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Stochastic Modeling and Analysis of the Energy
Consumption of Wireless Sensor Networks

Felipe P. Correia, Marcelo S. Alencar and Karcius D. R. de Assis

Abstract—Energy management in Wireless Sensor Networks
(WSN) is a challenging problem that calls for careful modeling
and analysis. It is shown in the paper that the problem can
be more precisely characterized by calculating the probability
distribution function (PDF) and the maximum and minimum
values of the energy consumed by the network. As a result,
this paper provides a novel approach for modeling and assessing
the probability range of energy expended by WSN nodes. The
steps that were taken for developing this project were: (1)
an initial investigation into the power consumption of WSN
devices; (2) the proposal of a stochastic model for consumption;
(3) the collection of data using the LoRaWANSim simulator;
and (4) the interpretation and comparison of simulation with
theoretical results. The examination of the suggested method
with a discrete-event simulator and the resulting mathematical
expressions provide a deeper insight into the energy consumption
patterns of WSNs.

Index Terms—Internet of things, wireless sensor networks,
energy consumption, stochastic model.

I. INTRODUCTION

A WSN is an infrastructure formed by equipment for mea-
suring, controlling, and communicating with a central

station. The user can react to events related to the monitored
phenomenon based on the information received. The WSNs
have low consumption at the wireless nodes, with limited
memory and processing capacity, and include communication
systems, interface nodes, and application servers. The hard-
ware that makes up a WSN device is called a node, sensor
node, mote, or end-device (ED) [1], [2]. The server software
handles data and events, generates reports, and can interact
with the network, sending commands to the network actuators
[3].

Energy saving is still a challenge for WSNs to be popular-
ized [4], [5]. Usually, batteries and energy collectors provide
energy to the devices (e.g., solar panels). Batteries need to
be recharged or replaced, and there are several challenges to
be overcome regarding energy collectors [6]. Many authors
consider energy efficiency one of the most critical design
factors for extending network life and reducing maintenance
costs [7], [8].

Considering that the energy consumption of WSN nodes is
a central issue, this work presents a new model to analyze
the energy consumption of end devices from a stochastic
point of view. The objective is to offer more subsidies for
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evaluating networks formed by this type of equipment to make
it possible to assess not only the total consumption or the
mean consumption but also the probability intervals of drained
energy.

The findings should make an essential contribution to the
field of WSNs, more specifically, to the engineering and design
of this type of network. In this regard, the authors could not
find any other studies using the approach proposed in this
work.

The remainder of the paper is organized as follows: Sec-
tion II presents the related work and the main contributions
of this research. The theoretical background is presented in
Section III. In Section IV, the theoretical model is presented.
In Section V, the demonstration and analysis of the model
is presented with data collected from simulation. Finally,
Section VI gives the conclusions and identifies areas for further
research.

II. RELATED WORK AND CONTRIBUTIONS

The models proposed in the literature study different tech-
nology, topologies, and device configurations. This section
summarizes key related research to this work.

Measurement-based models were discussed: (1) Potsch [9]
made a low-cost IoT energy meter and developed two quali-
tative case studies that revealed system stability and validated
the circuit’s measuring range; (2) Singh et al. [10] analyzed the
current consumption of LoRaWAN, DASH7, Sigfox, and NB-
IoT devices. The results showed that LoRaWAN and DASH7
surpassed Sigfox and NB-IoT in the assessed situations. (3)
Michelinakis et al [11] examined NB-IoT device energy
consumption and compared the results to network operator
impressions to quantify configuration parameter effects. The
authors conclude that modules, operators, signal quality, power
saving features (RAI, eDRX), and packet size affect energy
use; (4) The model proposed by [12] considers routing,
sensing, and transmitting operations to calculate node energy
consumption of Texas Instruments CC2530 SoC.

Network behavior and larger amount of network nodes were
also modeled: (1) Bouguera [13] presents a LoRaWAN energy
model. The models allow hardware and software decisions to
be evaluated. Trade-offs have been identified among distance,
spreading factor, and transmission power. (2) In [14], two
approaches are proposed to calculate and optimize the power
consumption of IEEE 802.15.4 IoT devices. (3) Using the
Qualnet simulator, Das [15] evaluates the energy usage of
AODV, DSR, a general consumption model, MicaMote, and
MicaZ models. It has been noticed from simulation results that
AODV uses less electricity than DSR.
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Advances in modeling and analyzing the random behavior
of WSNs were addressed: (1) the research presented by [16]
provides a stochastic WSN energy model based on Markovian
decision processes that cover energy usage and transition
costs. (2) Nguyen [17] created stochastic motes consump-
tion methods based on Random Walk routing. Simulation
results demonstrate the model balances energy optimization
to improve WSN efficiency. (3) Zhang and Li [18] created a
paradigm to improve duty cycle state switching. Performance
research using a state transition model (full-active, semi-active,
sleep mode) has been accomplished. The results include the
analysis of energy usage, average latency as a function of data
production rate, and network data throughput. (4) Rahimifar
[19] proposed a software-defined IoT network with energy
prediction using Markov models. (5) A circuit for measuring
energy usage with the INA219 sensor and a probabilistic
approach using Markov chains to represent point-to-point and
star networks were also constructed by [13]. (7) Lages [20]
uses Petri Networks to estimate the energy consumption of
LPWAN-based IoT systems. Model validation was done with
node experiments.

Although the cited studies provide interesting techniques for
modeling and evaluating the power consumption of WSNs, it
has been noticed that an analysis that considers the probability
distribution function (PDF) and the maximum and minimum
expected values of the network’s drained energy can comple-
ment those results. These studies evaluate energy performance
based on average or total energy usage. Thus, the PDF can be
utilized to characterize the problem better and demonstrate the
statistical significance of estimated parameter values. Besides,
the expected maximum and minimum of a random variable
permit calculating the chance that an event falls within a
specific interval, therefore removing outliers from the analysis
if necessary. Consequently, the primary contribution of this
study is showing that the energy consumption of a WSN can
be modeled as a random variable with its respective PDF and
maximum and minimum limits. The importance of doing so is
summarized in Figure 1, which presents a sketch showing the
energy consumption of all nodes of three networks with the
same mean but different probability distribution shapes. Sup-
posing all network nodes consume the same power amount,
the probability distribution is best described with the Dirac
delta function, δ(e−µ). On the other hand, the network nodes
can consume different energy values that can be more or less
scattered. Another contribution is that the proposed theoretical
model is adaptable enough to allow the network designer to
investigate networks with arbitrary modes of operation.

III. THEORETICAL BACKGROUND

A. LoRa and LoRaWAN
LoRa is a technology that creates communication links

between EDs and gateways (GWs). LoRaWAN, on the other
hand, is the name given to the protocol that specifies the upper
layers managing, mainly, access to the medium [21].

In the physical layer, M-ary Chirp Spread Spectrum (MCSS)
modulation allows range increase. The choice of the SF
(spreading factor) values influences interference, channel ef-
fects, and the Doppler effect. High SF values result in low

Fig. 1. Three PDFs that have the same mean but different shapes.

data rates and high ToA (Time on Air), which are the main
disadvantages of MCSS [22].

The LoRaWAN standard defines channel access based on
the ALOHA protocol and the choice of transmission channels
[23]. Additionally, the protocol defines three classes of de-
vices, A, B, and C [24]. Class A devices provide two downlink
reception slots, RX1 and RX2. Class B allows several recep-
tion slots, which requires synchronization between EDs and
GWs. Devices with only one continuously open reception win-
dow are Class C. The LoRaWAN specification also determines
two types of transmission mode: the confirmed mode, in which
the network server (NS) transmits acknowledgment packets
(ACK) towards the EDs in response to each transmitted packet;
in unconfirmed mode, NS does not send any ACK packets
[25]. This work presents results using both Class A devices
and confirmed mode.

EDs send packets to GWs, which then send them to the NS.
The GWs communicate with the NS via IP connections such
as WiFi, Ethernet, or xG (e.g., 3G, 4G, 5G, 6G). The NS is the
central point of the network and is responsible for discarding
duplicate messages, sending acknowledgment messages, and
managing node parameters. The clustering of all devices forms
a star of stars topology [26].

B. Energy Consumption

It has been found in several works that, in general, the
energy consumed during an operation cycle can be described
according to Equation 1 [10], [13], [27],

Ec =

M∑
k=1

ek =

M∑
k=1

tkψk. (1)

The total operating cycle energy is given by the sum of the
energy consumed in each state wherein M is the number
of states, and ek is the energy consumed during k-th state.
Considering only the physical aspects, ek can be obtained by
the product of the average power, ψk, and tk which represents
the time interval.

For LoRaWAN EDs working in class A, the energy con-
sumed during an operation cycle is given by the energy spent
in uplink transmission, RX delay 1, downlink reception in
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RX1,RX delay 2, downlink reception in RX2 and sleep until
the next uplink transmission,

Ec = EUL + ERXDelay1
+ EDLRX1

+ ERXDelay2+

EDLRX2
+ ESleep = V ITXTTX + V IRXDelay1TRXDelay1+

V IDLRX1
TDLRX1

+ V IRXDelay2TRXDelay2 + V IDLRX2
TDLRX2

+

V ISleepTSleep, (2)

in which V represents the voltage, I is the current, and T is
the time spent in each state. The time passed in transmission
and reception, TTX and TRX , are equal to the ToA of the
packet.

The NS controls the transmission parameters, the SF, and
the transmission power (Pt) of the EDs using the Adaptive
Data Rate (ADR) algorithm. The ADR optimizes the trans-
mission rate and reduces power consumption. The LoRaWAN
standard does not specify it, but most NSs follow the proposal
of Semtech [28]. The NS collects the Signal Noise Ratio
(SNR) values of the uplink (UL) packets, how many GWs
received each uplink packet and returns Pt and SF the EDs
should use to transmit data.

IV. THEORETICAL MODEL

In this work, an approach to model energy consumption
is proposed based on the fact that the energy consumed by
any sensor node of the network in a state k is a random
variable. In LoRaWAN networks, for example, Pt and SF
variation is dominated by ADR algorithm actuation as well
as the duration of the reception windows. Therefore, the total
energy consumed per cycle, Ec, is a random variable.

Real IoT devices have limits on the minimum and the
maximum power consumption. A well-designed network must
be configured so that the nodes’ energy consumption values
per cycle must be close to the minimum consumption. Ideally,
all consumption values should be equal to the minimum, but,
in practice, this is impossible due to random factors that cause
variation in power consumption. One possible classification
of the network regarding energy consumption is proposed as
follows:

1) ideal WSN, if all nodes consume the minimum energy.
The most suitable PDF is the impulse function located
at the minimum limit, δ(e− Emin);

2) well-designed WSN, if the consumption values are more
likely to be close to the minimum. Right-skewed distri-
butions are more suitable in this case;

3) regular WSN, if the mean consumption is around
(Emax + Emin)/2;

4) bad-designed WSN, if the consumption values are more
likely to be close to the maximum. Left-skewed distri-
butions are more suitable in this case;

5) worst case, if all nodes consume the maximum energy.
The most suitable PDF is the impulse function located
at the maximum limit, δ(e− Emax).

A variety of PDFs can be used to model the problem. In this
work, one possible formulation is presented, considering that
the devices are configured so that the consumption of all states
tends to the minimum limit forming a well-designed WSN.

Subsection IV-A presents the derivation of the probability
distribution of the total energy consumed per cycle, and Sub-
section IV-B the maximum and minimum energy consumption
PDFs.

A. Probability Distribution of the Energy Consumed per Cycle
In the case of LoRaWAN networks, the time varies mainly

due to the transmission and reception window size changes
caused by SF choice, which changes the ToA. Also sleep time
and idle time also vary due to medium access randomness and
reception windows usage. Although both the time and power
can be modeled as random variables, this work presents the
analysis with the power kept fixed while the time is considered
random since it is assumed that the uncertainty is dominated
by time variation.

The typical probability distribution for the time interval
between events is the exponential distribution given by [29]

pk(t) = αk exp[−αkt]u(t) (3)

in which αk = 1/λk is the inverse of the time average, λk,
and u(t) is the unit step function. One way to obtain the PDF
of the energy consumed per cycle is to convolve the PDFs of
each state. The result of this operation is given by

pE(e) =

M∑
i=1

β1 · · · βn
M∏
j=1
j ̸=i

(βj − βi)

exp[−βie]u(e), (4)

in which βk = αk/ψk. Demonstration of how to obtain
Equation 4 is presented in Appendix A.

B. Probability Distribution of the Maximum and Minimum
Energy Consumption

Maximum and minimum power consumption probability
distributions establish theoretical power consumption limits.
The min and max operators are helpful for evaluating pes-
simistic and optimistic scenarios of energy consumption [30].
If E1, . . . , EN are random variables referring to energy con-
sumption during an operating cycle, W = min(E1, . . . , ENw

)
and Z = max(E1, . . . , ENz ) can be used to estimate the
highest and lowest consumption of nodes in a WSN.

Assuming the independence of the Nz random variables that
represent the consumption per cycle of the sensor nodes, the
generic expression for the PDF of the maximum is given by
[30]

pZ(z) =

Nz∑
i=1

pXi(z)

Nz∏
j=1
j ̸=i

PXj (z). (5)

To obtain the PDF of Z = max(E1, ..., EN ), the PDF and
the CDF (cumulative distribution function) of the consumed
energy are substituted in Equation 5.

On the other hand, the generic PDF of W for Nw random
variables is given by [30]

pW (w) =

Nw∑
i=1

pXi
(w)

Nw∏
j=1
j ̸=i

[1− PXj
(w)]. (6)
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0

Fig. 2. Energy consumption PDF curve, pE(e); minimum energy
consumption PDF curve, pW (w); and maximum energy consumption
PDF curve, pZ(z).

The PDF of W = min(E1, ..., EN ) is also obtained by
substituting the PDF and the CDF in Equation 6. Due to
the mathematical complexity, the probability density and the
expected values of the maximum and minimum consumption
were obtained numerically. Figure 2 presents the PDFs of the
maximum, the minimum, and the derived power consumption.
Expected values (E[W ] and E[Z]) represent the theoretical
limits.

C. Technology Minimum and Change of Basis

Naturally, physical variables are bounded by finiteness or
causal relationships in the system. Real radios have limits
regarding the minimum and maximum energy consumption
intrinsic to the construction of the device hardware, the
firmware, and configuration parameters used for each applica-
tion. Therefore, to apply the model, it is necessary to consider
the minimum threshold of the device, which is non-zero for
most cases. Because the derivation of Equation 4 does not
consider this limit, the change of basis can be used, which
converts every assertion given in terms of coordinates of one
basis into another. The method applied in this work consists
of the steps:

1) Calculate the mean energy consumption of each state
considering all nodes of the network;

2) Convert every value of βk from the original basis (origin
is (Ecmin , 0)) to the new basis (origin is (0, 0)):

β
′

k = 1/(µk − (µk/

M∑
i=1

µk)Ecmin
), (7)

wherein µk is the mean energy consumption of state k;
3) Calculate the PDF of Ec in the new basis, pE(e)

′
;

4) Convert pE(e)
′

to the original basis:

pE(e) = pE(e− Ecmin)
′
. (8)

V. CASE STUDY WITH LORAWANSIM

LoRaWANSim is a free and open-source simulator devel-
oped in MATLAB to evaluate the behavior of the medium
access and physical layer of LoRaWAN networks. However,
it does not consider the energy consumption in the Processing

and I/O modes, although the theoretical model proposed in
this work has the flexibility of making it possible for the
network designer to study as many states as needed. Tests and
comparisons with analytical models and experimental results
validated the simulator. The main inputs of the simulator are
the arrangement of nodes, the propagation model, and a set of
parameters that determine the behavior of the protocol stack
layers. As outputs, the simulator returns some metrics: (1) the
uplink delivery rate (ULDR) refers to the packets transmitted
by the EDs and received by the GW; (2) the performance of the
total and mean energy consumption of each ED is estimated,
considering the states of transmission, reception, idle, and low
consumption modes of operation [27].

A. Simulation Inputs

In all scenarios, all EDs were placed randomly in a circular
area with a 4 km radius. Table I contains the list of the
parameters used as input to the simulator. Six scenarios were
established to analyze the effects of the transmission period,
the environment, and the number of gateways. The number
of EDs equals 200 for all cases as the circular area radius is
4 km. Except for the propagation model parameter, the period
between transmissions, and the number of gateways and end-
devices, all other parameters are the same as in [27].

A comparison of communication in free space and space
with obstacles is presented in Subsection V-B2. Log-distance
path loss model is appropriate for that being an extension of
the free space model. This model equation replaces the original
Okumura–Hata model of the published simulator because it is
widely utilized with fewer parameters and less complexity.
Therefore, it can be used to forecast the propagation loss for
various situations [31]. The formulation of the model is given
by

Pr = Pt +Gt +Gr − 10n log(d), (9)

in which Pr is the received signal power and Pt is the
transmission power. The parameters Gt and Gr are the gains of
the transmitting and receiving antennas, and d is the distance
between the devices.

B. Simulation Results

This subsection presents the simulation results. The perfor-
mance outputs are summarized in Table II.

1) Effect of the Transmission Period: Energy consumption
histograms and associated theoretical PDF curves are shown
in Figure 3 for two different scenarios. In both cases, the EDs
exchange data with a single GW in a free space environment
(n = 2.0) for T = 30 s and T = 300 s. As was to be
predicted, transmission interval lengthening results in reduced
power consumption. In the case of T = 300 s, simulation
results more closely match the theoretical probability density
function (PDF). Energy consumption observations for the
T = 30 s scenario are slightly above the convolution of
exponentials probability distribution. Greater concurrence for
the medium explains this by high interference and collisions,
pushing energy consumption numbers further from the min-
imum. According to Table II, the ULDR decreases as the
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TABLE I
INPUT PARAMETERS FOR THE CHOSEN SCENARIOS.

Parameter Description Value
N Number of nodes {200}
G Number of gateways (GWs) {1, 15}

R [km] Area radius 4
PED
T [dBm] ED transmission power {14, 12, 10, 8, 6, 4, 2}
GED

A [dBi] ED antenna gain 5
PGW
T [dBm] GW transmission power 16
GGW

A [dBi] ED antenna gain 5
σ [dB] Shadowing parameter 3

n Propagation model parameter {2.0, 4.0}
CR [bits/s] Coding rate 1
BW [kHz] Bandwidth 125
DC [%] Duty cycle restriction 100 (no DC restriction)
T [s] Period between transmissions {30, 300}

H [Boolean] Header Presence? 1 (true)
Lp [bytes] Message preamble length 8
BUL [bytes] Uplink packet Size 20
BDL [bytes] Downlink packet Size 20
RX1DROffset Offset between SF of transmission and RX1 reception window 0 (no offset)

TABLE II
SUMMARY OF THE SCENARIOS AND THEIR RESPECTIVE PERFORMANCE OUTPUTS ANALYZED IN THIS WORK.

Scenarios ULDR [%] µ [mJ] E[E_c] [mJ] Ecmin [mJ] Ecmax [mJ] E[W ] [mJ] E[Z] [mJ]
ID T n GW

1 30 2 1 63.50 140.75 140.61 97.39 194.22 100.44 298.72
2 30 4 1 68.34 152.12 151.58 97.41 224.59 101.71 277.89
3 30 4 15 92.27 113.83 113.83 97.39 161.85 98.32 184.90
4 300 2 1 93.58 105.67 105.67 97.94 125.42 98.36 139.48
5 300 4 1 94.38 112.20 112.20 98.00 225.22 98.99 171.41
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Fig. 3. Energy consumption histograms for T = 30 s and T = 300 s,
and their theoretical PDF curves.

power consumption increases when T = 30 s. It is possible to
notice that the verified minimum and maximum collected from
the simulation are different from the expected minimum and
maximum. However, this is to be expected since the ADR
algorithm can optimize the network in such a way that the
energy consumption of most nodes is closer to the minimum.

2) Effect of the Environment: Figure 4 displays the the-
oretical PDF curves related to the histograms of energy
consumption for two separate cases regarding the log-normal
propagation model exponent. The EDs communicate with
a single GW in a free space environment (n = 2.0) and
inside a space with obstacles (n = 4.0). The period between
transmissions is T = 300 s in both cases. Deploying the

nodes in a hasher region has the expected effect of increas-
ing energy use. The theoretical probability density function
is more closely matched by the simulation findings when
n = 2.0. The observed energy consumption for the n = 4.0
scenario is slightly higher due to smaller SNR, so the ADR
algorithm increases the transmission power of the nodes. The
ULDR values for both cases are very close, indicating that
the environment has a greater effect on the energy than the
delivery rate. Some outliers were detected, as can be verified
by comparing E[Z] to Ecmax . It is the responsibility of the
network designer to select the value to truncate the PDF from
E[Z], E[W ], Ecmax

and Ecmax
that best suit the application

even though it is highly recommended to remove the rare
values out of the analysis.

3) Effect of the Number of Gateways: In these two sce-
narios, the nodes are distributed for communication with both
1 and 15 gateways placed randomly. Theoretical PDF curves
associated with energy consumption histograms are shown in
Figure 5. Both examples use T = 30 s and T = 4.0 to
evaluate intense medium concurrence and lower SNR. Energy
consumption and ULDR improve as a result of more GWs.
The simulation results align with the theoretical probability
density function when GW = 15. More gateways cause the
WSN performance to be improved than expected, although the
deployment cost increases.

VI. FINAL REMARKS

This work presents a theoretical stochastic model to cal-
culate the probability ranges of WSN energy consumption.
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Fig. 4. Energy consumption histograms for n = 2.0 and n = 4.0,
and their theoretical PDF curves.
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Fig. 5. Energy consumption histograms for GW = 1 and GW = 15,
and their theoretical PDF curves.

The theoretical PDF curves were produced, and the distri-
butions related to the maximum and minimum consumption
were derived, allowing the network designer to evaluate the
power consumption distribution of the entire network. The
PDF gives an entire picture of WSN power consumption as
the maximum and minimum expected and observed values
allow the energy dispersion analysis and outliers removal. The
model was applied to evaluate six different scenarios in a
more detailed way. It has been shown that when the period
between transmissions is reduced, obstacles are present and
few gateways are used in a harsh environment, the mean
energy increases as well as the dispersion of the energy values.
Also, for the analyzed scenarios, the energy consumption of all
network nodes are between expected maximum and minimum
theoretical prediction, except for Scenario 5, in which outliers
were detected. In addition, it is possible to conclude that
Scenarios 3 and 4 are better designed than Scenarios 1, 2 and 5.
The main contribution of the paper is the developed approach
which can be used to evaluate WSN with more detail. Based
on the results, the authors expect WSN designers to have more
subsidies to examine the performance of different applications
in this area of knowledge using the proposed methodology.
Other probability distributions can be used to model the power
consumption depending on the random dominant mechanism

and will be investigated in a future work.

APPENDIX

APPENDIX A – DEMONSTRATION OF EQUATION 4
The energy consumed in each state is given by

ek = tkψk. (10)

Applying a PDF transform [32],

pk(e) =
fk(t)

|dedt |
=
αk exp[−αke/ψk]u(e/ψk)

ψk

,

making βk = αk/ψk and using the property of the unit step
function, the PDF related to the consumption in a state k
becomes

pk(e) = βk exp[−βke]u(e). (11)

Let e1, e2, ..., eM be independent random variables with
exponential distribution and let Ec be the sum of these
variables denoted by

Ec =

M∑
k=1

ek. (12)

It is possible to obtain the distribution of Ec with the convo-
lution of the PDFs of ek [33],

fE(e) = f1(e) ∗ f2(e) ∗ · · · ∗ fM (e). (13)

By induction, it can be demonstrated that Equation 4 is the
probability density function for M states.
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