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A Synthesis Method to Generate Hourly Electricity
Production Time-series of Wind Plants in Peru for

Long-term Expansion Planning
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Abstract—Plenty of works have treated the system expansion
planning problem in the presence of intermittent renewable
energy resources like wind. However, most of those proposals
have been approached from scenarios of plenty of data, which is
not the rule in developing countries, where principal investment
actors have recently switched their focus. In contrast to operation
problems where existing literature can be successfully applied
since it requires short-term historical time-series gathered from
the same studied plants, proposals for planning problems are
almost impossible to apply because of a lack of information
and measurement about renewable resources in places where no
renewable plants have been previously installed. In order to fill
this information gap, this paper presents a novel methodology to
synthesize wind production time-series on an hourly time scale,
taking as inputs aggregate data such as monthly wind speed
average values and Weibull annual parameters. The methodology
comprises four steps, from data gathering to calculating electrical
power produced by a wind farm. Three application tests are
performed for different places in India, Chile, and Peru to
validate the proposed methodology. The results show that the
methodology successfully synthesizes time-series of output power,
correctly achieves persistence characteristics, and slightly over or
underestimates the produced wind energy, having a discrepancy
of ±6.2% in the yearly total.

Index Terms—Expansion planning, power systems, renewable
energy, synthesis methods, wind energy.

I. INTRODUCTION

A s non-conventional renewable generation technologies
continue decreasing their investment cost and increasing

their efficiencies [1]–[3], electrical systems all over the world
will get their renewable energy resources (RER) penetration
level growing up, as is forecasted by many global organiza-
tions like [1] who projects that RER production will account
for a 86% of global power generation. At the same time,
electricity will have 49% of the share in final consumption
by 2050. This fact will bring several benefits to human
development, but also new challenges that energy sector actors
shall face to smooth the path of this energy transition.

On the one hand, both operation problems: real-time oper-
ation and dispatch scheduling, must deal with the intermittent
behavior of wind resources. It is known that while penetration
level increases, the system gets more vulnerable to RER gen-
eration fluctuation, as studied in [4]–[6]. Cited studies show
that short-period fluctuations in wind speed change drastically
load demands as seen by the independent system operator
(ISO) creating a significant ramp up or down, which make
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it compulsory to have must-run machines or energy storage
systems in the grid. Also, the unpredictable availability of the
generation capacity of this kind of plant makes the scheduling
process of day-ahead electricity markets difficult. Sometimes,
complexity is such that the ISO assumes a deterministic
generation time-series that plant owners prepare and send to
them, avoiding the responsibility to accurately forecast this
input, as evidenced in [7], [8] for the Peruvian case. This
problem affects physical markets and the wholesale electricity
market, as studied in [9]. Plenty of approaches have been
studied in the literature [10]–[13] to overcome these problems.

Although uncertainties are present everywhere in the energy
sector’s value chain, it should be noticed that the farther the
time horizon analysis is, the more challenging it becomes to
resolve the problem. Thus, on the other hand, system expan-
sion planning problems are at a higher level of complexity
[14], [15].

Furthermore, successfully overcoming these problems is
conditioned to information on resources measurements and
existing plants’ historical records. Unfortunately, developing
countries that are recently increasing their investment expen-
ditures in RER plants usually lack this information. Although
private agents make their field studies, the gathered informa-
tion is not socialized, and public and academic organisms are
obliged to resort to other methods to develop their activities.

Indeed, this is of the points on which recent works on
barriers to renewable energy in developing countries strongly
coincide. Specifically on the lack of capabilities [16] and
information barriers [17], since these countries do not have
access to databases on the potential and production of renew-
able energies. Neither do they have the capabilities to develop
proper mathematical models in order to study its phenomena.

In that sense, this paper addresses the question of what
methodology should be used to estimate the behavior of
renewable wind plants in any part of a country in the context
of scarcity of information, which is an issue identified as one
of the most critical challenges in developing countries.

The main contributions of the paper are:

1) To develop a novel methodology to generate hourly
electricity production time-series for renewable wind
plants, which:

a) Only uses aggregate data as input, and
b) Does not require historical time-series.

2) To achieve persistence characteristics and realistic
stochastic behavior in generated time-series.

https://orcid.org/0000-0002-6046-9551
https://orcid.org/0000-0002-1890-8127


FELIX et al.: A SYNTHESIS METHOD TO GENERATE HOURLY ELECTRICITY PRODUCTION 663

3) To compare synthetic wind speed and energy against
actual measurements and plants.

The remainder of the paper is organized as follows.
Section II provides a comprehensive literature review of the
approaches to synthesizing wind speed time-series. Section III
presents and discusses the proposal to fill the central gap found
in the previous section. Section IV performs a set of appli-
cations in different places worldwide, such as India, Chile,
and Peru, and presents its comparison with historical values.
Finally, concluding remarks and future work are highlighted
in Section V.

II. LITERATURE REVIEW

Significant research effort has been made for modelling
wind speed values. In that way, one of the first proposals
was presented in [18], which compared six well-established
approaches to generate synthetic wind time-series. According
to their test results, authors concluded that methods based
on independent and identically distributed values, one-step
Markov models, two-step models, and Box-Jenkins models
do not generate representative and accurate synthetic time-
series. Therefore, recommend using the Shinozuka method or
the embedded Markov chain model.

Better quality time-series were obtained in [19], where a
Weibull distribution for each hour of a month’s typical day
is modeled to preserve the wind speed’s daily pattern. The
paper proves that the performance of an electrical system
remains similar when using measured and synthesized time-
series as evaluated by the loss of load probability (LLP). As a
limitation, three years of data were required to model Weibull
distributions.

It is essential to mention that a unique Weibull distribution
cannot model an annual wind speed time series, as demon-
strated in [20], where an overestimation of 40% in produced
energy is obtained, besides producing a divergent probability
density function (PDF).

Despite the findings presented in [18], plenty of works
have been published later using supposedly not recommended
methods. One of them is [21], where it is used a first-
order Markov chain model to synthesize wind speed time-
series obtaining good results with more than 90% of the
agreement for statistical parameters between historical and
synthetic series. However, to improve results, a higher-order
Markov model must be used as recommended by the authors.

In [22], first- and second-order Markov chain models are
employed to generate synthetic wind speed time-series for two
localities in Malaysia. After comparing principal statistics such
as mean, standard deviation, auto-correlation, Weibull distri-
bution parameters, and spectral density of real and generated
series, the authors concluded that both models have a good
performance synthesizing wind speed time-series. Although
the cited paper does not analyze similarity in wind speed
profile, it must be said that neither the first- or second-
order Markov model achieves reproducing actual behavior
accurately. However, it is true that a higher-order or larger size
transition matrix of Markov models better preserves statistical
characteristics of historical data, as studied in [23].

An interesting analysis of the pitfalls of using Markov
models to synthetically generate wind speed time-series to be
later used in planning processes, specifically for energy storage
planning, is presented in [24], where it is demonstrated that
generated time-series lacks the persistence of actual data and
would predict a radically different storage requirement.

Some works, as [25], stated that Markov models are good
enough to generate hourly time-series since it preserves statis-
tical parameters and that Weibull and Gaussian distributions
should be used for intra-hourly values (minutes and seconds).
However, results obtained demonstrate a lack of persistence in
synthetic time-series.

It must be said that proposals using Markov models require
historical measurements in order to calculate parameters.

A novel approach was presented by Negra et al. [26], who
developed a model inspired by the foundation of Markov
transition matrixes, obtaining very realistic wind speed time-
series. However, for the calibration of the model, a set of 7
years of measurements was required.

The use of autoregressive moving-average (ARMA) models
was also proposed to synthesize wind speed time-series, as
in [27], where synthetic series for 15 New Zealand farms
were generated, although methodology requires several years
of wind registers over the country. Chen et al. [28] also
produced a realistic wind speed time-series using Fourier
series and ARMA models to characterize seasonal trends
and auto-correlation in residue. Nevertheless, three years of
historical data are employed to train the model.

An interesting approach was presented in [29], where a hy-
brid method that uses measured and synthetic values achieves
creating wind speed time series for analyzing frequency (1
min) and flicker phenomena (10 sec). Starting from 10-
min average wind speed values, the authors introduce zero-
mean, high-frequency turbulence to create a high-resolution
time series, which is then used to comprehensively analyze
ramp rates and spinning reserve requirements, finding a good
agreement with the actual results.

Similarly, Hagspiel et al. [30] proposed using a model
based on Copula theory yielding good results that help per-
form steady-state analysis of power systems. A comparison
between synthetic and natural energy generated by some
existing wind farms in Europe was taken as a validation
criterion. Regrettably, no graphs of real and generated time-
series were provided in the publication, making it difficult to
compare the reproduction accuracy of actual behavior. Another
attempt using Copula theory was presented by Sarmiento et
al. [31], who also addresses the synthesis of wind direction.
The statistical validations against one-year measurements data
obtained positive results; however, the wind speed profile does
not reflect an actual wind speed time-series.

Meanwhile, Carapellucci et al. [32] presented a simple yet
exciting methodology to produce synthetic wind speed time-
series. Starting from the premise that wind speed comprises
periodic deterministic and stochastic components, a five-step
methodology is developed, supported by a genetic algorithm
for tuning parameters. The paper proposal’s main advantage
is that the model only needs aggregate statistical parameters
such as yearly mean, monthly mean, and monthly maximum
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wind speed. Generated time-series properly preserves actual
wind behavior, although persistence is still not achieved.

Indeed, persistence is a characteristic that is not discussed in
most of the mentioned papers, even though this characteristic
can represent the difference between a completely random and
a realistic wind speed time-series. An interesting approach
to achieve this feature was presented by Naimo [33], who
uses the optimization model of the Assignment Problem to
re-sequence the generated values to accomplish persistence
requirements. Nevertheless, an hourly measured wind speed
data was needed to resolve this optimization problem.

A recent proposal was presented in [34] where a synthesis
process with a special focus on preserving diurnal patterns is
developed, i.e. persistence. The methodology initially gener-
ates random values that are then reordered to be consistent
with the PDF and power spectral density function (PSD), and
to accurately reproduce the average diurnal variation (ADV) of
analyzed wind-speed datasets. Although the proposal generate
different time-series in each run and does not depend on the
time interval, the algorithm requires a wind speed dataset
as input. Application case uses an 18-year long time-series
recorded from a meteorological mast in the Netherlands.

One of the common challenges that almost all South Amer-
ica and other developing countries face is the scarcity of wind
atlas or an official source of information about wind resources
within its territory. Hence, obtaining measurement data at
scales of 1-min, 5-min, or even 1-hr is almost impossible
most of the time, making it very difficult to adopt some
of the models proposed in developed countries, which make
extensive use of historical data at the scale of 1-h or more
frequently.

Therefore, the main objective of this paper, which is also
its main contribution, is to develop a methodology to generate
hourly electricity production time-series for wind renewable
plants using aggregate data as input. This methodology can be
helpful for project evaluation and system expansion planning
purposes.

III. METHODOLOGY

The proposed methodology consists of four steps, as shown
in Fig. 1.

Wind data gathering

Wind speed random 

values generation

Wind speed values 

reordering

Wind power assessment

Fig. 1. Steps flow of synthesis methodology.

The first step gathers relevant wind data about a specific
geographic coordinate. The second step shows the randomly
generating process of wind speed values using the retrieved
information. In step three, an optimization model is used to
reorder the randomly generated values. Finally, the fourth step
presents the process to obtain wind power generation values.

A. Wind Data Gathering

The Peruvian Ministry of Energy and Mines (MEM) re-
leased an interactive tool called Wind Atlas in 2016 [35]. For
a given pair of latitude and longitude (ϕ and λ in ◦), this
tool allows obtaining the yearly scale (βy) and shape (αy)
parameters for the Weibull distribution approximation at 100
m height (href ) anywhere in the country.

The corresponding average wind speed and standard devi-
ation (vy and σy in m⁄s) can be obtained with the functions
NtWeibullMean(αy, βy) and NtWeibullStdev(αy, βy), re-
spectively, provided by the free Microsoft Excel add-in Ntrand
[36].

Since the Peruvian Wind Atlas (PWA) does not provide
monthly average wind speed values, the open-access POWER
database provided by the American National Aeronautics and
Space Administration (NASA) [37] will be used to acquire
monthly averages (vpm in m⁄s). A parameter km is defined that
relates these monthly values and their average, as indicated
in Eq. 1. This parameter must be calculated for each month
m ∈ [1,M ].

km =
vpm

1
M

∑M
m=1 v

p
m

(1)

For other countries, the RE Data Explorer [38], a renewable
energy resource geospatial explorer created by the National
Renewable Energy Laboratory (NREL), could gather wind
speed time-series at different heights. Although this explorer
covers only a minor part of the world, it is a valuable tool to
obtain free data.

If another source of data were used, e.g., in-site measure-
ment, Weibull scale and shape parameters could be obtained:

1) using one of the methods presented in [39]–[41],
2) using the NtWeibullParam(µ, σ) function in Excel

with the Ntrand add-in, where µ the mean and σ the
standard deviation of speed values, or

3) using the fitdistr(ws, densfun = ”weibull”, lower =
0) function in R [42] with package MASS [43], where
ws is an array containing wind speed values

Monthly averages, as well, may be obtained from the same
data source. Special care should be taken to use values of βy ,
αy , vpm, and km referred to the same height href .

Finally, the air density value (ρ in kg⁄m3) must be calculated
for the total hub height, which includes the wind tower height
(hhub in m) and the selected location’s total altitude above sea
level.

B. Wind Speed Random Values Generation

The inverse Weibull distribution will be employed to gen-
erate random values through Eq. (2):

vusyn = ϑ

(
ln

1

1− U

)1/φ

(2)

Where vusyn represents the set of unordered random gener-
ated values and U is a uniform random number. Parameters ϑ
and φ stand for the scale and shape, respectively.
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In an Excel worksheet, a (N × M ) matrix must be
constructed to obtain N = 8760 random values for ev-
ery month (M = 12) of a typical year. The content of
each matrix column should be the Ntrand matrix function
NtRandWeibull(N,φ, ϑ, 0) considering φ = αm, and ϑ =
βm for the corresponding month column.

Since no values were recovered for these monthly pa-
rameters, they will be calculated using the matrix function
NtWeibullParam(vm, σm) having vm = kmvy and σm =
kmσy . These relationships represent a good approximation of
actual parameter monthly variation as inferred from the data
shown in [44]. Do not confuse the calculated parameter vm
with the gathered vpm value.

Two additional terms must be appended when calling
the Ntrand Excel function to avoid the problem of pro-
ducing identical random values for places with the same
aggregate input parameters. The final formula would be
NtRandWeibull(. . . , Rϕ, Rλ), where Rϕ and Rλ are the last
five digits of ϕ and λ starting from the right, which usually
belongs to the decimal part when working with a precision of
at least six digits. These constants are used in the function as
random seeds.

Usually, href is not the same as hhub, so randomly gener-
ated values must be scaled using the power law presented in
Eq. (3) suggested by [45].

v̂usyn = vusyn

(
hhub

href

)1/γ

(3)

Where v̂usyn and vusyn are the wind speed values for heights
hhub and href , respectively. Power law exponent γ, also
known as Hellman’s wind shear or friction exponent, could
be approximated using one of the formulas presented in [46],
[47], but since both NASA POWER and site measurements
most frequently report wind speed values for more than one
height, it is possible to clear the value of γ for each month
using the monthly average speed values.

On the other side, since natural wind behavior has a
sinusoidal-like form, the diurnal pattern formulation proposed
by [48] will be adapted and applied to synthetic values.

vfinal,i = vosyn,i

(
1 + δ cos

[
2π

24
(i− ϕ)

])
(4)

In Eq. (4), parameter i ∈ [1, 24] represents the hours of the
day, ϕ is the hour of the day at which peak wind speed used
to occur, and δ is the diurnal pattern strength whose typical
value goes from 0.0 to 0.4. vosyn is the corresponding synthetic
value for the hour i, after being ordered using the algorithm
presented next.

C. Wind Speed Values Reordering

Until the previous step, generated values represented a
random set of numbers, as with almost all wind speed syn-
thesis processes reviewed. However, it is possible to reorder
the generated time-series to be realistic, attending to the
persistence characteristics that wind speed has.

In that sense, an algorithm that uses the Assignment Prob-
lem optimization model is proposed in Algorithm 1, similar
to [33].

Algorithm 1 Reordering algorithm
1: a = 0
2: b = rand(20 : 32) ▷ Chooses a random size
3: while a < N do
4: v̂subsyn = v̂usyn[a : b] ▷ Extracts a subset
5: c = rand(12 : 24) ▷ Chooses a random peak hour
6: L = length(v̂subsyn)
7: for j in 1. . .L do
8: for i in 1. . .L do
9: disordered = v̂subsyn[j]/max

(
v̂subsyn

)
10: pattern = 1 + cos

(
2π
L (i− c)

)
11: distances[j, i] =

∣∣pattern2 − disordered2
∣∣

12: end for
13: end for
14: v̂usyn[a : b] = AssignmentProblem(v̂subsyn, distances)
15: a += b
16: if a ≥ N then break ▷ Finishes process
17: b = rand(20 : 32) ▷ Sets a new random size
18: if a+ b > N then b = N − a
19: end while

This algorithm takes as input the values of v̂usyn and replaces
them in chunks. In each iteration, a subset of the generated
time-series is created. The size of this subset is chosen
randomly between 20 and 32 hours, which tries to represent a
natural “diary” cycle length. After that, this subset is compared
with a sinusoidal pattern whose hour of peak speed is set by
a random function between 12 and 24 since, typically, the
wind blows stronger in the afternoon and night. The distance
between the pattern and the normalized subset is calculated as
suggested in [33].

With these values, the assignment problem is finally solved.
As a result, it is obtained a reordered time-series which is
used to replace the original correspondent values in v̂usyn. This
newly ordered time-series is represented by vosyn.

Parameters of the random functions can be revised to adapt
to other locations’ diary cycle patterns.

D. Wind Power Assessment

Although wind turbine manufacturers provide their prod-
ucts’ power-wind speed (P-S) curves, no equation exists.
In that sense, a piece-wise linearization function should be
constructed to represent P-S curves [49].

PW = F(vfinal)
ρ

ρ0
ηW (5)

Eq. (5) shows the power (PW ) calculation formula for a
specific wind speed (vfinal). In this equation, ρ is the air
density defined in step one, ρ0 is the standard air density at
sea level, and F is the piece-wise linearization function that
models the P-S curve of the wind turbine.

Typical derating factor (ηW ) values are in a range of 80-
90% [44], [50]–[55] and reflect the losses caused due to wake
effect, availability, electrical efficiency, turbine performance,
environment, and curtailments.
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TABLE I
DEVIATIONS OF MONTHLY MEAN WIND SPEED (M/S) VALUES AT hhub FOR A POINT IN INDIA.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Actual 4.693 4.952 4.850 5.210 6.714 8.321 6.490 6.546 6.171 4.478 3.735 4.078
Synthetic 4.555 4.896 4.723 5.215 6.759 8.069 6.299 6.548 6.134 4.377 3.657 4.051
Error -2.9% -1.1% -2.6% 0.1% 0.7% -3.0% -2.9% 0.0% -0.6% -2.2% -2.1% -0.7%

IV. VALIDATIONS

Three tests are performed for different places to validate the
proposed methodology. Both tests compare the total energy
produced when wind speed is converted by the simulation
plant, which uses 42 wind turbines of the model Siemens
SWT-2.3-108 [56], a turbine of 2.3 MW nominal power, with
hhub = 80 m and wind cut-in, cut-out, and rated speed values
of 3, 25, and 11 m/s, respectively.

A. Test N° 1 – Comparison of Wind Energy for a Point in
India

In this test, full-year measurement data of wind speed at
different heights are gathered from the RE Explorer for a place
in India located at ϕ = 25.44◦ and λ = 78.57◦, which is 248
meters above sea level (MASL).

Parameters βy and αy are calculated using the measurement
at 100 m (href ) as the average result of the R function
indicated in the previous section and methods 1, 2, and 3 of
[39]. Measurements at 40 and 80 m are used to clear the value
of γ for each month. From the monthly mean wind speed at
40 m and cleared γ values, the corresponding vpm values at
href are calculated. Now, it is possible to estimate km.

Once model parameters are established, random values
are generated, referred to hhub, and ordered. A comparison
between gathered (80 m) and ordered (synthetic) wind speed
values are shown in Table I. It is seen that approximate values
have a mean absolute percentage error (MAPE) of 1.6%,
having a maximum discrepancy in June when variation reaches
up to -3.0%, which is still acceptable. The corresponding
normalized root-mean-square deviation (nRMSD) is 2.1%.
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Fig. 2. Time-series of total wind power output (MW) for a point in
India.

The power generation profiles produced by the simulation
plant when exposed to the unordered, ordered (synthetic) and,
actual wind speed time-series are presented in Fig. 2.

It is found that the time-series before performing the re-
ordering process have completely erratic behavior. After this
process, a more realistic time-series is successfully obtained
whose diary cycle coincides acceptably with the actual series.
However, since the proposed model only uses monthly aggre-
gate parameters, it is found that synthetic values do not present
weekly trends, as is evident in the actual one.

An interesting comparison of the daily wind speed profiles
of synthetic and actual time-series is presented in Fig. 3.
Although a similar daily pattern is revealed, it can be noticed
that historical time-series have a smoother behavior and more
dispersed values during the whole day, with a notable excep-
tion near the hour 19. In contrast, dispersion is minor and
almost the same along the year in the synthetic time-series.
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Fig. 3. Monthly and annual daily profile of wind speed (m/s) for a
point in India.

In terms of total monthly wind energy produced, the pro-
posed methodology achieves good results in general, as shown
in Table II, where estimated annual production is -5.6% lower
than the natural generation.

The corresponding MAPE is 8.3%, while the nRMSD
is 13.7%. The maximum discrepancies occur in June and
November, with -17.8% and 20.6%, respectively. However,
it must be noticed that almost all deviations are within the
root-mean-square error (RMSE), which is 2,117.01 MWh. For
instance, the error in November is just 783.65 MWh.

The June’s deviation of -6,307.08 MWh could be explained
by two principal factors: 1) model parameters were derived
from a unique measurement that does not represent year-to-
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TABLE II
DEVIATION OF TOTAL MONTHLY WIND ENERGY OUTPUT

(MWH) VALUES FOR A POINT IN INDIA.

Actual Synthetic Error
January 10,445.60 9,298.15 -11.0%
February 11,372.26 9,729.97 -14.4%
March 11,382.02 10,400.56 -8.6%
April 13,069.84 13,220.91 1.2%
May 23,178.49 22,987.15 -0.8%
June 35,351.94 29,044.86 -17.8%
July 22,610.76 20,006.27 -11.5%
August 21,399.94 22,009.06 2.8%
September 17,773.97 18,839.08 6.0%
October 7,906.84 7,679.01 -2.9%
November 3,798.43 4,582.08 20.6%
December 6,819.88 6,919.43 1.5%
Total 185,109.99 174,716.53 -5.6%
Mean 15,425.83 14,559.71

year resource variability, and 2) the occurrence of an atypical
daily pattern as evidenced in Fig. 3-b.

It is essential to mention that vpm values were inferred
from measurements at 40 m, even though data were available
in RE Data Explorer in order to evaluate the methodology
performance in a scenario where no wind speed time-series at
href exists.

This test uses a value of ϕ = 22, δ = 0.2, and ηW = 85%.

B. Test N° 2 – Comparison of Wind Energy for a Point in
Chile

A place in Chile located at ϕ = −24.65◦ and λ = −70.24◦,
with an altitude of 2,588 MASL, is analyzed in this second
test. Data of annual measurements of wind speed at different
heights are retrieved from [57].

Similar to the previous test, βy and αy are calculated using
the time-series of wind speed at 50 m (href ). Then, γ is cleared
each month using the monthly mean wind speeds at 10 and
40 m. Next, using this value and the monthly mean speed at
10 m, vpm values at href are calculated.

A comparison of ordered (synthetic) and gathered values,
both scaled at hhub, is presented in Table III. Approximate
values have a MAPE of 1.1% and an nRMSD of 1.5%.
Maximum deviations occurred in February and November,
reaching 2.3% and -4.7%, respectively. The latter deviation
is most likely related to the fact that actual wind speed does
not always follow the smooth vertical profile suggested by the
Hellman law.

The hourly behavior of power generation when using the
unordered, ordered, and actual wind speed time-series over
the simulation plant are shown in Fig. 4. It can be seen that,
again, the first output of the methodology corresponds to a
completely random series. Nevertheless, after the reordering
process, synthetic values achieve a realistic behavior, even
obtaining attractive curves such as the one produced for
August 11, which shows a pattern also appearing in the
natural series. Grantham et al. [58] indicate that this kind of
methodology aims not to produce patterns that have occurred
in the recorded data but to generate patterns that are equally
as likely to occur, which is being accomplished.
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Fig. 4. Time-series of total wind power output (MW) for a point in
Chile.

Although it is widely accepted that the daily profile of wind
speed fits a sinusoidal-like form, it can be seen in Fig. 5
that this Chilean point hardly accomplishes this convention.
In this figure, the spiky daily profile of the synthetic values is
also evident, in contrast with the smooth curves of the natural
series. In part (b) of the figure, it is notorious, as well, that July
is far above the annual mean, although June and October also
replicate this trend. Synthetic values mimic this characteristic,
too, mainly between 6 and 18 hours.
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Fig. 5. Monthly and annual daily profile of wind speed (m/s) for a
point in Chile.

Table IV shows the simulation plant’s energy when exposed
to the synthetic (ordered) and actual wind speed time-series.
The monthly variations between both series produce a MAPE
of 4.2%, with maximum divergences in January (5.9%) and
July (-11.4%). Estimated annual production is 2.1% lower than
the actual value.

July’s error reaches -3,663.31 MWh, higher than the RMSE,
which is 1,262.02 MWh. The corresponding nRMSD is 6.2%.
Explaining factors are 1) month’s speeds are higher than the
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TABLE III
DEVIATIONS OF MONTHLY MEAN WIND SPEED (M/S) VALUES AT hhub FOR A POINT IN CHILE.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Actual 5.688 6.756 6.894 6.587 7.337 9.394 10.212 7.702 5.963 9.265 6.265 6.681
Synthetic 5.684 6.911 6.876 6.671 7.391 9.445 10.239 7.829 5.954 9.144 5.972 6.688
Error -0.1% 2.3% -0.3% 1.3% 0.7% 0.5% 0.3% 1.7% -0.1% -1.3% -4.7% 0.1%

TABLE IV
DEVIATION OF TOTAL MONTHLY WIND ENERGY OUTPUT

(MWH) VALUES FOR A POINT IN CHILE.

Actual Synthetic Error
January 12,547.62 13,287.62 5.9%
February 16,525.08 16,823.45 1.8%
March 19,579.51 18,759.00 -4.2%
April 16,451.77 17,333.11 5.4%
May 21,838.07 21,177.52 -3.0%
June 26,015.00 25,655.07 -1.4%
July 32,140.78 28,477.46 -11.4%
August 23,289.61 22,459.02 -3.6%
September 14,595.80 14,283.17 -2.1%
October 26,930.13 27,670.87 2.8%
November 15,543.86 14,243.40 -8.4%
December 18,047.32 18,158.87 0.6%
Total 243,504.55 238,328.55 -2.1%
Mean 20,292.05 19,860.71

annual value, and 2) a flat daily profile, instead of sinusoidal,
as analyzed previously.

This test uses a value of ϕ = 11, δ = 0.2, and ηW = 85%.

C. Test N° 3 – Comparison of Wind Energy with an Existing
Wind Farm in Peru

The third test simulates an existing wind farm in Peru called
Tres Hermanas, which is located at ϕ = −16.39◦ and λ =
−75.08◦ and has an altitude of 217 MASL.

Weibull parameters βy and αy at 100 m (href ) are given by
PWA, and POWER gives monthly mean wind speed values at
10 and 50 m. From these values, γ is cleared, and then vpm at
href is calculated starting from values at 10 m.
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Fig. 6. Time-series of total wind power output (MW) for a point in
Peru.

Fig. 6 depicts the approximate power generated using the
wind speed time-series unordered and ordered. It also shows
the values injected into the grid in 2017. It can be seen
that peaks and valleys between the ordered and actual series
coincide acceptably. However, sub-monthly trends are not
captured by the methodology.

When daily profiles of power generation of these time-series
are revised in Fig. 7, it is evidenced that synthetic time-series
have a noisier behavior, although the annual mean is quite
similar. Tuning this profile would require working with hourly
parameters instead of monthly.

This fact is not necessarily a bad aspect of the proposed
methodology whenever it produces a more exigent-to-integrate
wind farm time-series. Indeed, developing planning studies
considering this kind of synthetic time-series could guarantee
that when actual implementation is done, the power system
will not get into a more stressful situation than it was consid-
ered when simulated, which in essence, represents the worst
case.
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Fig. 7. Monthly and annual daily profile of wind power (MW) for a
point in Peru.

Regarding energy, the methodology yields an annual amount
higher by 6.2% than the average of measured values of
2016, 2017, and 2018, as shown in Table V. Month-to-month
variations have a MAPE of 8.1%. Comparisons to each year
independently produce measures between 11% and 14.5%.
Regarding the nRMSD, values of 12.8%, 15.8%, and 15.3%
are found for 2016, 2017, and 2018, respectively. However,
compared to the average, this value is reduced to 9.8%, which
is expected.

As shown in Fig. 8, actual monthly energy production
fluctuates year after year, with some exceptions in July and
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TABLE V
DEVIATION OF TOTAL MONTHLY WIND ENERGY OUTPUT

(MWH) VALUES FOR A POINT IN PERU.

Average Synthetic Error
January 32,119.13 39,340.20 22.5%
February 29,769.70 34,978.23 17.5%
March 40,884.02 40,548.28 -0.8%
April 41,615.48 42,975.77 3.3%
May 42,490.23 43,293.23 1.9%
June 36,113.21 41,967.99 16.2%
July 38,053.91 45,320.03 19.1%
August 45,491.20 46,922.11 3.1%
September 44,592.62 44,895.43 0.7%
October 46,599.45 44,286.17 -5.0%
November 39,327.17 40,588.14 3.2%
December 39,266.72 40,716.75 3.7%
Total 476,322.84 505,832.32 6.2%
Mean 39,693.57 42,152.69

November, where production is quite the same. Synthetic in-
jection for January obtains the maximum deviation in Table V;
nevertheless, this value is similar to the one that occurred in
2018. Likewise, the situation that occurred in 2017 during
August, September, and October, where actual production
surpassed the values of the other years, makes the synthetic
injections obtained for June and July conceivable.
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Fig. 8. Total monthly wind energy output (MWh) for a point in Peru.

Actual energy values originally correspond to an installed
power of 97.15 MW [59], so they were scaled to the simulation
plant size.

This test uses a value of ϕ = 17, δ = 0.2, and ηW = 85%.

V. CONCLUSIONS

The proposed methodology presents a simple but effective
approach for producing synthetic hourly production values for
renewable wind plants.

According to the results presented, the randomness of
the proposed methodology initially produces a time-series in
which variability is not realistic. This unrealistic time-series
can be used as a worst-case scenario because such variability
makes it hard to integrate its corresponding wind plant into a
non-flexible power system. Such a scenario could be a positive

attribute for planning activities but, in contrast, could increase
the expansion plan cost. This behavior is corrected by the
reordering algorithm, which gives a more realistic profile.

The produced energy over or underestimates actual produc-
tion within a variation range of ±6.2%. This aspect should be
considered when using these synthetic time-series to perform
medium and long-term planning.

It should be remembered that the proposed methodology
does not try to adjust natural wind curves but to generate
realistic probable ones.

The presented methodology is novel because it uses aggre-
gate parameters as input and does not require historical time-
series, which is suitable for developing countries lacking RER
information. Besides, this flexible and parametric methodology
can generate multiple time-series scenarios modifying aggre-
gate input parameters to achieve enough range of cases to
incorporate uncertainties that may be used in future research
work.

Future studies must be carried out to improve sub-monthly
trends and estimated monthly injections.
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