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Abstract— This paper uses collinearity and causality tests to 

choose variables for an input vector to forecast the electrical power 

generated by a photovoltaic system. The collinearity test determines 

redundant variables, and the causality test determines which 

variables cause the electric power. The chosen input vector is used 

to train nonlinear autoregressive models with external inputs neural 

networks (NARX-NN). We develop an algorithm to generate NARX 

models with an all variable combinations algorithm (AVCA) to 

validate the results. Finally, we compare the results of the proposed 

methodology against the best results obtained by the AVCA; the 

algorithm tests 502 input vectors with the NARX model to forecast 

26 steps (a day ahead) of the electrical power. The best model chosen 

using the collinearity and causality techniques has an RMSE of 308 

W for the electric power using four variables in the input vector; the 

best model using the AVCA has an RMSE of 305 W using five 

variables in the input vector. Results show that the collinearity and 

causality techniques are a direct way to select the input vector 

without affecting the model’s performance and results in a 

reduction of the input vector length. 

 
Index Terms—Neural Network, Electrical Power, Input Vector, 

Photovoltaic System, Collinearity and Granger Tests 

I. INTRODUCTION 

orecasting the solar irradiance and the power generated by 

(PV) systems is essential for control and management in 

smart grids. For this reason, many mathematical, numerical, 

statistical, and machine learning techniques have been 

implemented [1]. 

Generally, the best approaches are those models that 

implement several variables as input vectors. One of the 

problems of multivariable models is finding the best 

combination of variables to build the input vector. This problem 

increases when there are many variables. 
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In this work, we propose using statistical techniques to find the 

optimal inputs in a NARX model to forecast the electric power 

of a PV system, focusing on the impact of the input vector on 

the network's performance; for this, we use nine variables. The 

approach starts by identifying redundant variables in the models 

using the collinearity test. The causality test is then used to find 

the variables containing helpful information to forecast the 

generated electric power in a photovoltaic system. Finally, we 

validate the results using NARX models developed with all 

combinations of the available variables and measure the 

performance using the MSE, RMSE, and R2 indexes. 

For best comprehension, we divide this work into five 

sections. Section II presents research works about input vector 

selection and NARX models applications. It is also pointed out 

where other authors do not study the selection of the input 

vector, leaving a gap that can be filled by the proposal in this 

work. Section III shows the implementation of mathematical 

tools and the development of the NARX models. Section IV 

presents the results and discussions. Finally, conclusions are 

presented in Section V. 

II. RELATED WORKS 

Much research has been done to forecast solar irradiance and 

the power generated by PV systems. The reason is apparent, 

nowadays it is an essential field and much work is ahead. 

Different approaches are used for this purpose, such as 

statistical methods, artificial neural network (ANN) techniques, 

and a combination of several techniques (hybrid models) [2]. 

A few works have focused on the variables for input vectors 

in ANN models, for instance, Hocaoglu et al. successfully 

implemented Granger causality to determine which 

meteorological variables contain information that causes solar 

irradiance, but no forecasting model was implemented [3]. Eom 

et al. used a regression model and a significance level of 95% 

to remove irrelevant variables; they tested the input vector in 

VAR and long short-term memory (LSTM) models but did not 

try all combinations to validate their results [4]. In addition, the 

linear regression models do not consider the lag effect, which is 

essential in the time series analysis. Rangel et al. forecasted 1 

hour ahead of solar irradiance and 24 hours ahead of electrical 

power for a PV module in [5], [6], respectively; they estimated 

the energy in the PV system using a single diode model. These 

authors performed an exhaustive analysis of the variables to 

build the input vector but did not apply the proposed techniques 

to a PV system; also, not all variable combinations were tested 

to validate the results. 
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An example of a multivariable statistical model is presented 

by Yanting et al. that used an ARMAX model for daily 

electrical power prediction of a grid-connected PV system. The 

selection of inputs is based on the Bayesian information 

criterion (BIC), however, the information on other variable 

combinations is not reported [7]. 

Among the ANN paradigms, there are approaches to forecast 

solar irradiance based on neural networks, such as the feed-

forward neural network (FFNN) proposed by Sharma et al. in 

[8], where they performed one hour and fifteen minutes ahead 

of predictions. Their contribution is the usage of Morlet and 

Mexican hat wavelets as activation functions in the hidden 

layer, employing values of the clear sky index as inputs of the 

FFNN model. However, this work does not consider the impact 

of other variables on solar irradiance behavior. Liping Liu et al. 

investigated the effects of PV electrical power variability and 

proposed a data-driven ensemble modeling technique to 

improve the prediction accuracy of PV power generation one 

day ahead. Disposing of six meteorological variables, they used 

SVM, multivariate adaptive regression spline (MARS), and 

MLP. The authors compared the performance of the mentioned 

models and concluded that the best results are obtained with a 

recursive arithmetic average ensemble model. The scope of the 

work does not include an analysis of the combination of 

variables for the input vectors [9]. Alkandari & Ahmad 

implemented deep learning (DL) and statistical methods to 

predict a day ahead of the electric power generated in a PV 

system; the DL model included LSTM, gated recurrent unit 

(GRU), and AutoEncoder LMST (Auto-LSMT), however, it 

did not included the analysis of the variables for the input vector 

[10]. Chuluunsaikhan et al. implemented machine-learning 

techniques to predict the power output of solar panels based on 

fifteen weather and air pollution variables; however, it lacks a 

deeper study of the input variables to determine the best 

combination of input vector space [11]. Dawan et al. compared 

electrical power output forecasting on the PV systems using 

adaptive neural-fussy inference system (ANFIS) and particle 

swarm optimization – artificial neural network, with 

temperature and solar radiation as inputs [12]. The authors only 

used two variables, ignoring the possible effects of other inputs; 

the best model reported was the ANFIS. 

Finally, Ahmad et al. compared NARX models against MLP 

and ARMA; in the case of the multivariable models, twelve 

input vectors were tested [13]; again, many potential input 

vectors were not considered for the analysis. In a similar work, 

Hussain & Al-Alili compared a NARX model against an 

artificial network fuzzy inference system (ANFIS) using four 

meteorological variables to build the input vector [14]; in both 

cases the NARX models performed better than the ANFIS. 

NARX neural network models are powerful and popular to 

solve several problems in nonlinear control applications. 

NARX models are chosen for rapid training, convergence 

speed, and strong representativeness, and have been 

implemented successfully in [5], [6], [13], [15], and [16]. 

Louzazni et al. proposed two approaches using NARX models 

to estimate the electrical power output in a PV system using 

temperature and solar irradiance; the prediction was not 

considered in these works [15], [16]. 

Among hybrid models, Jimenez and Mora present a hybrid 

model that implements DT, ANNs, and SVMs to forecast 

hourly global solar radiation (GSR). However, the selection of 

variables for the input space is not considered as only a pair of 

input vectors are tested [2]. 

Azimi et al. integrated techniques to predict 1, 24, and 48 

hours ahead of solar radiation, such as a modified k-means 

clustering algorithm and an MLP [17]. Boland et al. proposed 

three methods to forecast one-hour ahead solar radiation, 

combining statistical models, Fourier series, plus ARMA 

models [18]. Monjoly et al. also proposed hybrid models with 

multiscale decomposition, neural networks, and ARIMA 

techniques to predict hourly global solar radiation [19]. Chen & 

Kartini developed a k-NN-MLP model to predict 60 minutes 

before global solar irradiance employing past meteorological 

data [20]. The works mentioned before are univariate models, 

therefore, the impact of other weather variables is not 

considered. 

Using DL models named FFNN, GRU-RNN, and LSTM-

RNN, du Plessis et al. carried out short-term power forecasting 

and investigated the ability of DL models to represent the PV 

systems' behavior; the models forecasted 1-6 h for a 75 MW 

rated PV system. The best results were obtained with FFNN and 

GRU-RNN [21]. Input vectors are formed by power, six 

weather variables, and three geographical variables. They 

focused on the parameters of the models, but the effect of input 

vector variables is not considered. 

In the literature, we found many multivariable models [2], 

[5]–[7], [9]–[16], [20]–[22]. Nevertheless, these authors 

focused their efforts on selecting the best model, finding the 

best model combination, and implementing a powerful DL 

model; other authors implemented univariate models like in [8], 

[18], [23], and [24]. The model selected is based on the 

following factors: the available data, the length of the data, the 

data resolution, and the inclination of the authors in choosing 

between techniques and methods. 

As a result, there is still room to propose selecting the 

variables for the input vector. Therefore, this work proposes to 

implement two statistical techniques to identify the appropriate 

variables for the input vectors of a model. To validate the results 

of the proposed method, we developed an algorithm to test all 

variable combinations of input vectors. 

III. IMPLEMENTATION OF MATHEMATICAL TOOLS AND 

DEVELOPMENT OF THE NARX MODELS 

This section presents the results of the data preprocessing, the 

collinearity and causality tests, and the development of the 

NARX models. First, possible missing data is completed by 

linear interpolation; refer to (1). Next, outlier values are 

identified by the z-score method using a threshold of three; refer 

to (2) [25]–[27]. 

 

𝑥̃(𝑡) =
𝑥𝑘+1 − 𝑥𝑘
𝑡𝑘+1 − 𝑡𝑘

(𝑡 − 𝑡𝑘) + 𝑥𝑘 (1) 

 

where 𝑥̃ is the interpolated datum, 𝑥𝑘 , 𝑥𝑘+1 are the data points 

corresponding to 𝑡𝑘, 𝑡𝑘+1, and 𝑡 is the time for the interpolated 

datum 𝑥̃. 
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𝑍𝑡 =
𝑌𝑡 − 𝑌̅

𝜎
 (2) 

 

where 𝑍𝑡 is the ith transformed datum, 𝑌𝑡 is the ith datum of the 

time-series, 𝑌̅ is the time-series average, and 𝜎 is the time-series 

standard deviation [28], [29]. 

Then, we apply the collinearity test, followed by the causality 

test [3], [30]–[32], to obtain the input vectors used to develop 

the NARX models. 

A. Missing values and outliers (Data cleaning) 

As previously mentioned, we apply a linear interpolation 

technique for missing data. The data sample used in this work 

is from August 22 to December 31, 2018. We configure the 

dataset by completing 26 values for each day from 6:00 to 18:30 

hours to forecast 26 steps; the sample resolution is of 30 

minutes completing a total data of 3,430. 

There are nine variables, electrical power (EP), solar 

irradiance (SI), wind direction (WD), humidity (H), heat index 

(HI), pressure (P), dew point (DP), temperature (T), and wind 

speed (WS). 

TABLE I shows the variation in percentage between the 

missing data with and without linear interpolation in descriptive 

statistics: mean, median, and standard deviation. Higher 

variation is observed for 30% and 34% of missing data, 

however, the difference is generally slight and the original time 

series patterns are used for the NARX models to learn the 

appropriate stochastic behavior. 

 
TABLE I. 

 METRICS DIFFERENCE BETWEEN ORIGINAL AND LINEAR INTERPOLATION DATA 

Month Metric (%) 
Variable 

EP SI WD H HI P DP T WS 

Aug 

Missing data 20.0 % 

Difference in 𝜇 -6.9 -5.0 0.4 -0.6 0.0 0.0 -0.4 0.1 -0.6 

Difference in 𝑀 -6.6 -3.8 16.7 0.0 0.2 0.0 -0.4 0.1 0.0 

Difference in 𝜎 1.6 -0.4 -3.2 -2.4 1.5 2.0 1.8 0.3 -10 

Sep 

Missing data 30.0 % 

Difference in 𝜇 -8.1 -6.1 -0.7 1.7 -0.4 0.0 0.4 -0.7 4.0 

Difference in 𝑀 -13.1 -12.4 0 1.9 -0.3 0.0 0.6 -0.8 0.0 

Difference in 𝜎 1.5 1.5 -5.1 -1.9 -1.0 -1.2 -2.6 -1.8 5.9 

Oct 

Missing data 34.0 % 

Difference in 𝜇 -13.7 -8.5 1.2 3.0 -1.9 0.0 -1.8 -2.8 -0.2 

Difference in 𝑀 -20.0 -11.5 0 0.94 -2.8 0.0 -2.4 -3.9 0.0 

Difference in 𝜎 0.71 -0.82 -4.4 3.6 2.9 11.6 -3.3 4.0 4.3 

Nov 

Missing data 27.0 % 

Difference in 𝜇 -6.1 -3.3 3.2 3.2 0.3 0.0 5.5 -0.7 -9.7 

Difference in 𝑀 -9.7 -2.1 0 0 -0.1 0.0 2.2 -0.3 -50.0 

Difference in 𝜎 -0.6 2.2 -4.8 3.4 -0.4 -3.3 -6.7 0.5 -6.7 

Dec 

Missing data 6.0 % 

Difference in 𝜇 -4.2 -3.8 -0.6 1.2 -0.4 0.0 0.0 -0.8 -3.4 

Difference in 𝑀 -5.1 -5.4 0.0 0 -0.4 0.0 -0.6 -0.8 -50 

Difference in 𝜎 2.2 2.0 -0.4 1.33 1.5 -1.0 -0.6 1.8 1.0 

 

Once we completed the missing data step, we use the z-score 

to identify outlier values. TABLE II shows a summary of the 

results and the descriptive statistics with and without outliers. 

We only detect outlier values in five variables, HI, P, DP, T, 

and WS, where WS is the variable with the more significant 

number of outliers. It is clear that the variation between 

statistical metrics is slight, suggesting that outliers do not have 

a significant effect when the data length is large. 

 
TABLE II.  

STATISTICAL DESCRIPTIVE RESULTS WITH AND WITHOUT OUTLIERS 

Var Outliers 
Without exclude the outliers Excluding the outliers 

Mean Std Skewness Kurtosis Mean Std Skewness Kurtosis 

EP (W) 0 1101.9 804.8 0.05 1.53 1101.9 804.8 0.05 1.53 

SI  
(W/m2) 

0 500.1 346.4 0.06 1.55 500.1 346.4 0.06 1.55 

WD (°) 0 164.8 73.6 0.06 1.68 164.8 73.6 0.06 1.68 

H (%) 0 45.5 17.2 0.35 2.72 45.45 17.2 0.35 2.72 
HI (°C) 6 27.9 9.3 0.65 5.68 27.8 8.9 0.14 2.15 

P (inHg) 9 29.2 0.1 0.21 3.23 29.2 0.1 0.30 3.05 

DP (°C) 3 12.9 8.4 -0.43 2.37 12.9 8.4 -0.42 2.34 
T (°C) 10 26.8 6.8 -0.20 2.49 26.9 6.7 -0.15 2.37 

WS 

(m/s) 
85 2.9 1.6 1.35 7.37 2.7 1.3 0.30 2.96 

 

Fig. 1 presents the iterative way the z-score detects outliers 

equal to or greater than the chosen value of three, once the data 

is standardized with the z-score (the mean and standard 

deviation are recalculated when an outlier is found and deleted). 

The outliers are replaced with the average of the 

corresponding variable. 

 

 
Fig. 1. Iterative way to detect outliers for wind speed. 

B. Generating of the Input Vectors First Step 

In this section, the collinearity test is applied to the time series. 

This procedure aims to establish a first approach for building 

the input vectors in the NARX models, finding redundant 

variables in the input space. After that, the Granger causality 

test will be applied to these results to obtain the input vectors 

used in the NARX models.  
 

 
Fig. 2. Collinearity test results. 

 

For the Belsley collinearity diagnostics, the condition index 

tolerance (conIdx) is set to 30. For the Variance-decomposition 
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proportion, tolerances (tolPorp) are set to 0.5 as suggested by 

[30]. This is shown in Fig. 2, where the continuous line 

represents the results when the tolPorp is higher than 0.5; the 

conIdx is higher than 30. In this case, the redundant variables 

are H, HI, P, and DP (from now on, we represent the collinear 

variables in bold for easy reference). The condition indices for 

a scaled matrix 𝑋 identify the number and strength of any near 

dependencies in 𝑋, and Variance-decomposition proportions 

determine groups of variables involved in near dependencies 

and the extent to which these dependencies degrade the 

regression [30]. 
 

TABLE III. 
 INPUT VECTORS FROM THE COLLINEARITY TEST 

Group 1 EP, SI, WD, H, T and WS 

Group 2 EP, SI, WD, HI, T and WS 

Group 3 EP, SI, WD, P, T and WS 

Group 4 EP, SI, WD, DP, T and WS 

 

After applying this test, we find four collinear variables, and 

place them in different groups; TABLE III shows the four groups 

that result from the collinearity test. Then, we obtain the final 

input vector by applying the causality test to each group. 

C. Generating the Input Vectors Second Step 

After the collinearity test, we use the causality test (refer to (3) 

and (4)) to build the input vectors for the NARX models. The 

causality test aims to determine which variables contain 

information to predict the generated power of the PV system. 

We can extend the causality test to more than two variables 

by applying the vector autoregressive (VAR) technique to 

several variables. In this case, we have nine equations, one for 

each variable. However, for practical purposes we only show 

the equation for two variables: 

 

𝑌𝑡 =∑𝛼𝑖𝑋𝑡−𝑖

𝑛

𝑖=1

+∑𝛽𝑗𝑌𝑡−𝑗 + 𝑢1𝑡

𝑛

𝑗=1

 (3) 

𝑋𝑡 =∑𝜆𝑖𝑌𝑡−𝑖

𝑛

𝑖=1

+∑𝛿𝑗𝑋𝑡−𝑗 + 𝑢2𝑡

𝑛

𝑗=1

 (4) 

 

where 𝑋𝑡 represents any variable, for example, the electric 

power; 𝑌𝑡 can represent any meteorological variable; 𝑢1𝑡 is the 

uncorrelated white noise; 𝛼𝑖, 𝛽𝑗, 𝜆𝑖, and 𝛿𝑗 are parameters to be 

determined using Ordinary Least Squares (OLS); and 𝑛 is the 

number of lags [31]. 

Before carrying out the causality test, first we apply the 

Augmented Dickey-Fuller (ADF) test to ensure the stationarity 

(the statistical properties of a process generating a time series 

do not change over time) of the time series. TABLE IV displays 

a summary of the ADF test; the lag length is set using the 

Schwarz information criterion [33]. The exogenous column in 

TABLE IV depends on the time series characteristics like the 

deterministic trends and other patterns present in the time 

series. The null of the ADF test is that the time series is not 

stationary. Since the p-value is smaller than 0.05, we reject the 

null; therefore, the time series are stationary. The Durbin-

Watson statistical test is in the range of 1.85 – 2.15, so there is 

no evidence of autocorrelation [34]. 
TABLE IV.  

SUMMARY UNIT ROOT TESTS 

Time  

series 
Exogenous 

Lag  

Length 
p-value Durbin-Watson 

EP Constant 28 0.00 1.99 

SI Constant 27 0.00 2.00 

WD Constant 27 0.00 2.00 
H Constant 27 0.00 1.99 

HI Constant Linear Trend 27 0.00 1.99 

P Constant 26 0.00 1.99 
DP Constant Linear Trend 3 0.00 1.97 

T Constant Linear Trend 29 0.00 1.95 

WS Constant 0 0.00 2.02 

 

Once we guarantee the time series are stationary, we apply 

the Granger causality test to the four variable groups obtained 

from the collinearity test. TABLE V summarizes the causality 

test for the four groups of variables. 
 

TABLE V. CAUSALITY TEST RESULTS 

Group 1  

(Dependent variable: Power) 

Lags: 28 

Group 2 

(Dependent variable: Power) 

Lags: 28 

Independent 

variables 
p-value 

Independent 

variables 
p-value 

SI 0.0000 SI 0.0000 
WD 0.0449 WD 0.0396 

H 0.0000 HI 0.0000 

T 0.7763 T 0.3165 

WS 0.3847 WS 0.4706 
Group 3 

(Dependent variable: Power) 

Lags: 28 

Group 4 

(Dependent variable: Power) 

Lags: 30 

Independent 

variables 
p-value 

Independent 

variables 
p-value 

SI 0.0000 SI 0.0000 

WD 0.0045 WD 0.0232 

P 0.0008 DP 0.2409 

T 0.0054 T 0.0002 

WS 0.4802 WS 0.5397 

 

The null indicates that the independent variables have 

information to predict the dependent variable. Then, for a p-

value greater than 0.05 we reject the null, and therefore, we 

remove the variables with a p-value greater than 0.05. Once we 

finish with the causality test, we can build the input vector for 

the NARX models. From Group 1 we obtain Input vector 1: SI, 

WD, H, removing T and WS. From Group 2, we obtain Input 

vector 2: SI, WD, HI, extracting T and WS with p-values in 

bold (TABLE V) and so on for Input vectors 3 and 4. Finally, 

TABLE VI shows the input vectors. Notice that we kept the 

variables that, according to the causality test, have helpful 

information to forecast the electric power. 

D. Choosing the Lag Number for NARX Models 

We implement the autocorrelation function (ACF) test [5], [6] 

for the lag number. This test is only applied to the dependent 

variable (EP) and we choose the lag number depending on this 

result; for the ACF refer to (5). 
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𝑟𝑘 = ∑
(𝑌𝑡 − 𝑌̅)(𝑌𝑡−𝑘 − 𝑌̅)

∑ (𝑌𝑡 − 𝑌̅)𝑛
𝑡=1

2

𝑛

𝑡=𝑘+1

 (5) 

 

where 𝑟𝑘 is the autocorrelation value in lag 𝑘, 𝑌𝑡 is the value in 

time 𝑡, and 𝑌̅ is the mean of the time-series. 

In Fig. 3 we show the results for the ACF test with and 

without differentiating the time series; Fig. 3 a) and b), 

respectively. The ACF test displays a sinusoidal form, 

indicating the presence of seasonality, as the peak repeats itself 

every 13 lags. We also see that with the first difference the 

seasonal behavior disappears. 

 

  
a) b) 

Fig. 3. a) ACF without differentiation and b) ACF first difference. 

E. NARX models using inputs from collinearity and causality 

We develop the NARX models using Matlab®. From the 3,430 

available data, we use a first set of 3,250 data points to establish 

the NARX models split into three groups: 70% for training, 

15% for validation, and 15% for testing. We use the remaining 

data set to evaluate the accuracy of the NARX models to 

forecast 156 steps ahead of the electric power of the PV system, 

and we implement the RMSE and R2 metrics (refer to 7 and 8) 

to measure the performance of the forecasted data. To obtain 

the NARX models for the training stage, we use the MSE as a 

performance function (refer to 6). 

The NARX models are configured with ten neurons in the 

hidden layer, hyperbolic tangent sigmoid activation function in 

the hidden layer, and linear transfer function in the output layer. 

We use the Levenberg-Marquardt backpropagation (LMB) and 

the Bayesian regularization backpropagation (BRB) algorithms 

as training functions. The NARX models are trained with the 

input vector obtained by using the collinearity and causality 

tests. Hereinafter, the NARX models that implement the 

collinearity and causality tests are denoted with the prefix CC 

(collinearity and causality) and the suffix 1, 2, 3 or 4 (number 

of input vector), e.g., the CC_NARX_1 model corresponds to 

the NARX model developed with the Input vector 1, obtained 

with the collinearity and causality tests. 
 

TABLE VI 
. NARX MODELS BUILD AFTER APPLIED COLLINEARITY AND CAUSALITY TESTS 

Model Lags Number Input vectors Output retraining 

CC-NARX_1 13 EP, SI, WD, H EP 20 

CC-NARX_2 13 EP, SI, WD, HI EP 20 

CC-NARX_3 13 EP, SI, WD, P, T EP 20 
CC-NARX_4 13 EP, SI, WD, T EP 20 

 

TABLE VI shows the NARX models, number of lags, input 

vector, output, and the number of times these are retrained with 

input vectors obtained from the collinearity and causality tests. 

TABLE VII shows the metrics for the fit curve with the four 

NARX models for total performance, training, validation, and 

testing. As has been established, according to the MSE, the best 

models are CC-NARX_1 and CC-NARX_2. The function that 

measures the NARX models’ performance during training, 

validation, and test stages is the MSE. 

 
TABLE VII.  

METRICS FOR FIT CURVE NARX MODELS 

Model Total MSE Train MSE Val MSE Test MSE 

CC-NARX_1 5.53×104 4.73×104 7.94×104 6.88×104 

CC-NARX_2 5.59×104 5.10×104 7.29×104 6.21×104 

CC-NARX_3 6.03×104 5.60×104 7.12×104 6.97×104 

CC-NARX_4 5.96×104 5.65×104 7.20×104 6.17×104 

F. NARX Models Development With the all Variable 

Combinations Algorithm (AVCA) 

The collinearity and causality test are techniques that focus on 

statistical models, and the application along with ANN 

networks is a new topic. To validate the results, we use all 

variable combinations for input vectors in NARX models, and 

the best results are reported in this work; we develop a code that 

uses to the 𝑘 −combination formula (6) to generate 502 input 

vectors. 
 

𝑁 =
𝑛!

𝑘! (𝑛 − 𝑘)!
 (6) 

 

where 𝑛 is the total number of variables (nine in our case study) 

and 𝑘 is the variable number that will be part of the input vector, 

2, 3, …, 9, and 𝑁 is the number of all possible combinations. 

TABLE VIII shows the best ten NARX models from all 

possible combinations of the variables. The results are ordered 

first by Total MSE (whole sample) value and then by test MSE 

(only data for test) value; refer to (7). Then, we use the best ten 

models to compare the results with the NARX models trained 

with the input vectors obtained from the collinearity and 

causality test.  

We see that the best model is the NARX_406, followed by 

the NARX_322; the worst model is the NARX_117 at the end 

of the table. 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑡 − 𝐹𝑡)

2

𝑛

𝑡=1

 (7) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (8) 

𝑅2 = 1 −∑(𝑌𝑡 − 𝐹𝑡)
2

𝑛

𝑡=1

∑(𝑌𝑡 − 𝑌̅)2
𝑛

𝑡=1

⁄  (9) 
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TABLE VIII. NARX MODEL RESULTS OF TEN BEST VARIABLES POSSIBLE 

COMBINATIONS 

Index Input Total MSE Train MSE val MSE test MSE 

NARX_406 EP, P, T 5.10×104 4.09×104 8.37×104 6.52×104 

NARX_322 SI, WD, P, DP 5.47×104 4.65×104 6.92×104 7.80×104 

NARX_80 
EP, SI, HI, DP, 

T, WS 
5.48×104 4.04×104 7.79×104 9.87×104 

NARX_223 
SI, H, HI, P, 

WS 
5.54×104 4.70×104 7.66×104 7.33×104 

NARX_199 
EP, HI, DP, T, 

WS 
5.63×104 4.69×104 7.09×104 8.55×104 

NARX_283 EP, WD, HE, P 5.64×104 4.48×104 5.97×104 1.07×105 

NARX_158 
EP, SI, HI, P, 

WS 
5.64×104 4.30×104 9.28×104 8.25×104 

NARX_328 SI, H, HI, P 5.69×104 5.31×104 7.05×104 6.13×104 

NARX_295 EP, H, HI, T 5.71×104 4.69×104 7.34×104 8.80×104 

NARX_117 
SI, WD, P, DP, 

T, WS 
5.74×104 4.99×104 6.81×104 8.20×104 

IV. RESULTS AND DISCUSSIONS 

In this section, using the RMSE and R2 metrics we compare the 

forecasting performance of the NARX models trained with the 

vectors obtained from the collinearity and causality tests, to the 

best 10 NARX models obtained from the algorithm for all 

variable combinations. 

A. Best NARX Models from the Proposed Methodology 

Versus the Best NARX Models Obtained from all combinations 

Fig. 4 and Fig. 5 show the RMSE performance for NARX 

models. In Fig. 4, we offer the RMSE of the four best NARX 

models that use input vectors obtained from the collinearity and 

causality tests. In Fig. 5, we show the RMSE of the ten best 

NARX models that use input vectors obtained from the AVCA 

algorithm; for the RMSE calculation refer to (8). 

The RMSE performance is calculated using the forecasted 

data points obtained from each NARX model and the data set 

(156 data) not used for training. 

We see that the best NARX model from the proposed scheme 

is the CC_NARX_2 with an RMSE of 308 W for the electric 

power of the PV system, trained with the LM training function. 

On the other hand, the best NARX model from the AVCA 

algorithm is the NARX_158 with an RMSE of 305 W, using the 

LM training function. 

 
Fig. 4. RMSE for 156 steps ahead implemented CC-NARX Models. 

 
Fig. 5. RMSE for 156 steps ahead using the best ten models obtained by all 

variable combinations 

 

 
a) 

 
b) 

Fig. 6. CC-NARX-2 implementation. a) 156 of real data points versus the 

forecasting model. b) 26 data points. 

 

Fig. 6 a) displays the actual time series of the power versus 

the forecasted data obtained with the CC_NARX_2. As can be 

seen, the model fails mainly on days 1 and 3. Fig. 6 b) shows 

the third day, where the solid points represent the actual data, 

whereas the line with square markers results from the forecasted 

data obtained by the CC_NARX model. The vertical dashed 

line represents the relative error between the actual and 

predicted data. 

According to the RMSE values, the NARX_158 model is 

slightly superior to CC-NARX_2; the R2 metric (refer to (9)) is 

86% for both models, as can be seen in Fig. 6 a) and Fig. 7 a). 

These results indicate that the NARX models built with the 

input from the collinearity and causality tests show trusty and 

quick ways of finding the input vector. 
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a) 

 
b) 

Fig. 7. NARX_158 implementation. a) 156 of real data points versus the 

forecasting model. b) 26 data points 

V. CONCLUSION 

This work aims to fill the gap in selecting the most relevant 

variables in the input vectors for multivariable models based on 

machine and deep learning paradigms. We achieve this through 

collinearity and causality tests, and validate the results by 

developing the AVCA. 

The AVCA tests all possible variable combinations to be 

used as input vectors in NARX models. We compared the 

results of the NARX models developed with input vectors 

obtained with the collinearity and causality tests to the NARX 

models created with the input vectors obtained from the AVCA. 

The results show that the proposed methodology is effective 

and can be implemented in multivariable models to improve 

their performance, reducing the number of variables with 

minimal loss of accuracy and achieving a parsimonious state in 

models, saving time, money, and computational resources. 

Furthermore, the NARX models trained with the LMB 

algorithm perform better for the NARX models that use the 

proposed methods than the best NARX models obtained from 

the AVCA. The models fail on days with substantial solar 

radiation followed by a day with slight solar radiation; the 

models try to mimic the previous time series pattern because of 

lags. The external input in the models tries to correct the 

forecasting result. The proposed methodology provides a way 

to choose the variables to build the input vector in multivariable 

models. Even more, we can use this methodology for selecting 

the most convenient sensors to measure the meteorological 

variables containing helpful information to forecast the electric 

power in smart grids, reducing costs in sensor number and computational time, 

translating into a saving of time and money. The dataset of the PV system used 

in this work has a time frame of five months; however, the authors intend to 

extend its duration, for example, to one year, in future studies. This could help 

to answer questions such as how stable the proposed methodology is or how the 

results change as a function of the length of the dataset. This work helped to 

determine the variables that contain critical information needed to forecast the 

electric power in a PV system, thus allowing for a reduction in the size of the 

needed input vector. Although the authors believe this outcome has more to do 

with the physical nature of the variables and that the results will not 

considerably change with larger datasets, this also has to be investigated. 
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