
• variables: 40%, 60%, 80%, and 100% of the original

number of variables;
• samples: 40%, 60%, 80%, and 100% of the original

number of samples;

VI. RESULTS AND DISCUSSIONS

Table I presents the best and worst RF hyper-parameter
configurations found for each problem. Starting with the
number of trees, the results show that using higher numbers
of trees tends to produce lower MAE for all test instances.
Concerning the tree depth, increasing the tree depth produces
smaller errors in the bi-objective problems. However, despite
some exceptions, the majority of results show that the limitless
growth of a tree will not necessarily promote a more accurate
prediction. For almost all three-objective test instances, a
medium-sized depth produces a more precise prediction.

Concerning the number of samples, it is clear that using a
larger data sampling results in smaller errors, since the best
combinations always contain the maximum allowed number of
samples, in contrast to the worst combinations, which use the
minimum allowed number of samples. This is an important
aspect of the online learning process, since not considering all
the data may lead to selecting a subset of samples that are
distant from both the decision and the objective spaces of the
newly created offspring solutions, which will eventually lead
to poor approximations.

As the number of decision variables, for the binary bi-
objective benchmark problems, using all variables leads to
higher quality approximations. The RF require all data avail-
able from the decision variables to identify the differences
between the decision vectors since they can be very similar
due to their binary nature. This behavior was not observed
in the test instances containing integer variables. For the
INT_MUCOP problem, using the smallest allowed number of
decision variables led to higher quality approximations. Since
this problem contains a larger search space, it is better to
reduce the number of decision variables to avoid including
unnecessary information that would interfere with the learning
process.

The minimum number of samples to split is another impor-
tant source of information. There is a consensus that using the
smallest possible number of samples is always the best choice
for all problems, number of objectives, and dimensionalities.

Nonetheless, according to this study, the most important
hyper-parameter is the minimum number of samples to be at
the leaf node. To demonstrate this evidence, Figure 3 shows
the MAE variations for each hyper-parameter value for the
BIN_MUCOP problem with M = 2 objectives and N = 100

decision variables. There is a considerably high divergence
between the prediction error considering the lowest value (1)
and the highest value (8). Forcing the leaf node to retain
more samples than necessary penalizes the prediction as more
samples will affect the average result of that particular region.
Thus, this hyper-parameter should be defined carefully.

Fig. 3. Boxplot of MAE variations for all possible values for
each hyper-parameter in the BIN_MUCOP problem with M = 2
objectives and N = 100 decision variables.

Following the investigation, an optimization procedure was
performed to compare the effects of the best and worst combi-
nations of the RF model hyper-parameters on the performance
of MOEA/D-RFTS. Table II presents the performance com-
parison between MOEA/D-RFTS and its competitors, namely
MOEA/D [14], a well-known and state-of-the-art MOEA,
and MOEA/D-NFTS [20], which uses diversity preservation
mechanisms and knowledge-assisted local search methods to
enhance the exploration of the search space of the conventional
MOEA/D in expensive problems.

It is notable the importance of a wise hyper-parameter
definition. The best combination of RF hyper-parameter val-
ues allows MOEA/D-RFTS to achieve statistically superior
optimization results than MOEA/D and MOEA/D-NFTS in,
respectively, 14 and 11 test instances out of 18 total test
instances.

Comparing the MOEA/D-RFTS optimization results with
the best hyper-parameter combination with the optimization
with the same algorithm, but with the worst evaluated com-
bination, it achieved superior performance in 9 out of 18
total test instances. However, the evidence suggests that hyper-
parameter tuning is most important in bi-objective problems.
For three-objective problems, the best combination had equiv-
alent performance to the worst combination in 6 out of 9 test
instances, higher performance in only 2 and even a worst
result in one of them. Increasing the number of objectives
enhances the RF performance as the model is trained with
more information, therefore it becomes less sensitive to the
hyper-parameter definition. This evidence is supported by
the average MAE difference between the best and the worst
combinations (collected from Table I) among three-objective
test instances, which is 30.62, in contrast to bi-objective
problems, which is 51.07.

In summary, performing a hyper-parameter tuning of the RF
hyper-parameters showed to be an important step to achieve
better convergence in combinatorial MOP. We did not find
a single combination that works for every scenario, but the
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TABLE I
BEST AND WORST HYPER-PARAMETER CONFIGURATIONS FOR EACH BENCHMARK PROBLEM, NUMBER OF OBJECTIVES (M ), AND

NUMBER OF DECISION VARIABLES (N ) OVER 10 INDEPENDENT RUNS. THE MAE (LOWER IS BETTER) COLUMN CORRESPONDS TO THE
AVERAGE VALUE OVER 10 GENERATIONS. FOR THE COMPLETE RESULTS FOR EACH INDEPENDENT EXECUTION, PLEASE REFER TO THE

SUPPLEMENTARY MATERIAL [21].

Problem M N Rank Tress Depth Samples_Split Samples_Leaf Features Samples MAE

BIN_MOKP 2

100 Best 100 50 2 1 100% 100% 69.40
Worst 10 30 4 8 40% 40% 101.16

300 Best 100 30 2 1 100% 100% 116.27
Worst 10 10 2 8 40% 40% 185.37

500 Best 100 30 2 1 100% 100% 151.30
Worst 10 30 4 8 40% 40% 250.12

BIN_MOKP 3

100 Best 50 30 2 1 40% 100% 62.15
Worst 10 10 6 8 40% 40% 82.57

300 Best 100 50 2 1 60% 100% 113.43
Worst 10 50 2 8 60% 40% 156.70

500 Best 100 30 2 1 40% 100% 115.33
Worst 10 10 2 8 40% 40% 159.62

BIN_MUCOP 2

100 Best 100 None 2 1 80% 100% 65.49
Worst 10 50 8 8 40% 40% 103.04

300 Best 100 10 2 1 100% 100% 101.38
Worst 10 50 4 8 40% 40% 163.20

500 Best 100 None 2 1 100% 100% 100.84
Worst 10 10 6 8 40% 40% 179.01

BIN_MUCOP 3

100 Best 100 10 2 1 40% 100% 57.90
Worst 10 50 6 8 40% 40% 89.83

300 Best 100 None 2 1 40% 100% 81.83
Worst 10 None 4 8 40% 40% 107.92

500 Best 100 None 2 1 80% 100% 82.85
Worst 10 30 4 8 40% 40% 113.83

INT_MUCOP 2

100 Best 100 30 2 1 40% 100% 35.89
Worst 10 10 4 8 40% 40% 56.82

300 Best 100 None 2 1 40% 100% 45.71
Worst 10 30 8 8 40% 40% 70.37

500 Best 50 50 2 1 100% 100% 67.40
Worst 10 50 6 8 40% 40% 104.28

INT_MUCOP 3

100 Best 100 30 2 1 40% 100% 35.89
Worst 10 10 4 8 40% 40% 56.82

300 Best 100 None 2 1 40% 100% 45.71
Worst 10 30 8 8 40% 40% 70.37

500 Best 100 30 2 1 40% 100% 84.09
Worst 10 30 8 8 60% 40% 117.52

TABLE II
MEAN ± STANDARD DEVIATION OF THE IGD (LOWER IS BETTER) METRIC ON THE BENCHMARK PROBLEMS OVER 10 INDEPENDENT
RUNS, ACCORDING TO THE NUMBER OF OBJECTIVES (M ) AND THE NUMBER OF DECISION VARIABLES (N ). THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD. THE MARKERS "+", "=" AND "-" INDICATE THAT MOEA/D-RFTS (BEST) IS STATISTICALLY SIGNIFICANTLY
SUPERIOR (+), EQUIVALENT (=), OR INFERIOR (-) TO THE COMPARED ALGORITHMS, RESPECTIVELY, ACCORDING TO THE WILCOXON

TEST WITH A CONFIDENCE LEVEL OF 0.05. THE LAST LINE SHOWS THE NUMBER OF INSTANCES THAT A GIVEN METHOD ACHIEVED
SUPERIOR ("+")/EQUIVALENT ("=")/INFERIOR ("-") IGD IN COMPARISON WITH MOEA/D-RFTS (BEST).

Problem M N MOEA/D MOEA/D-NFTS MOEA/D-RFTS (Worst) MOEA/D-RFTS (Best)

BIN_MOKP 2
100 519.5 ± 106.6 (+) 473.2 ± 81.0 (+) 350.3 ± 78.4 (+) 250.8 ± 43.9
300 1450.0 ± 196.4 (+) 1447.7 ± 165.7 (+) 1321.0 ± 149.6 (+) 1147.2 ± 186.8
500 2868.9 ± 193.8 (+) 2735.4 ± 402.1 (+) 2726.3 ± 308.8 (+) 2451.0 ± 240.1

BIN_MOKP 3
100 447.7 ± 55.2 (+) 361.8 ± 72.5 (+) 296.7 ± 69.3 (=) 287.1 ± 64.7
300 1313.3 ± 145.1 (+) 1211.2 ± 158.8 (-) 1291.0 ± 148.1 (=) 1266.3 ± 162.8
500 2677.3 ± 350.0 (+) 2589.0 ± 231.5 (+) 2305.5 ± 397.3 (=) 2427.0 ± 231.4

BIN_MUCOP 2
100 307.1 ± 46.3 (+) 293.5 ± 37.0 (+) 217.1 ± 48.7 (+) 183.8 ± 43.6
300 1635.8 ± 103.9 (+) 1583.3 ± 128.8 (+) 1288.3 ± 123.7 (+) 1196.4 ± 121.8
500 3025.2 ± 208.2 (+) 3024.2 ± 284.7 (+) 2679.1 ± 216.7 (+) 2515.7 ± 191.5

BIN_MUCOP 3
100 279.5 ± 26.7 (+) 252.8 ± 40.7 (+) 248.2 ± 30.2 (+) 218.1 ± 30.5
300 1337.4 ± 122.8 (+) 1290.3 ± 121.3 (+) 1312.7 ± 168.3 (=) 1219.2 ± 87.2
500 2509.9 ± 261.9 (+) 2462.6 ± 225.4 (+) 2323.4 ± 214.0 (=) 2364.1 ± 205.3

INT_MUCOP 2
100 528.6 ± 33.8 (+) 500.7 ± 57.6 (=) 489.4 ± 60.3 (+) 478.7 ± 69.3
300 1501.7 ± 164.1 (=) 1493.7 ± 130.8 (=) 1518.5 ± 115.5 (=) 1472.4 ± 70.3
500 2327.5 ± 221.5 (=) 2314.1 ± 154.8 (=) 2361.0 ± 202.9 (=) 2317.8 ± 175.8

INT_MUCOP 3
100 412.0 ± 47.1 (+) 364.8 ± 27.4 (=) 400.0 ± 67.6 (+) 375.8 ± 40.6
300 1142.8 ± 181.8 (-) 1126.0 ± 78.2 (-) 1132.0 ± 104.7 (-) 1227.8 ± 104.5
500 2075.0 ± 167.1 (=) 2093.2 ± 183.0 (=) 2100.0 ± 141.9 (=) 2081.6 ± 161.6

+ / = / - 1 / 3 / 14 2 / 5 / 11 1 / 8 / 9

evidence shows that the number of samples to consider when
building each CART and the minimum number of samples
to be at the leaf node are less problem-dependant and can
severely impact the RF prediction process.

VII. CONCLUSIONS AND FUTURE WORK

This work presented a research investigation concerning the
impacts of the Random Forest (RF) hyper-parameters in the
surrogate modeling of multi-objective combinatorial optimiza-
tion problems. The results show that proper hyper-parameter
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tuning is important to achieve statistically superior results,
especially in bi-objective problems. The RF model tends to
become less sensitive to the hyper-parameter definition when
the number of objectives increases. The two most important
hyper-parameters to be defined are the number of samples to
use and the minimum number of samples to be at the leaf
node, which must be selected carefully. For future research,
we intend to evaluate the RF performance in more extreme
conditions, considering even fewer data, and also in problems
containing more than three objective functions.
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